1
|
Horton JR, Yu M, Zhou J, Tran M, Anakal RR, Lu Y, Blumenthal RM, Zhang X, Huang Y, Zhang X, Cheng X. Multimeric transcription factor BCL11A utilizes two zinc-finger tandem arrays to bind clustered short sequence motifs. Nat Commun 2025; 16:3672. [PMID: 40246927 PMCID: PMC12006351 DOI: 10.1038/s41467-025-58998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
BCL11A, a transcription factor, is vital for hematopoiesis, including B and T cell maturation and the fetal-to-adult hemoglobin switch. Mutations in BCL11A are linked to neurodevelopmental disorders. BCL11A contains two DNA-binding zinc-finger arrays, low-affinity ZF2-3 and high-affinity ZF4-6, separated by a 300-amino-acid linker. ZF2-3 and ZF4-5 share 73% identity, including five out of six DNA base-interacting residues. These arrays bind similar short sequence motifs in clusters, with the linker enabling a broader binding span. Crystallographic structures of ZF4-6, in complex with oligonucleotides from the β-globin locus region, reveal DNA sequence recognition by residues Asn756 (ZF4), Lys784 and Arg787 (ZF5). A Lys784-to-Thr mutation, linked to a neurodevelopmental disorder with persistent fetal globin expression, reduces DNA binding over 10-fold but gains interaction with a variable base pair. BCL11A isoforms may form oligomers, enhancing chromatin occupancy and repressor functions by allowing multiple copies of both low- and high-affinity ZF arrays to bind DNA. These distinctive properties, apparently conserved among vertebrates, provide essential functional flexibility to this crucial regulator.
Collapse
Affiliation(s)
- John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Meigen Yu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Melody Tran
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rithvi R Anakal
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Xiaotian Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center Houston, McGovern Medical School, Houston, TX, 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Jiang Y, Chiu TP, Mitra R, Rohs R. Probing the role of the protonation state of a minor groove-linker histidine in Exd-Hox-DNA binding. Biophys J 2024; 123:248-259. [PMID: 38130056 PMCID: PMC10808038 DOI: 10.1016/j.bpj.2023.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/22/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
DNA recognition and targeting by transcription factors (TFs) through specific binding are fundamental in biological processes. Furthermore, the histidine protonation state at the TF-DNA binding interface can significantly influence the binding mechanism of TF-DNA complexes. Nevertheless, the role of histidine in TF-DNA complexes remains underexplored. Here, we employed all-atom molecular dynamics simulations using AlphaFold2-modeled complexes based on previously solved co-crystal structures to probe the role of the His-12 residue in the Extradenticle (Exd)-Sex combs reduced (Scr)-DNA complex when binding to Scr and Ultrabithorax (Ubx) target sites. Our results demonstrate that the protonation state of histidine notably affected the DNA minor-groove width profile and binding free energy. Examining flanking sequences of various binding affinities derived from SELEX-seq experiments, we analyzed the relationship between binding affinity and specificity. We uncovered how histidine protonation leads to increased binding affinity but can lower specificity. Our findings provide new mechanistic insights into the role of histidine in modulating TF-DNA binding.
Collapse
Affiliation(s)
- Yibei Jiang
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California
| | - Tsu-Pei Chiu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California
| | - Raktim Mitra
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California
| | - Remo Rohs
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California; Department of Chemistry, University of Southern California, Los Angeles, California; Department of Physics and Astronomy, University of Southern California, Los Angeles, California; Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, California.
| |
Collapse
|
3
|
Salomone J, Farrow E, Gebelein B. Homeodomain complex formation and biomolecular condensates in Hox gene regulation. Semin Cell Dev Biol 2024; 152-153:93-100. [PMID: 36517343 PMCID: PMC10258226 DOI: 10.1016/j.semcdb.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/21/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Hox genes are a family of homeodomain transcription factors that regulate specialized morphological structures along the anterior-posterior axis of metazoans. Over the past few decades, researchers have focused on defining how Hox factors with similar in vitro DNA binding activities achieve sufficient target specificity to regulate distinct cell fates in vivo. In this review, we highlight how protein interactions with other transcription factors, many of which are also homeodomain proteins, result in the formation of transcription factor complexes with enhanced DNA binding specificity. These findings suggest that Hox-regulated enhancers utilize distinct combinations of homeodomain binding sites, many of which are low-affinity, to recruit specific Hox complexes. However, low-affinity sites can only yield reproducible responses with high transcription factor concentrations. To overcome this limitation, recent studies revealed how transcription factors, including Hox factors, use intrinsically disordered domains (IDRs) to form biomolecular condensates that increase protein concentrations. Moreover, Hox factors with altered IDRs have been associated with altered transcriptional activity and human disease states, demonstrating the importance of IDRs in mediating essential Hox output. Collectively, these studies highlight how Hox factors use their DNA binding domains, protein-protein interaction domains, and IDRs to form specific transcription factor complexes that yield accurate gene expression.
Collapse
Affiliation(s)
- Joseph Salomone
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Edward Farrow
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 7007, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
4
|
Jindal GA, Bantle AT, Solvason JJ, Grudzien JL, D'Antonio-Chronowska A, Lim F, Le SH, Song BP, Ragsac MF, Klie A, Larsen RO, Frazer KA, Farley EK. Single-nucleotide variants within heart enhancers increase binding affinity and disrupt heart development. Dev Cell 2023; 58:2206-2216.e5. [PMID: 37848026 PMCID: PMC10720985 DOI: 10.1016/j.devcel.2023.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/07/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Transcriptional enhancers direct precise gene expression patterns during development and harbor the majority of variants associated with phenotypic diversity, evolutionary adaptations, and disease. Pinpointing which enhancer variants contribute to changes in gene expression and phenotypes is a major challenge. Here, we find that suboptimal or low-affinity binding sites are necessary for precise gene expression during heart development. Single-nucleotide variants (SNVs) can optimize the affinity of ETS binding sites, causing gain-of-function (GOF) gene expression, cell migration defects, and phenotypes as severe as extra beating hearts in the marine chordate Ciona robusta. In human induced pluripotent stem cell (iPSC)-derived cardiomyocytes, a SNV within a human GATA4 enhancer increases ETS binding affinity and causes GOF enhancer activity. The prevalence of suboptimal-affinity sites within enhancers creates a vulnerability whereby affinity-optimizing SNVs can lead to GOF gene expression, changes in cellular identity, and organismal-level phenotypes that could contribute to the evolution of novel traits or diseases.
Collapse
Affiliation(s)
- Granton A Jindal
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexis T Bantle
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joe J Solvason
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jessica L Grudzien
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Fabian Lim
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sophia H Le
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Benjamin P Song
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michelle F Ragsac
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam Klie
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Reid O Larsen
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kelly A Frazer
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emma K Farley
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Cheng Y, Chan F, Kassis JA. The activity of engrailed imaginal disc enhancers is modulated epigenetically by chromatin and autoregulation. PLoS Genet 2023; 19:e1010826. [PMID: 37967127 PMCID: PMC10686433 DOI: 10.1371/journal.pgen.1010826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/29/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
engrailed (en) encodes a homeodomain transcription factor crucial for the proper development of Drosophila embryos and adults. Like many developmental transcription factors, en expression is regulated by many enhancers, some of overlapping function, that drive expression in spatially and temporally restricted patterns. The en embryonic enhancers are located in discrete DNA fragments that can function correctly in small reporter transgenes. In contrast, the en imaginal disc enhancers (IDEs) do not function correctly in small reporter transgenes. En is expressed in the posterior compartment of wing imaginal discs; in contrast, small IDE-reporter transgenes are expressed mainly in the anterior compartment. We found that En binds to the IDEs and suggest that it may directly repress IDE function and modulate En expression levels. We identified two en IDEs, O and S. Deletion of either of these IDEs from a 79kb HA-en rescue transgene (HAen79) caused a loss-of-function en phenotype when the HAen79 transgene was the sole source of En. In contrast, flies with a deletion of the same IDEs from an endogenous en gene had no phenotype, suggesting a resiliency not seen in the HAen79 rescue transgene. Inserting a gypsy insulator in HAen79 between en regulatory DNA and flanking sequences strengthened the activity of HAen79, giving better function in both the ON and OFF transcriptional states. Altogether our data suggest that the en IDEs stimulate expression in the entire imaginal disc, and that the ON/OFF state is set by epigenetic memory set by the embryonic enhancers. This epigenetic regulation is similar to that of the Ultrabithorax IDEs and we suggest that the activity of late-acting enhancers in other genes may be similarly regulated.
Collapse
Affiliation(s)
- Yuzhong Cheng
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Fountane Chan
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Judith A. Kassis
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
6
|
Terrell JR, Taylor SJ, Schneider AL, Lu Y, Vernon TN, Xhani S, Gumpper RH, Luo M, Wilson WD, Steidl U, Poon GMK. DNA selection by the master transcription factor PU.1. Cell Rep 2023; 42:112671. [PMID: 37352101 PMCID: PMC10479921 DOI: 10.1016/j.celrep.2023.112671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/07/2023] [Accepted: 06/02/2023] [Indexed: 06/25/2023] Open
Abstract
The master transcriptional regulator PU.1/Spi-1 engages DNA sites with affinities spanning multiple orders of magnitude. To elucidate this remarkable plasticity, we have characterized 22 high-resolution co-crystallographic PU.1/DNA complexes across the addressable affinity range in myeloid gene transactivation. Over a purine-rich core (such as 5'-GGAA-3') flanked by variable sequences, affinity is negotiated by direct readout on the 5' flank via a critical glutamine (Q226) sidechain and by indirect readout on the 3' flank by sequence-dependent helical flexibility. Direct readout by Q226 dynamically specifies PU.1's characteristic preference for purines and explains the pathogenic mutation Q226E in Waldenström macroglobulinemia. The structures also reveal how disruption of Q226 mediates strand-specific inhibition by DNA methylation and the recognition of non-canonical sites, including the authentic binding sequence at the CD11b promoter. A re-synthesis of phylogenetic and structural data on the ETS family, considering the centrality of Q226 in PU.1, unifies the model of DNA selection by ETS proteins.
Collapse
Affiliation(s)
- J Ross Terrell
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Samuel J Taylor
- Departments of Cell Biology, Oncology, and Medicine, Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Blood Cancer Institute, and the Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Amelia L Schneider
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Yue Lu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Tyler N Vernon
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Suela Xhani
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Ryan H Gumpper
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Ming Luo
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Ulrich Steidl
- Departments of Cell Biology, Oncology, and Medicine, Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Blood Cancer Institute, and the Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
7
|
Cheng Y, Chan F, Kassis JA. The activity of engrailed imaginal disc enhancers is modulated epigenetically by chromatin and autoregulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545191. [PMID: 37502849 PMCID: PMC10370174 DOI: 10.1101/2023.06.15.545191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
engrailed (en) encodes a homeodomain transcription factor crucial for the proper development of Drosophila embryos and adults. Like many developmental transcription factors, en expression is regulated by many enhancers, some of overlapping function, that drive expression in spatially and temporally restricted patterns. The en embryonic enhancers are located in discrete DNA fragments that can function correctly in small reporter transgenes. In contrast, the en imaginal disc enhancers (IDEs) do not function correctly in small reporter transgenes. En is expressed in the posterior compartment of wing imaginal disks; small IDE-reporter transgenes are expressed in the anterior compartment, the opposite of what is expected. Our data show that the En protein binds to en IDEs, and we suggest that En directly represses IDE function. We identified two en IDEs, 'O' and 'S'. Deletion of either of these IDEs from a 79kb HA-en rescue transgene (HAen79) caused a loss-of-function en phenotype when the HAen79 transgene was the sole source of En. In contrast, flies with a deletion of the same IDEs from the endogenous en gene had no phenotype, suggesting a resiliency not seen in the HAen79 rescue transgene. Inserting a gypsy insulator in HAen79 between en regulatory DNA and flanking sequences strengthened the activity of HAen79, giving better function in both the ON and OFF transcriptional states. Altogether our data show that the en IDEs stimulate expression in the entire imaginal disc, and that the ON/OFF state is set by epigenetic regulators. Further, the endogenous locus imparts a stability to en function not seen even in a large transgene, reflecting the importance of both positive and negative epigenetic influences that act over relatively large distances in chromatin.
Collapse
Affiliation(s)
- Yuzhong Cheng
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Fountane Chan
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Judith A Kassis
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
8
|
Buffry AD, Kittelmann S, McGregor AP. Characterisation of the role and regulation of Ultrabithorax in sculpting fine-scale leg morphology. Front Cell Dev Biol 2023; 11:1119221. [PMID: 36861038 PMCID: PMC9968978 DOI: 10.3389/fcell.2023.1119221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/20/2023] [Indexed: 02/16/2023] Open
Abstract
Hox genes are expressed during embryogenesis and determine the regional identity of animal bodies along the antero-posterior axis. However, they also function post-embryonically to sculpt fine-scale morphology. To better understand how Hox genes are integrated into post-embryonic gene regulatory networks, we further analysed the role and regulation of Ultrabithorax (Ubx) during leg development in Drosophila melanogaster. Ubx regulates several aspects of bristle and trichome patterning on the femurs of the second (T2) and third (T3) leg pairs. We found that repression of trichomes in the proximal posterior region of the T2 femur by Ubx is likely mediated by activation of the expression of microRNA-92a and microRNA-92b by this Hox protein. Furthermore, we identified a novel enhancer of Ubx that recapitulates the temporal and regional activity of this gene in T2 and T3 legs. We then used transcription factor (TF) binding motif analysis in regions of accessible chromatin in T2 leg cells to predict and functionally test TFs that may regulate the Ubx leg enhancer. We also tested the role of the Ubx co-factors Homothorax (Hth) and Extradenticle (Exd) in T2 and T3 femurs. We found several TFs that may act upstream or in concert with Ubx to modulate trichome patterning along the proximo-distal axis of developing femurs and that the repression of trichomes also requires Hth and Exd. Taken together our results provide insights into how Ubx is integrated into a post-embryonic gene regulatory network to determine fine-scale leg morphology.
Collapse
Affiliation(s)
- Alexandra D. Buffry
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Sebastian Kittelmann
- Centre for Functional Genomics, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Alistair P. McGregor
- Department of Biosciences, Durham University, Durham, United Kingdom,*Correspondence: Alistair P. McGregor,
| |
Collapse
|
9
|
Merabet S, Carnesecchi J. Hox dosage and morphological diversification during development and evolution. Semin Cell Dev Biol 2022:S1084-9521(22)00360-3. [PMID: 36481343 DOI: 10.1016/j.semcdb.2022.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/15/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Hox genes encode for evolutionary conserved transcription factors that have long fascinated biologists since the observation of the first homeotic transformations in flies. Hox genes are developmental architects that instruct the formation of various and precise morphologies along the body axes in cnidarian and bilaterian species. In contrast to these highly specific developmental functions, Hox genes encode for proteins that display poorly selective DNA-binding properties in vitro. This "Hox paradox" has been partially solved with the discovery of the TALE-class cofactors, which interact with all Hox members and form versatile Hox/TALE protein complexes on DNA. Here, we describe the role of the Hox dosage as an additional molecular strategy contributing to further resolve the Hox paradox. We present several cases where the Hox dosage is involved in the formation of different morphologies in invertebrates and vertebrates, with a particular emphasis on flight appendages in insects. We also discuss how the Hox dosage could be interpreted in different types of target enhancers within the nuclear environment in vivo. Altogether our survey underlines the Hox dosage as a key mechanism for shaping Hox molecular function during development and evolution.
Collapse
|
10
|
Feng W, Destain H, Smith JJ, Kratsios P. Maintenance of neurotransmitter identity by Hox proteins through a homeostatic mechanism. Nat Commun 2022; 13:6097. [PMID: 36243871 PMCID: PMC9569373 DOI: 10.1038/s41467-022-33781-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Hox transcription factors play fundamental roles during early patterning, but they are also expressed continuously, from embryonic stages through adulthood, in the nervous system. However, the functional significance of their sustained expression remains unclear. In C. elegans motor neurons (MNs), we find that LIN-39 (Scr/Dfd/Hox4-5) is continuously required during post-embryonic life to maintain neurotransmitter identity, a core element of neuronal function. LIN-39 acts directly to co-regulate genes that define cholinergic identity (e.g., unc-17/VAChT, cho-1/ChT). We further show that LIN-39, MAB-5 (Antp/Hox6-8) and the transcription factor UNC-3 (Collier/Ebf) operate in a positive feedforward loop to ensure continuous and robust expression of cholinergic identity genes. Finally, we identify a two-component design principle for homeostatic control of Hox gene expression in adult MNs: Hox transcriptional autoregulation is counterbalanced by negative UNC-3 feedback. These findings uncover a noncanonical role for Hox proteins during post-embryonic life, critically broadening their functional repertoire from early patterning to the control of neurotransmitter identity.
Collapse
Affiliation(s)
- Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- University of Chicago Neuroscience Institute, Chicago, IL, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
| | - Honorine Destain
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- University of Chicago Neuroscience Institute, Chicago, IL, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
| | - Jayson J Smith
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- University of Chicago Neuroscience Institute, Chicago, IL, USA
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, USA.
- University of Chicago Neuroscience Institute, Chicago, IL, USA.
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Wucherpfennig JI, Howes TR, Au JN, Au EH, Roberts Kingman GA, Brady SD, Herbert AL, Reimchen TE, Bell MA, Lowe CB, Dalziel AC, Kingsley DM. Evolution of stickleback spines through independent cis-regulatory changes at HOXDB. Nat Ecol Evol 2022; 6:1537-1552. [PMID: 36050398 PMCID: PMC9525239 DOI: 10.1038/s41559-022-01855-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022]
Abstract
Understanding the mechanisms leading to new traits or additional features in organisms is a fundamental goal of evolutionary biology. We show that HOXDB regulatory changes have been used repeatedly in different fish genera to alter the length and number of the prominent dorsal spines used to classify stickleback species. In Gasterosteus aculeatus (typically 'three-spine sticklebacks'), a variant HOXDB allele is genetically linked to shortening an existing spine and adding an additional spine. In Apeltes quadracus (typically 'four-spine sticklebacks'), a variant HOXDB allele is associated with lengthening a spine and adding an additional spine in natural populations. The variant alleles alter the same non-coding enhancer region in the HOXDB locus but do so by diverse mechanisms, including single-nucleotide polymorphisms, deletions and transposable element insertions. The independent regulatory changes are linked to anterior expansion or contraction of HOXDB expression. We propose that associated changes in spine lengths and numbers are partial identity transformations in a repeating skeletal series that forms major defensive structures in fish. Our findings support the long-standing hypothesis that natural Hox gene variation underlies key patterning changes in wild populations and illustrate how different mutational mechanisms affecting the same region may produce opposite gene expression changes with similar phenotypic outcomes.
Collapse
Affiliation(s)
- Julia I Wucherpfennig
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Timothy R Howes
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jessica N Au
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Eric H Au
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | | | - Shannon D Brady
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Amy L Herbert
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas E Reimchen
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Michael A Bell
- University of California Museum of Paleontology, University of California, Berkeley, CA, USA
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Anne C Dalziel
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Different transcriptional responses by the CRISPRa system in distinct types of heterochromatin in Drosophila melanogaster. Sci Rep 2022; 12:11702. [PMID: 35810197 PMCID: PMC9271074 DOI: 10.1038/s41598-022-15944-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
Transcription factors (TFs) activate gene expression by binding to elements close to promoters or enhancers. Some TFs can bind to heterochromatic regions to initiate gene activation, suggesting that if a TF is able to bind to any type of heterochromatin, it can activate transcription. To investigate this possibility, we used the CRISPRa system based on dCas9-VPR as an artificial TF in Drosophila. dCas9-VPR was targeted to the TAHRE telomeric element, an example of constitutive heterochromatin, and to promoters and enhancers of the HOX Ultrabithorax (Ubx) and Sex Combs Reduced (Scr) genes in the context of facultative heterochromatin. dCas9-VPR robustly activated TAHRE transcription, showing that although this element is heterochromatic, dCas9-VPR was sufficient to activate its expression. In the case of HOX gene promoters, although Polycomb complexes epigenetically silence these genes, both were ectopically activated. When the artificial TF was directed to enhancers, we found that the expression pattern was different compared to the effect on the promoters. In the case of the Scr upstream enhancer, dCas9-VPR activated the gene ectopically but with less expressivity; however, ectopic activation also occurred in different cells. In the case of the bxI enhancer located in the third intron of Ubx, the presence of dCas9-VPR is capable of increasing transcription initiation while simultaneously blocking transcription elongation, generating a lack of functional phenotype. Our results show that CRISPRa system is able to activate transcription in any type of heterochromatin; nevertheless, its effect on transcription is subject to the intrinsic characteristics of each gene or regulatory element.
Collapse
|
13
|
SpyChIP identifies cell type-specific transcription factor occupancy from complex tissues. Proc Natl Acad Sci U S A 2022; 119:e2122900119. [PMID: 35696584 PMCID: PMC9231492 DOI: 10.1073/pnas.2122900119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chromatin immunoprecipitation (ChIP) is an important technique for characterizing protein-DNA binding in vivo. One drawback of ChIP-based techniques is the lack of cell type-specificity when profiling complex tissues. To overcome this limitation, we developed SpyChIP to identify cell type-specific transcription factor (TF) binding sites in native physiological contexts without tissue dissociation or nuclei sorting. SpyChIP takes advantage of a specific covalent isopeptide bond that rapidly forms between the 15-amino acid SpyTag and the 17-kDa protein SpyCatcher. In SpyChIP, the target TF is fused with SpyTag by genome engineering, and an epitope tagged SpyCatcher is expressed in cell populations of interest, where it covalently binds to SpyTag-TF. Cell type-specific ChIP is obtained by immunoprecipitating chromatin prepared from whole tissues using antibodies directed against the epitope-tagged SpyCatcher. Using SpyChIP, we identified the genome-wide binding profiles of the Hox protein Ultrabithorax (Ubx) in two distinct cell types of the Drosophila haltere imaginal disc. Our results revealed extensive region-specific Ubx-DNA binding events, highlighting the significance of cell type-specific ChIP and the limitations of whole-tissue ChIP approaches. Analysis of Ubx::SpyChIP results provided insights into the relationship between chromatin accessibility and Ubx-DNA binding, as well as different mechanisms Ubx employs to regulate its downstream cis-regulatory modules. In addition to SpyChIP, we suggest that SpyTag-SpyCatcher technology, as well as other protein pairs that form covalent isopeptide bonds, will facilitate many additional in vivo applications that were previously impractical.
Collapse
|
14
|
Perkins ML, Gandara L, Crocker J. A synthetic synthesis to explore animal evolution and development. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200517. [PMID: 35634925 PMCID: PMC9149795 DOI: 10.1098/rstb.2020.0517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Identifying the general principles by which genotypes are converted into phenotypes remains a challenge in the post-genomic era. We still lack a predictive understanding of how genes shape interactions among cells and tissues in response to signalling and environmental cues, and hence how regulatory networks generate the phenotypic variation required for adaptive evolution. Here, we discuss how techniques borrowed from synthetic biology may facilitate a systematic exploration of evolvability across biological scales. Synthetic approaches permit controlled manipulation of both endogenous and fully engineered systems, providing a flexible platform for investigating causal mechanisms in vivo. Combining synthetic approaches with multi-level phenotyping (phenomics) will supply a detailed, quantitative characterization of how internal and external stimuli shape the morphology and behaviour of living organisms. We advocate integrating high-throughput experimental data with mathematical and computational techniques from a variety of disciplines in order to pursue a comprehensive theory of evolution. This article is part of the theme issue ‘Genetic basis of adaptation and speciation: from loci to causative mutations’.
Collapse
Affiliation(s)
- Mindy Liu Perkins
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Lautaro Gandara
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Justin Crocker
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
15
|
Delker RK, Munce RH, Hu M, Mann RS. Fluorescent labeling of genomic loci in Drosophila imaginal discs with heterologous DNA-binding proteins. CELL REPORTS METHODS 2022; 2:100175. [PMID: 35475221 PMCID: PMC9017127 DOI: 10.1016/j.crmeth.2022.100175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/02/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
Abstract
Using the Drosophila melanogaster Hox gene Ultrabithorax (Ubx) as an example, we demonstrate the use of three heterologous DNA-binding protein systems-LacI/LacO, ParB1/ParS1, and ParB2/ParS2-to label genomic loci in imaginal discs with the insertion of a small DNA tag. We compare each system, considering the impact of labeling in genomic regions (1) inside versus outside of a transcribed gene body and (2) with varying chromatin accessibility. We demonstrate the value of this system by interrogating the relationship between gene expression level and enhancer-promoter distance, as well as inter-allelic distance at the Ubx locus. We find that the distance between an essential intronic cis-regulatory element, anterobithorax (abx), and the promoter does not vary with expression level. In contrast, inter-allelic distance correlates with Ubx expression level.
Collapse
Affiliation(s)
- Rebecca K. Delker
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Ross H. Munce
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Michelle Hu
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Richard S. Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neuroscience, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Buffry AD, McGregor AP. Micromanagement of Drosophila Post-Embryonic Development by Hox Genes. J Dev Biol 2022; 10:13. [PMID: 35225966 PMCID: PMC8883937 DOI: 10.3390/jdb10010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Hox genes function early in development to determine regional identity in animals. Consequently, the loss or gain of Hox gene expression can change this identity and cause homeotic transformations. Over 20 years ago, it was observed that the role of Hox genes in patterning animal body plans involves the fine-scale regulation of cell fate and identity during development, playing the role of 'micromanagers' as proposed by Michael Akam in key perspective papers. Therefore, as well as specifying where structures develop on animal bodies, Hox genes can help to precisely sculpt their morphology. Here, we review work that has provided important insights about the roles of Hox genes in influencing cell fate during post-embryonic development in Drosophila to regulate fine-scale patterning and morphology. We also explore how this is achieved through the regulation of Hox genes, specific co-factors and their complex regulation of hundreds of target genes. We argue that further investigating the regulation and roles of Hox genes in Drosophila post-embryonic development has great potential for understanding gene regulation, cell fate and phenotypic differentiation more generally.
Collapse
|
17
|
Schweizer G, Wagner A. Both Binding Strength and Evolutionary Accessibility Affect the Population Frequency of Transcription Factor Binding Sequences in Arabidopsis thaliana. Genome Biol Evol 2021; 13:6459646. [PMID: 34894231 PMCID: PMC8712246 DOI: 10.1093/gbe/evab273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
Mutations in DNA sequences that bind transcription factors and thus modulate gene expression are a source of adaptive variation in gene expression. To understand how transcription factor binding sequences evolve in natural populations of the thale cress Arabidopsis thaliana, we integrated genomic polymorphism data for loci bound by transcription factors with in vitro data on binding affinity for these transcription factors. Specifically, we studied 19 different transcription factors, and the allele frequencies of 8,333 genomic loci bound in vivo by these transcription factors in 1,135 A. thaliana accessions. We find that transcription factor binding sequences show very low genetic diversity, suggesting that they are subject to purifying selection. High frequency alleles of such binding sequences tend to bind transcription factors strongly. Conversely, alleles that are absent from the population tend to bind them weakly. In addition, alleles with high frequencies also tend to be the endpoints of many accessible evolutionary paths leading to these alleles. We show that both high affinity and high evolutionary accessibility contribute to high allele frequency for at least some transcription factors. Although binding sequences with stronger affinity are more frequent, we did not find them to be associated with higher gene expression levels. Epistatic interactions among individual mutations that alter binding affinity are pervasive and can help explain variation in accessibility among binding sequences. In summary, combining in vitro binding affinity data with in vivo binding sequence data can help understand the forces that affect the evolution of transcription factor binding sequences in natural populations.
Collapse
Affiliation(s)
- Gabriel Schweizer
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland.,Santa Fe Institute, Santa Fe, New Mexico, USA.,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, South Africa
| |
Collapse
|
18
|
Loker R, Sanner JE, Mann RS. Cell-type-specific Hox regulatory strategies orchestrate tissue identity. Curr Biol 2021; 31:4246-4255.e4. [PMID: 34358443 PMCID: PMC8511240 DOI: 10.1016/j.cub.2021.07.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/17/2021] [Accepted: 07/13/2021] [Indexed: 01/25/2023]
Abstract
Hox proteins are homeodomain transcription factors that diversify serially homologous segments along the animal body axis, as revealed by the classic bithorax phenotype of Drosophila melanogaster, in which mutations in Ultrabithorax (Ubx) transform the third thoracic segment into the likeness of the second thoracic segment. To specify segment identity, we show that Ubx both increases and decreases chromatin accessibility, coinciding with its dual role as both an activator and repressor of transcription. However, the choice of transcriptional activity executed by Ubx is spatially regulated and depends on the availability of cofactors, with Ubx acting as a repressor in some populations and as an activator in others. Ubx-mediated changes to chromatin accessibility positively and negatively affect the binding of Scalloped (Sd), a transcription factor that is required for appendage development in both segments. These findings illustrate how a single Hox protein can modify complex gene regulatory networks to transform the identity of an entire tissue.
Collapse
Affiliation(s)
- Ryan Loker
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Jordyn E Sanner
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA; Department of Neuroscience, Columbia University Irving Medical Center, New York, NY, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
19
|
Feng S, Lu S, Grueber WB, Mann RS. Scarless engineering of the Drosophila genome near any site-specific integration site. Genetics 2021; 217:6117239. [PMID: 33772309 DOI: 10.1093/genetics/iyab012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/13/2021] [Indexed: 11/14/2022] Open
Abstract
We describe a simple and efficient technique that allows scarless engineering of Drosophila genomic sequences near any landing site containing an inverted attP cassette, such as a MiMIC insertion. This two-step method combines phiC31 integrase-mediated site-specific integration and homing nuclease-mediated resolution of local duplications, efficiently converting the original landing site allele to modified alleles that only have the desired change(s). Dominant markers incorporated into this method allow correct individual flies to be efficiently identified at each step. In principle, single attP sites and FRT sites are also valid landing sites. Given the large and increasing number of landing site lines available in the fly community, this method provides an easy and fast way to efficiently edit the majority of the Drosophila genome in a scarless manner. This technique should also be applicable to other species.
Collapse
Affiliation(s)
- Siqian Feng
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Shan Lu
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.,Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Wesley B Grueber
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.,Department of Neuroscience, Columbia University, New York, NY 10027, USA.,Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.,Department of Systems Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
20
|
Graham PL, Fischer MD, Giri A, Pick L. The fushi tarazu zebra element is not required for Drosophila viability or fertility. G3-GENES GENOMES GENETICS 2021; 11:6358135. [PMID: 34518886 PMCID: PMC8527495 DOI: 10.1093/g3journal/jkab300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022]
Abstract
Expression of genes in precisely controlled spatiotemporal patterns is essential for embryonic development. Much of our understanding of mechanisms regulating gene expression comes from the study of cis-regulatory elements (CREs) that direct expression of reporter genes in transgenic organisms. This reporter-transgene approach identifies genomic regions sufficient to drive expression but fails to provide information about quantitative and qualitative contributions to endogenous expression, although such conclusions are often inferred. Here we evaluated the endogenous function of a classic Drosophila CRE, the fushi tarazu (ftz) zebra element. ftz is a pair-rule segmentation gene expressed in seven stripes during embryogenesis, necessary for formation of alternate body segments. Reporter transgenes identified the promoter-proximal zebra element as a major driver of the seven ftz stripes. We generated a precise genomic deletion of the zebra element (ftzΔZ) to assess its role in the context of native chromatin and neighboring CREs, expecting large decreases in ftz seven-stripe expression. However, significant reduction in expression was found for only one stripe, ftz stripe 4, expressed at ∼25% of wild type levels in ftzΔZ homozygotes. Defects in corresponding regions of ftzΔZ mutants suggest this level of expression borders the threshold required to promote morphological segmentation. Further, we established true-breeding lines of homozygous ftzΔZ flies, demonstrating that the body segments missing in the mutants are not required for viability or fertility. These results highlight the different types of conclusions drawn from different experimental designs and emphasize the importance of examining transcriptional regulatory mechanisms in the context of the native genomic environment.
Collapse
Affiliation(s)
- Patricia L Graham
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Matthew D Fischer
- Graduate Program in Molecular & Cell Biology, University of Maryland, College Park, MD 20742, USA
| | - Abhigya Giri
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Leslie Pick
- Department of Entomology, University of Maryland, College Park, MD 20742, USA.,Graduate Program in Molecular & Cell Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
21
|
Giraud G, Paul R, Duffraisse M, Khan S, Shashidhara LS, Merabet S. Developmental Robustness: The Haltere Case in Drosophila. Front Cell Dev Biol 2021; 9:713282. [PMID: 34368162 PMCID: PMC8343187 DOI: 10.3389/fcell.2021.713282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022] Open
Abstract
Developmental processes have to be robust but also flexible enough to respond to genetic and environmental variations. Different mechanisms have been described to explain the apparent antagonistic nature of developmental robustness and plasticity. Here, we present a “self-sufficient” molecular model to explain the development of a particular flight organ that is under the control of the Hox gene Ultrabithorax (Ubx) in the fruit fly Drosophila melanogaster. Our model is based on a candidate RNAi screen and additional genetic analyses that all converge to an autonomous and cofactor-independent mode of action for Ubx. We postulate that this self-sufficient molecular mechanism is possible due to an unusually high expression level of the Hox protein. We propose that high dosage could constitute a so far poorly investigated molecular strategy for allowing Hox proteins to both innovate and stabilize new forms during evolution.
Collapse
Affiliation(s)
| | | | | | - Soumen Khan
- Indian Institute of Science Education and Research (IISER), Pune, India
| | - L S Shashidhara
- Indian Institute of Science Education and Research (IISER), Pune, India.,Ashoka University, Sonipat, India
| | | |
Collapse
|
22
|
Paul R, Giraud G, Domsch K, Duffraisse M, Marmigère F, Khan S, Vanderperre S, Lohmann I, Stoks R, Shashidhara LS, Merabet S. Hox dosage contributes to flight appendage morphology in Drosophila. Nat Commun 2021; 12:2892. [PMID: 34001903 PMCID: PMC8129201 DOI: 10.1038/s41467-021-23293-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
Flying insects have invaded all the aerial space on Earth and this astonishing radiation could not have been possible without a remarkable morphological diversification of their flight appendages. Here, we show that characteristic spatial expression profiles and levels of the Hox genes Antennapedia (Antp) and Ultrabithorax (Ubx) underlie the formation of two different flight organs in the fruit fly Drosophila melanogaster. We further demonstrate that flight appendage morphology is dependent on specific Hox doses. Interestingly, we find that wing morphology from evolutionary distant four-winged insect species is also associated with a differential expression of Antp and Ubx. We propose that variation in the spatial expression profile and dosage of Hox proteins is a major determinant of flight appendage diversification in Drosophila and possibly in other insect species during evolution.
Collapse
Affiliation(s)
- Rachel Paul
- IGFL, CNRS UMR5242, ENS Lyon, Lyon, France
- Laboratory of Genetics and Development, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | | | - Katrin Domsch
- University of Heidelberg, Centre for Organismal Studies (COS) Heidelberg Department of Developmental Biology, Heidelberg, Germany
| | | | | | - Soumen Khan
- Indian Institute of Science Education and Research (IISER), Pashan Pune, India
| | | | - Ingrid Lohmann
- University of Heidelberg, Centre for Organismal Studies (COS) Heidelberg Department of Developmental Biology, Heidelberg, Germany
| | - Robby Stoks
- Laboratory of Aquatic Ecology, Evolution and Conservation, Leuven, Belgium
| | - L S Shashidhara
- Indian Institute of Science Education and Research (IISER), Pashan Pune, India
- Ashoka University, Sonipat, India
| | | |
Collapse
|