1
|
Boumajdi N, Bendani H, Kartti S, Alouane T, Belyamani L, Ibrahimi A. A Comprehensive Analysis of 3 Moroccan Genomes Revealed Contributions From Both African and European Ancestries. Evol Bioinform Online 2024; 20:11769343241229278. [PMID: 38327511 PMCID: PMC10848790 DOI: 10.1177/11769343241229278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Genetic variations in the human genome represent the differences in DNA sequence within individuals. This highlights the important role of whole human genome sequencing which has become the keystone for precision medicine and disease prediction. Morocco is an important hub for studying human population migration and mixing history. This study presents the analysis of 3 Moroccan genomes; the variant analysis revealed 6 379 606 single nucleotide variants (SNVs) and 1 050 577 small InDels. Of those identified SNVs, 219 152 were novel, with 1233 occurring in coding regions, and 5580 non-synonymous single nucleotide variants (nsSNP) variants were predicted to affect protein functions. The InDels produced 1055 coding variants and 454 non-3n length variants, and their size ranged from -49 and 49 bp. We further analysed the gene pathways of 8 novel coding variants found in the 3 genomes and revealed 5 genes involved in various diseases and biological pathways. We found that the Moroccan genomes share 92.78% of African ancestry, and 92.86% of Non-Finnish European ancestry, according to the gnomAD database. Then, population structure inference, by admixture analysis and network-based approach, revealed that the studied genomes form a mixed population structure, highlighting the increased genetic diversity in Morocco.
Collapse
Affiliation(s)
- Nasma Boumajdi
- Laboratory of Biotechnology, Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
- Mohammed VI Center for Research & Innovation (CM6), Rabat, Morocco
| | - Houda Bendani
- Laboratory of Biotechnology, Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
- Mohammed VI Center for Research & Innovation (CM6), Rabat, Morocco
| | - Souad Kartti
- Laboratory of Biotechnology, Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
- Mohammed VI Center for Research & Innovation (CM6), Rabat, Morocco
| | - Tarek Alouane
- Laboratory of Biotechnology, Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Lahcen Belyamani
- Mohammed VI Center for Research & Innovation (CM6), Rabat, Morocco
- Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
- Emergency Department, Military Hospital Mohammed V, Rabat Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Azeddine Ibrahimi
- Laboratory of Biotechnology, Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
- Mohammed VI Center for Research & Innovation (CM6), Rabat, Morocco
- Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| |
Collapse
|
2
|
Lin X, Liu Y, Liu S, Zhu X, Wu L, Zhu Y, Zhao D, Xu X, Chemparathy A, Wang H, Cao Y, Nakamura M, Noordermeer JN, La Russa M, Wong WH, Zhao K, Qi LS. Nested epistasis enhancer networks for robust genome regulation. Science 2022; 377:1077-1085. [PMID: 35951677 DOI: 10.1126/science.abk3512] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mammalian genomes possess multiple enhancers spanning an ultralong distance (>megabases) to modulate important genes, yet it is unclear how these enhancers coordinate to achieve this task. Here, we combine multiplexed CRISPRi screening with machine learning to define quantitative enhancer-enhancer interactions. We find that the ultralong distance enhancer network possesses a nested multi-layer architecture that confers functional robustness of gene expression. Experimental characterization reveals that enhancer epistasis is maintained by three-dimensional chromosomal interactions and BRD4 condensation. Machine learning prediction of synergistic enhancers provides an effective strategy to identify non-coding variant pairs associated with pathogenic genes in diseases beyond Genome-Wide Association Studies (GWAS) analysis. Our work unveils nested epistasis enhancer networks, which can better explain enhancer functions within cells and in diseases.
Collapse
Affiliation(s)
- Xueqiu Lin
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Yanxia Liu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Shuai Liu
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute NIH, Bethesda, MD 20892, USA
| | - Xiang Zhu
- Department of Statistics, Stanford University, Stanford, CA 94305, USA.,Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lingling Wu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Yanyu Zhu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Dehua Zhao
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Xiaoshu Xu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | | | - Haifeng Wang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Yaqiang Cao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute NIH, Bethesda, MD 20892, USA
| | - Muneaki Nakamura
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | | | - Marie La Russa
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Wing Hung Wong
- Department of Statistics, Stanford University, Stanford, CA 94305, USA.,Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute NIH, Bethesda, MD 20892, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,ChEM-H, Stanford University, Stanford, CA 94305, USA.,Chan Zuckerberg BioHub, San Francisco, CA 94158, USA
| |
Collapse
|
3
|
Thomson E, Dawson R, H’ng CH, Adikusuma F, Piltz S, Thomas PQ. The Nestin neural enhancer is essential for normal levels of endogenous Nestin in neuroprogenitors but is not required for embryo development. PLoS One 2021; 16:e0258538. [PMID: 34739481 PMCID: PMC8570527 DOI: 10.1371/journal.pone.0258538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/29/2021] [Indexed: 11/23/2022] Open
Abstract
Enhancers are vitally important during embryonic development to control the spatial and temporal expression of genes. Recently, large scale genome projects have identified a vast number of putative developmental regulatory elements. However, the proportion of these that have been functionally assessed is relatively low. While enhancers have traditionally been studied using reporter assays, this approach does not characterise their contribution to endogenous gene expression. We have studied the murine Nestin (Nes) intron 2 enhancer, which is widely used to direct exogenous gene expression within neural progenitor cells in cultured cells and in vivo. We generated CRISPR deletions of the enhancer region in mice and assessed their impact on Nes expression during embryonic development. Loss of the Nes neural enhancer significantly reduced Nes expression in the developing CNS by as much as 82%. By assessing NES protein localization, we also show that this enhancer region contains repressor element(s) that inhibit Nes expression within the vasculature. Previous reports have stated that Nes is an essential gene, and its loss causes embryonic lethality. We also generated 2 independent Nes null lines and show that both develop without any obvious phenotypic effects. Finally, through crossing of null and enhancer deletion mice we provide evidence of trans-chromosomal interaction of the Nes enhancer and promoter.
Collapse
Affiliation(s)
- Ella Thomson
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Ruby Dawson
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Chee Ho H’ng
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Fatwa Adikusuma
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
- South Australian Genome Editing Facility, South Australian Health & Medical Research Institute, Adelaide, SA, Australia
| | - Sandra Piltz
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- South Australian Genome Editing Facility, South Australian Health & Medical Research Institute, Adelaide, SA, Australia
| | - Paul Q. Thomas
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
- South Australian Genome Editing Facility, South Australian Health & Medical Research Institute, Adelaide, SA, Australia
- Genome Editing Program, South Australian Health & Medical Research Institute, Adelaide, SA, Australia
- * E-mail:
| |
Collapse
|
4
|
Yousefi S, Deng R, Lanko K, Salsench EM, Nikoncuk A, van der Linde HC, Perenthaler E, van Ham TJ, Mulugeta E, Barakat TS. Comprehensive multi-omics integration identifies differentially active enhancers during human brain development with clinical relevance. Genome Med 2021; 13:162. [PMID: 34663447 PMCID: PMC8524963 DOI: 10.1186/s13073-021-00980-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Non-coding regulatory elements (NCREs), such as enhancers, play a crucial role in gene regulation, and genetic aberrations in NCREs can lead to human disease, including brain disorders. The human brain is a complex organ that is susceptible to numerous disorders; many of these are caused by genetic changes, but a multitude remain currently unexplained. Understanding NCREs acting during brain development has the potential to shed light on previously unrecognized genetic causes of human brain disease. Despite immense community-wide efforts to understand the role of the non-coding genome and NCREs, annotating functional NCREs remains challenging. METHODS Here we performed an integrative computational analysis of virtually all currently available epigenome data sets related to human fetal brain. RESULTS Our in-depth analysis unravels 39,709 differentially active enhancers (DAEs) that show dynamic epigenomic rearrangement during early stages of human brain development, indicating likely biological function. Many of these DAEs are linked to clinically relevant genes, and functional validation of selected DAEs in cell models and zebrafish confirms their role in gene regulation. Compared to enhancers without dynamic epigenomic rearrangement, DAEs are subjected to higher sequence constraints in humans, have distinct sequence characteristics and are bound by a distinct transcription factor landscape. DAEs are enriched for GWAS loci for brain-related traits and for genetic variation found in individuals with neurodevelopmental disorders, including autism. CONCLUSION This compendium of high-confidence enhancers will assist in deciphering the mechanism behind developmental genetics of human brain and will be relevant to uncover missing heritability in human genetic brain disorders.
Collapse
Affiliation(s)
- Soheil Yousefi
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ruizhi Deng
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Kristina Lanko
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eva Medico Salsench
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anita Nikoncuk
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Herma C. van der Linde
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Elena Perenthaler
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tjakko J. van Ham
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eskeatnaf Mulugeta
- Department of Cell Biology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Radke DW, Sul JH, Balick DJ, Akle S, Green RC, Sunyaev SR. Purifying selection on noncoding deletions of human regulatory loci detected using their cellular pleiotropy. Genome Res 2021; 31:935-946. [PMID: 33963077 PMCID: PMC8168579 DOI: 10.1101/gr.275263.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022]
Abstract
Genomic deletions provide a powerful loss-of-function model in noncoding regions to assess the role of purifying selection on genetic variation. Regulatory element function is characterized by nonuniform tissue and cell type activity, necessarily linking the study of fitness consequences from regulatory variants to their corresponding cellular activity. We generated a callset of deletions from genomes in the Alzheimer's Disease Neuroimaging Initiative (ADNI) and used deletions from The 1000 Genomes Project Consortium (1000GP) in order to examine whether purifying selection preserves noncoding sites of chromatin accessibility marked by DNase I hypersensitivity (DHS), histone modification (enhancer, transcribed, Polycomb-repressed, heterochromatin), and chromatin loop anchors. To examine this in a cellular activity-aware manner, we developed a statistical method, pleiotropy ratio score (PlyRS), which calculates a correlation-adjusted count of "cellular pleiotropy" for each noncoding base pair by analyzing shared regulatory annotations across tissues and cell types. By comparing real deletion PlyRS values to simulations in a length-matched framework and by using genomic covariates in analyses, we found that purifying selection acts to preserve both DHS and enhancer noncoding sites. However, we did not find evidence of purifying selection for noncoding transcribed, Polycomb-repressed, or heterochromatin sites beyond that of the noncoding background. Additionally, we found evidence that purifying selection is acting on chromatin loop integrity by preserving colocalized CTCF binding sites. At regions of DHS, enhancer, and CTCF within chromatin loop anchors, we found evidence that both sites of activity specific to a particular tissue or cell type and sites of cellularly pleiotropic activity are preserved by selection.
Collapse
Affiliation(s)
- David W Radke
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Jae Hoon Sul
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California 90095, USA
| | - Daniel J Balick
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Sebastian Akle
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Robert C Green
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
- Ariadne Labs, Boston, Massachusetts 02115, USA
| | - Shamil R Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
6
|
Xu YC, Guo YL. Less Is More, Natural Loss-of-Function Mutation Is a Strategy for Adaptation. PLANT COMMUNICATIONS 2020; 1:100103. [PMID: 33367264 PMCID: PMC7743898 DOI: 10.1016/j.xplc.2020.100103] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/08/2020] [Accepted: 08/12/2020] [Indexed: 05/12/2023]
Abstract
Gene gain and loss are crucial factors that shape the evolutionary success of diverse organisms. In the past two decades, more attention has been paid to the significance of gene gain through gene duplication or de novo genes. However, gene loss through natural loss-of-function (LoF) mutations, which is prevalent in the genomes of diverse organisms, has been largely ignored. With the development of sequencing techniques, many genomes have been sequenced across diverse species and can be used to study the evolutionary patterns of gene loss. In this review, we summarize recent advances in research on various aspects of LoF mutations, including their identification, evolutionary dynamics in natural populations, and functional effects. In particular, we discuss how LoF mutations can provide insights into the minimum gene set (or the essential gene set) of an organism. Furthermore, we emphasize their potential impact on adaptation. At the genome level, although most LoF mutations are neutral or deleterious, at least some of them are under positive selection and may contribute to biodiversity and adaptation. Overall, we highlight the importance of natural LoF mutations as a robust framework for understanding biological questions in general.
Collapse
Affiliation(s)
- Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|