1
|
Prohaska CC, Zhang X, Schwantes‐An TL, Stearman RS, Hooker S, Kittles RA, Aldred MA, Lutz KA, Pauciulo MW, Nichols WC, Desai AA, Gordeuk VR, Machado RF. RASA3 is a candidate gene in sickle cell disease-associated pulmonary hypertension and pulmonary arterial hypertension. Pulm Circ 2023; 13:e12227. [PMID: 37101805 PMCID: PMC10124178 DOI: 10.1002/pul2.12227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
Pulmonary hypertension (PH) is associated with significant morbidity and mortality. RASA3 is a GTPase activating protein integral to angiogenesis and endothelial barrier function. In this study, we explore the association of RASA3 genetic variation with PH risk in patients with sickle cell disease (SCD)-associated PH and pulmonary arterial hypertension (PAH). Cis-expression quantitative trait loci (eQTL) were queried for RASA3 using whole genome genotype arrays and gene expression profiles derived from peripheral blood mononuclear cells (PBMC) of three SCD cohorts. Genome-wide single nucleotide polymorphisms (SNPs) near or in the RASA3 gene that may associate with lung RASA3 expression were identified, reduced to 9 tagging SNPs for RASA3 and associated with markers of PH. Associations between the top RASA3 SNP and PAH severity were corroborated using data from the PAH Biobank and analyzed based on European or African ancestry (EA, AA). We found that PBMC RASA3 expression was lower in patients with SCD-associated PH as defined by echocardiography and right heart catheterization and was associated with higher mortality. One eQTL for RASA3 (rs9525228) was identified, with the risk allele correlating with PH risk, higher tricuspid regurgitant jet velocity and higher pulmonary vascular resistance in patients with SCD-associated PH. rs9525228 associated with markers of precapillary PH and decreased survival in individuals of EA but not AA. In conclusion, RASA3 is a novel candidate gene in SCD-associated PH and PAH, with RASA3 expression appearing to be protective. Further studies are ongoing to delineate the role of RASA3 in PH.
Collapse
Affiliation(s)
- Clare C. Prohaska
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Xu Zhang
- Division of Hematology and Oncology, Department of MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | | | | | - Stanley Hooker
- Division of Health Equities, Department of Population SciencesCity of HopeDuarteCaliforniaUSA
| | - Rick A. Kittles
- Department of Community Health and Preventive MedicineMorehouse School of MedicineAtlantaGeorgiaUSA
| | - Micheala A. Aldred
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Katie A. Lutz
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Michael W. Pauciulo
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - William C. Nichols
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Ankit A. Desai
- Krannert Institute of Cardiology, Division of Cardiovascular Medicine, Department of MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Victor R. Gordeuk
- Division of Hematology and Oncology, Department of MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Roberto F. Machado
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of MedicineIndiana UniversityIndianapolisIndianaUSA
| |
Collapse
|
2
|
Brindley EC, Papoin J, Kennedy L, Robledo RF, Ciciotte SL, Kalfa TA, Peters LL, Blanc L. Rasa3 regulates stage-specific cell cycle progression in murine erythropoiesis. Blood Cells Mol Dis 2021; 87:102524. [PMID: 33341069 PMCID: PMC7856249 DOI: 10.1016/j.bcmd.2020.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Inherited bone marrow failure syndromes (IBMFS) are heterogeneous disorders characterized by dysregulated hematopoiesis in various lineages, developmental anomalies, and predisposition to malignancy. The scat (severe combined anemia and thrombocytopenia) mouse model is a model of IBMFS with a phenotype of pancytopenia cycling through crises and remission. Scat carries an autosomal recessive missense mutation in Rasa3 that results in RASA3 mislocalization and loss of function. RASA3 functions as a Ras-GTPase activating protein (GAP), and its loss of function in scat results in increased erythroid RAS activity and reactive oxygen species (ROS) and altered erythroid cell cycle progression, culminating in delayed terminal erythroid differentiation. Here we sought to further resolve the erythroid cell cycle defect in scat through ex vivo flow cytometric analyses. These studies revealed a specific G0/G1 accumulation in scat bone marrow (BM) polychromatophilic erythroblasts and scat BM Ter119-/c-KIT+/CD71lo/med progenitors, with no changes evident in equivalent scat spleen populations. Systematic analyses of RNAseq data from megakaryocyte-erythroid progenitors (MEPs) in scat crisis vs. scat partial remission reveal altered expression of genes involved in the G1-S checkpoint. Together, these data indicate a precise, biphasic role for RASA3 in regulating the cell cycle during erythropoiesis with relevance to hematopoietic disease progression.
Collapse
Affiliation(s)
- Elena C Brindley
- Department of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA; Laboratory of Developmental Erythropoiesis, Les Nelkin Memorial Laboratory of Pediatric Oncology, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Julien Papoin
- Laboratory of Developmental Erythropoiesis, Les Nelkin Memorial Laboratory of Pediatric Oncology, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Lauren Kennedy
- Laboratory of Developmental Erythropoiesis, Les Nelkin Memorial Laboratory of Pediatric Oncology, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | | | | | - Theodosia A Kalfa
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 05229, USA
| | | | - Lionel Blanc
- Department of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA; Laboratory of Developmental Erythropoiesis, Les Nelkin Memorial Laboratory of Pediatric Oncology, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA.
| |
Collapse
|