1
|
Gustafson AL, Durbin AD, Artinger KB, Ford HL. Myogenesis gone awry: the role of developmental pathways in rhabdomyosarcoma. Front Cell Dev Biol 2025; 12:1521523. [PMID: 39902277 PMCID: PMC11788348 DOI: 10.3389/fcell.2024.1521523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/23/2024] [Indexed: 02/05/2025] Open
Abstract
Rhabdomyosarcoma is a soft-tissue sarcoma that occurs most frequently in pediatric patients and has poor survival rates in patients with recurrent or metastatic disease. There are two major sub-types of RMS: fusion-positive (FP-RMS) and fusion-negative (FN-RMS); with FP-RMS typically containing chromosomal translocations between the PAX3/7-FOXO1 loci. Regardless of subtype, RMS resembles embryonic skeletal muscle as it expresses the myogenic regulatory factors (MRFs), MYOD1 and MYOG. During normal myogenesis, these developmental transcription factors (TFs) orchestrate the formation of terminally differentiated, striated, and multinucleated skeletal muscle. However, in RMS these TFs become dysregulated such that they enable the sustained properties of malignancy. In FP-RMS, the PAX3/7-FOXO1 chromosomal translocation results in restructured chromatin, altering the binding of many MRFs and driving an oncogenic state. In FN-RMS, re-expression of MRFs, as well as other myogenic TFs, blocks terminal differentiation and holds cells in a proliferative, stem-cell-like state. In this review, we delve into the myogenic transcriptional networks that are dysregulated in and contribute to RMS progression. Advances in understanding the mechanisms through which myogenesis becomes stalled in RMS will lead to new tumor-specific therapies that target these aberrantly expressed developmental transcriptional pathways.
Collapse
Affiliation(s)
- Annika L. Gustafson
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Adam D. Durbin
- Division of Molecular Oncology, Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Kristin B. Artinger
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, United States
| | - Heide L. Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
2
|
Stevens BT, Hatley ME. Developmental Heterogeneity of Rhabdomyosarcoma. Cold Spring Harb Perspect Med 2025; 15:a041583. [PMID: 38772705 PMCID: PMC11694754 DOI: 10.1101/cshperspect.a041583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Rhabdomyosarcoma (RMS) is a pediatric embryonal solid tumor and the most common pediatric soft tissue sarcoma. The histology and transcriptome of RMS resemble skeletal muscle progenitor cells that have failed to terminally differentiate. Thus, RMS is typically thought to arise from corrupted skeletal muscle progenitor cells during development. However, RMS can occur in body regions devoid of skeletal muscle, suggesting the potential for nonmyogenic cells of origin. Here, we discuss the interplay between RMS driver mutations and cell(s) of origin with an emphasis on driving location specificity. Additionally, we discuss the mechanisms governing RMS transformation events and tumor heterogeneity through the lens of transcriptional networks and epigenetic control. Finally, we reimagine Waddington's developmental landscape to include a plane of transformation connecting distinct lineage landscapes to more accurately reflect the phenomena observed in pediatric cancers.
Collapse
Affiliation(s)
- Bradley T Stevens
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, Tennessee 38105, USA
| | - Mark E Hatley
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
3
|
Kucinski J, Tallan A, Taslim C, Wang M, Cannon MV, Silvius KM, Stanton BZ, Kendall GC. Rhabdomyosarcoma fusion oncoprotein initially pioneers a neural signature in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603270. [PMID: 39071299 PMCID: PMC11275748 DOI: 10.1101/2024.07.12.603270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Fusion-positive rhabdomyosarcoma is an aggressive pediatric cancer molecularly characterized by arrested myogenesis. The defining genetic driver, PAX3::FOXO1, functions as a chimeric gain-of-function transcription factor. An incomplete understanding of PAX3::FOXO1's in vivo epigenetic mechanisms has hindered therapeutic development. Here, we establish a PAX3::FOXO1 zebrafish injection model and semi-automated ChIP-seq normalization strategy to evaluate how PAX3::FOXO1 initially interfaces with chromatin in a developmental context. We investigated PAX3::FOXO1's recognition of chromatin and subsequent transcriptional consequences. We find that PAX3::FOXO1 interacts with inaccessible chromatin through partial/homeobox motif recognition consistent with pioneering activity. However, PAX3::FOXO1-genome binding through a composite paired-box/homeobox motif alters chromatin accessibility and redistributes H3K27ac to activate neural transcriptional programs. We uncover neural signatures that are highly representative of clinical rhabdomyosarcoma gene expression programs that are enriched following chemotherapy. Overall, we identify partial/homeobox motif recognition as a new mode for PAX3::FOXO1 pioneer function and identify neural signatures as a potentially critical PAX3::FOXO1 tumor initiation event.
Collapse
|
4
|
Kucinski JP, Calderon D, Kendall GC. Biological and therapeutic insights from animal modeling of fusion-driven pediatric soft tissue sarcomas. Dis Model Mech 2024; 17:dmm050704. [PMID: 38916046 PMCID: PMC11225592 DOI: 10.1242/dmm.050704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
Survival for children with cancer has primarily improved over the past decades due to refinements in surgery, radiation and chemotherapy. Although these general therapies are sometimes curative, the cancer often recurs, resulting in poor outcomes for patients. Fusion-driven pediatric soft tissue sarcomas are genetically defined by chromosomal translocations that create a chimeric oncogene. This distinctive, almost 'monogenic', genetic feature supports the generation of animal models to study the respective diseases in vivo. This Review focuses on a subset of fusion-driven pediatric soft tissue sarcomas that have transgenic animal tumor models, which includes fusion-positive and infantile rhabdomyosarcoma, synovial sarcoma, undifferentiated small round cell sarcoma, alveolar soft part sarcoma and clear cell sarcoma. Studies using the animal models of these sarcomas have highlighted that pediatric cancers require a specific cellular state or developmental stage to drive tumorigenesis, as the fusion oncogenes cause different outcomes depending on their lineage and timing of expression. Therefore, understanding these context-specific activities could identify targetable activities and mechanisms critical for tumorigenesis. Broadly, these cancers show dependencies on chromatin regulators to support oncogenic gene expression and co-opting of developmental pathways. Comparative analyses across lineages and tumor models will further provide biological and therapeutic insights to improve outcomes for these children.
Collapse
Affiliation(s)
- Jack P. Kucinski
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology PhD Program, The Ohio State University, Columbus, OH 43210, USA
| | - Delia Calderon
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology PhD Program, The Ohio State University, Columbus, OH 43210, USA
| | - Genevieve C. Kendall
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology PhD Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA
| |
Collapse
|
5
|
Searcy MB, Larsen RK, Stevens BT, Zhang Y, Jin H, Drummond CJ, Langdon CG, Gadek KE, Vuong K, Reed KB, Garcia MR, Xu B, Kimbrough DW, Adkins GE, Djekidel N, Porter SN, Schreiner PA, Pruett-Miller SM, Abraham BJ, Rehg JE, Hatley ME. PAX3-FOXO1 dictates myogenic reprogramming and rhabdomyosarcoma identity in endothelial progenitors. Nat Commun 2023; 14:7291. [PMID: 37968277 PMCID: PMC10651858 DOI: 10.1038/s41467-023-43044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 10/27/2023] [Indexed: 11/17/2023] Open
Abstract
Fusion-positive rhabdomyosarcoma (FP-RMS) driven by the expression of the PAX3-FOXO1 (P3F) fusion oncoprotein is an aggressive subtype of pediatric rhabdomyosarcoma. FP-RMS histologically resembles developing muscle yet occurs throughout the body in areas devoid of skeletal muscle highlighting that FP-RMS is not derived from an exclusively myogenic cell of origin. Here we demonstrate that P3F reprograms mouse and human endothelial progenitors to FP-RMS. We show that P3F expression in aP2-Cre expressing cells reprograms endothelial progenitors to functional myogenic stem cells capable of regenerating injured muscle fibers. Further, we describe a FP-RMS mouse model driven by P3F expression and Cdkn2a loss in endothelial cells. Additionally, we show that P3F expression in TP53-null human iPSCs blocks endothelial-directed differentiation and guides cells to become myogenic cells that form FP-RMS tumors in immunocompromised mice. Together these findings demonstrate that FP-RMS can originate from aberrant development of non-myogenic cells driven by P3F.
Collapse
Affiliation(s)
- Madeline B Searcy
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, 38105, USA
| | - Randolph K Larsen
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, 38105, USA
| | - Bradley T Stevens
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, 38105, USA
| | - Yang Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Catherine J Drummond
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Casey G Langdon
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Katherine E Gadek
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kyna Vuong
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kristin B Reed
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Matthew R Garcia
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Darden W Kimbrough
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Rhodes College, Memphis, TN, 38112, USA
| | - Grace E Adkins
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, 38105, USA
| | - Nadhir Djekidel
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shaina N Porter
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Patrick A Schreiner
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Brian J Abraham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jerold E Rehg
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mark E Hatley
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
6
|
Wei Y, Qin Q, Yan C, Hayes MN, Garcia SP, Xi H, Do D, Jin AH, Eng TC, McCarthy KM, Adhikari A, Onozato ML, Spentzos D, Neilsen GP, Iafrate AJ, Wexler LH, Pyle AD, Suvà ML, Dela Cruz F, Pinello L, Langenau DM. Single-cell analysis and functional characterization uncover the stem cell hierarchies and developmental origins of rhabdomyosarcoma. NATURE CANCER 2022; 3:961-975. [PMID: 35982179 PMCID: PMC10430812 DOI: 10.1038/s43018-022-00414-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/24/2022] [Indexed: 04/29/2023]
Abstract
Rhabdomyosarcoma (RMS) is a common childhood cancer that shares features with developing skeletal muscle. Yet, the conservation of cellular hierarchy with human muscle development and the identification of molecularly defined tumor-propagating cells has not been reported. Using single-cell RNA-sequencing, DNA-barcode cell fate mapping and functional stem cell assays, we uncovered shared tumor cell hierarchies in RMS and human muscle development. We also identified common developmental stages at which tumor cells become arrested. Fusion-negative RMS cells resemble early myogenic cells found in embryonic and fetal development, while fusion-positive RMS cells express a highly specific gene program found in muscle cells transiting from embryonic to fetal development at 7-7.75 weeks of age. Fusion-positive RMS cells also have neural pathway-enriched states, suggesting less-rigid adherence to muscle-lineage hierarchies. Finally, we identified a molecularly defined tumor-propagating subpopulation in fusion-negative RMS that shares remarkable similarity to bi-potent, muscle mesenchyme progenitors that can make both muscle and osteogenic cells.
Collapse
Affiliation(s)
- Yun Wei
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Qian Qin
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Chuan Yan
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Madeline N Hayes
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Sara P Garcia
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
| | - Haibin Xi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel Do
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Alexander H Jin
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Tiffany C Eng
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Karin M McCarthy
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Abhinav Adhikari
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Maristela L Onozato
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Dimitrios Spentzos
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Gunnlaugur P Neilsen
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - A John Iafrate
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Leonard H Wexler
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - April D Pyle
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Mario L Suvà
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Filemon Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luca Pinello
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA.
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
| | - David M Langenau
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA.
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
7
|
Barghi F, Shannon HE, Saadatzadeh MR, Bailey BJ, Riyahi N, Bijangi-Vishehsaraei K, Just M, Ferguson MJ, Pandya PH, Pollok KE. Precision Medicine Highlights Dysregulation of the CDK4/6 Cell Cycle Regulatory Pathway in Pediatric, Adolescents and Young Adult Sarcomas. Cancers (Basel) 2022; 14:cancers14153611. [PMID: 35892870 PMCID: PMC9331212 DOI: 10.3390/cancers14153611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary This review provides an overview of clinical features and current therapies in children, adolescents, and young adults (AYA) with sarcoma. It highlights the basic and clinical findings on the cyclin-dependent kinases 4 and 6 (CDK4/6) cell cycle regulatory pathway in the context of the precision medicine-based molecular profiles of the three most common types of pediatric and AYA sarcomas—osteosarcoma (OS), rhabdomyosarcoma (RMS), and Ewing sarcoma (EWS). Abstract Despite improved therapeutic and clinical outcomes for patients with localized diseases, outcomes for pediatric and AYA sarcoma patients with high-grade or aggressive disease are still relatively poor. With advancements in next generation sequencing (NGS), precision medicine now provides a strategy to improve outcomes in patients with aggressive disease by identifying biomarkers of therapeutic sensitivity or resistance. The integration of NGS into clinical decision making not only increases the accuracy of diagnosis and prognosis, but also has the potential to identify effective and less toxic therapies for pediatric and AYA sarcomas. Genome and transcriptome profiling have detected dysregulation of the CDK4/6 cell cycle regulatory pathway in subpopulations of pediatric and AYA OS, RMS, and EWS. In these patients, the inhibition of CDK4/6 represents a promising precision medicine-guided therapy. There is a critical need, however, to identify novel and promising combination therapies to fight the development of resistance to CDK4/6 inhibition. In this review, we offer rationale and perspective on the promise and challenges of this therapeutic approach.
Collapse
Affiliation(s)
- Farinaz Barghi
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
| | - Harlan E. Shannon
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
| | - M. Reza Saadatzadeh
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.J.); (M.J.F.)
| | - Barbara J. Bailey
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
| | - Niknam Riyahi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Khadijeh Bijangi-Vishehsaraei
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.J.); (M.J.F.)
| | - Marissa Just
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.J.); (M.J.F.)
| | - Michael J. Ferguson
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.J.); (M.J.F.)
| | - Pankita H. Pandya
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.J.); (M.J.F.)
- Correspondence: (P.H.P.); (K.E.P.)
| | - Karen E. Pollok
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.J.); (M.J.F.)
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: (P.H.P.); (K.E.P.)
| |
Collapse
|
8
|
Savary C, Picard C, Corradini N, Castets M. Complex Elucidation of Cells-of-Origin in Pediatric Soft Tissue Sarcoma: From Concepts to Real Life, Hide-and-Seek through Epigenetic and Transcriptional Reprogramming. Int J Mol Sci 2022; 23:6310. [PMID: 35682989 PMCID: PMC9181261 DOI: 10.3390/ijms23116310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 02/01/2023] Open
Abstract
Soft tissue sarcoma (STS) comprise a large group of mesenchymal malignant tumors with heterogeneous cellular morphology, proliferative index, genetic lesions and, more importantly, clinical features. Full elucidation of this wide diversity remains a central question to improve their therapeutic management and the identity of cell(s)-of-origin from which these tumors arise is part of this enigma. Cellular reprogramming allows transitions of a mature cell between phenotypes, or identities, and represents one key driver of tumoral heterogeneity. Here, we discuss how cellular reprogramming mediated by driver genes in STS can profoundly reshape the molecular and morphological features of a transformed cell and lead to erroneous interpretation of its cell-of-origin. This review questions the fact that the epigenetic context in which a genetic alteration arises has to be taken into account as a key determinant of STS tumor initiation and progression. Retracing the cancer-initiating cell and its clonal evolution, notably via epigenetic approach, appears as a key lever for understanding the origin of these tumors and improving their clinical management.
Collapse
Affiliation(s)
- Clara Savary
- Childhood Cancer & Cell Death (C3), LabEx DEVweCAN, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Cécile Picard
- Department of Pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, 69002 Lyon, France;
| | - Nadège Corradini
- Department of Pediatric Oncology, Institut d’Hematologie et d’Oncologie Pédiatrique, Centre Léon Bérard, 69008 Lyon, France;
- Department of Translational Research in Pediatric Oncology, Centre Léon Bérard, 69008 Lyon, France
| | - Marie Castets
- Childhood Cancer & Cell Death (C3), LabEx DEVweCAN, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
- Department of Translational Research in Pediatric Oncology, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
9
|
Manceau L, Richard Albert J, Lollini PL, Greenberg MVC, Gilardi-Hebenstreit P, Ribes V. Divergent transcriptional and transforming properties of PAX3-FOXO1 and PAX7-FOXO1 paralogs. PLoS Genet 2022; 18:e1009782. [PMID: 35604932 PMCID: PMC9166405 DOI: 10.1371/journal.pgen.1009782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 06/03/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
The hallmarks of the alveolar subclass of rhabdomyosarcoma are chromosomal translocations that generate chimeric PAX3-FOXO1 or PAX7-FOXO1 transcription factors. Overexpression of either PAX-FOXO1s results in related cell transformation in animal models. Yet, in patients the two structural genetic aberrations they derived from are associated with distinct pathological manifestations. To assess the mechanisms underlying these differences, we generated isogenic fibroblast lines expressing either PAX-FOXO1 paralog. Mapping of their genomic recruitment using CUT&Tag revealed that the two chimeric proteins have distinct DNA binding preferences. In addition, PAX7-FOXO1 binding results in greater recruitment of the H3K27ac activation mark than PAX3-FOXO1 binding and is accompanied by greater transcriptional activation of neighbouring genes. These effects are associated with a PAX-FOXO1-specific alteration in the expression of genes regulating cell shape and the cell cycle. Consistently, PAX3-FOXO1 accentuates fibroblast cellular traits associated with contractility and surface adhesion and limits entry into S phase. In contrast, PAX7-FOXO1 drives cells to adopt an amoeboid shape, reduces entry into M phase, and causes increased DNA damage. Altogether, our results argue that the diversity of rhabdomyosarcoma manifestation arises, in part, from the divergence between the genomic occupancy and transcriptional activity of PAX3-FOXO1 and PAX7-FOXO1. Rhabdomyosarcoma is a class of paediatric soft tissue cancers of genetic origin, but for which the causal links between genetic aberrations and tumour development remain to be deciphered. To answer this question, we focused on the products of two chromosomal translocations that generate the chimeric proteins PAX3-FOXO1 and PAX7-FOXO1. They are composed of the DNA-binding domains of the PAX3 or PAX7 proteins and a single portion of the FOXO1 protein. Several clinical parameters distinguish patients expressing PAX3-FOXO1 or PAX7-FOXO1 and we wondered if these differences could emanate from a different mode of action of the two chimeric proteins. Thus, we generated inducible human fibroblast cell lines expressing one or the other protein. We analysed some molecular and cellular characteristics of these cells 48 hours after induction of PAX3-FOXO1 or PAX7-FOXO1. As it was previously known for PAX3-FOXO1, we showed that PAX7-FOXO1 binds genomic DNA on cis-regulatory regions and activates them. Surprisingly, PAX7-FOXO1 only partially shares the DNA binding sites of PAX3-FOXO1 and its activation potential is stronger than that of PAX3-FOXO1. Thus, PAX3-FOXO1 and PAX7-FOXO1 generate partially divergent transcriptomic signatures, which include genes encoding regulators of cell morphology and cell cycle, two key oncogenic processes. In agreement, our data revealed specificities in these two processes that are either PAX3-FOXO1 or PAX7-FOXO1 dependent. Overall our results demonstrate a differential mode of action between the two chimeric proteins that could in turn participate in the heterogeneity of rhabdomyosarcoma manifestation.
Collapse
Affiliation(s)
- Line Manceau
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | | | - Pier-Luigi Lollini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | | | | - Vanessa Ribes
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- * E-mail: (PG-H); (VR)
| |
Collapse
|
10
|
Wilmerding A, Bouteille L, Caruso N, Bidaut G, Etchevers HC, Graba Y, Delfini MC. Sustained experimental activation of FGF8/ERK in the developing chicken spinal cord models early events in ERK-mediated tumorigenesis. Neoplasia 2021; 24:120-132. [PMID: 34959031 PMCID: PMC8717438 DOI: 10.1016/j.neo.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/15/2022]
Abstract
The MAPK/ERK pathway regulates a variety of physiological cellular functions, including cell proliferation and survival. It is abnormally activated in many types of human cancers in response to driver mutations in regulators of this pathway that trigger tumor initiation. The early steps of oncogenic progression downstream of ERK overactivation are poorly understood due to a lack of appropriate models. We show here that ERK1/2 overactivation in the trunk neural tube of the chicken embryo through expression of a constitutively active form of the upstream kinase MEK1 (MEK1ca), rapidly provokes a profound change in the transcriptional signature of developing spinal cord cells. These changes are concordant with a previously established role of the tyrosine kinase receptor ligand FGF8 acting via the ERK1/2 effectors to maintain an undifferentiated state. Furthermore, we show that MEK1ca-transfected spinal cord cells lose neuronal identity, retain caudal markers, and ectopically express potential effector oncogenes, such as AQP1. MEK1ca expression in the developing spinal cord from the chicken embryo is thus a tractable in vivo model to identify the mechanisms fostering neoplasia and malignancy in ERK-induced tumorigenesis of neural origins.
Collapse
Affiliation(s)
- Axelle Wilmerding
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), IBDM-UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Lauranne Bouteille
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), IBDM-UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Nathalie Caruso
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), IBDM-UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Ghislain Bidaut
- INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Plateform Integrative Bioinformatics, Cibi, Aix-Marseille Univ, Marseille, France
| | - Heather C Etchevers
- Aix-Marseille Univ, INSERM, Marseille Medical Genetics, Institut MarMaRa, Marseille, France
| | - Yacine Graba
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), IBDM-UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Marie-Claire Delfini
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), IBDM-UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France.
| |
Collapse
|