1
|
Bianco E, Bonassera M, Uliana F, Tilma J, Winkler M, Zencir S, Gossert A, Oborská-Oplová M, Dechant R, Hugener J, Panse VG, Pilhofer M, Albert B, Kimmig P, Peter M. Stm1 regulates Ifh1 activity revealing crosstalk between ribosome biogenesis and ribosome dormancy. Mol Cell 2025; 85:1806-1823.e17. [PMID: 40315826 DOI: 10.1016/j.molcel.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 01/26/2025] [Accepted: 04/04/2025] [Indexed: 05/04/2025]
Abstract
Nutrient abundance boosts ribosome biogenesis, whereas ribosome dormancy factors limit ribosome degradation upon starvation. The equilibrium between the two pathways governs cell growth. In this study, we identified suppressor of Tom1 (Stm1) as a molecular link between ribosome protection and biogenesis in Saccharomyces cerevisiae. While Stm1 was previously described as a dormancy factor, we show that it activates Ifh1, a transcriptional activator of ribosomal protein genes. Stm1 transiently localizes to the nucleolus, where it interacts with pre-ribosomes and directly binds RNA and Ifh1 through its C-terminal intrinsically disordered region (IDR). Although the IDR is dispensable for ribosome protection, its loss compromises cell growth. The IDR is phosphorylated upon nutrient starvation, which disrupts its interaction with Ifh1. Our findings reveal a molecular pathway sensing and adjusting ribosome abundance in response to nutrient availability, reinforcing the relevance of regulated ribosome homeostasis in physiology and disease.
Collapse
Affiliation(s)
- Eliana Bianco
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland.
| | - Martina Bonassera
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland; Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Federico Uliana
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Janny Tilma
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Martin Winkler
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Sevil Zencir
- Department of Cell Biology Sciences III, Université de Genève, 1211 Geneva, Switzerland
| | - Alvar Gossert
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland; Biomolecular NMR Spectroscopy Platform (BNSP), Department of Biology, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | | | - Reinhard Dechant
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Jannik Hugener
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Vikram Govind Panse
- Institute of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland; Faculty of Science, University of Zürich, Zürich, Switzerland
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Benjamin Albert
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Philipp Kimmig
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Matthias Peter
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland.
| |
Collapse
|
2
|
Gupta R, Adhikary S, Dalpatraj N, Laxman S. An economic demand-based framework for prioritization strategies in response to transient amino acid limitations. Nat Commun 2024; 15:7254. [PMID: 39179593 PMCID: PMC11344141 DOI: 10.1038/s41467-024-51769-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
Cells contain disparate amounts of distinct amino acids, each of which has different metabolic and chemical origins, but the supply cost vs demand requirements of each is unclear. Here, using yeast we quantify the restoration-responses after disrupting amino acid supply, and uncover a hierarchically prioritized restoration strategy for distinct amino acids. We comprehensively calculate individual amino acid biosynthetic supply costs, quantify total demand for an amino acid, and estimate cumulative supply/demand requirements for each amino acid. Through this, we discover that the restoration priority is driven by the gross demand for an amino acid, which is itself coupled to low supply costs for that amino acid. Demand from metabolic requirements dominate the demand-pulls for an amino acid, as exemplified by the largest restoration response upon disrupting arginine supply. Collectively, this demand-driven framework that drives the amino acid economy can identify novel amino acid responses, and help design metabolic engineering applications.
Collapse
Affiliation(s)
- Ritu Gupta
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post Bellary Road, Bangalore, India
- Section on Nutrient Control of Gene Expression, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Swagata Adhikary
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post Bellary Road, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Nidhi Dalpatraj
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post Bellary Road, Bangalore, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post Bellary Road, Bangalore, India.
| |
Collapse
|
3
|
Gulias JF, Niesi F, Arán M, Correa-García S, Bermúdez-Moretti M. Gcn4 impacts metabolic fluxes to promote yeast chronological lifespan. PLoS One 2023; 18:e0292949. [PMID: 37831681 PMCID: PMC10575530 DOI: 10.1371/journal.pone.0292949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Aging is characterized by a gradual decline in physiological integrity, which impairs functionality and increases susceptibility to mortality. Dietary restriction, mimicking nutrient scarcity without causing malnutrition, is an intervention known to decelerate the aging process. While various hypotheses have been proposed to elucidate how dietary restriction influences aging, the underlying mechanisms remain incompletely understood. This project aimed to investigate the role of the primary regulator of the general amino acid control (GAAC) pathway, the transcription factor Gcn4, in the aging process of S. cerevisiae cells. Under conditions of amino acid deprivation, which activate Gcn4, the deletion of GCN4 led to a diverse array of physiological changes in the cells. Notably, the absence of Gcn4 resulted in heightened mitochondrial activity, likely contributing to the observed increase in reactive oxygen species (ROS) accumulation. Furthermore, these mutant gcn4Δ cells exhibited reduced ethanol production despite maintaining similar glucose consumption rates, suggesting a pivotal role for Gcn4 in regulating the Crabtree effect. Additionally, there was a marked reduction in trehalose, the storage carbohydrate, within the mutant cells compared to the wild-type strain. The intracellular content of free amino acids also exhibited disparities between the wild-type and GCN4-deficient strains. Taken together, our findings indicate that the absence of GCN4 disrupts cellular homeostasis, triggering significant alterations in interconnected intracellular metabolic pathways. These disruptions have far-reaching metabolic consequences that ultimately culminate in a shortened lifespan.
Collapse
Affiliation(s)
- Juan Facundo Gulias
- Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina–CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Florencia Niesi
- Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina–CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Martín Arán
- Fundación Instituto Leloir e Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)—CONICET, Patricias Argentinas, Buenos Aires, Argentina
| | - Susana Correa-García
- Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina–CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Mariana Bermúdez-Moretti
- Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina–CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| |
Collapse
|
4
|
Fang W, Jiang L, Zhu Y, Yang S, Qiu H, Cheng J, Liang Q, Tu ZC, Ye C. Methionine restriction constrains lipoylation and activates mitochondria for nitrogenic synthesis of amino acids. Nat Commun 2023; 14:2504. [PMID: 37130856 PMCID: PMC10154411 DOI: 10.1038/s41467-023-38289-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
Methionine restriction (MR) provides metabolic benefits in many organisms. However, mechanisms underlying the MR-induced effect remain incompletely understood. Here, we show in the budding yeast S. cerevisiae that MR relays a signal of S-adenosylmethionine (SAM) deprivation to adapt bioenergetic mitochondria to nitrogenic anabolism. In particular, decreases in cellular SAM constrain lipoate metabolism and protein lipoylation required for the operation of the tricarboxylic acid (TCA) cycle in the mitochondria, leading to incomplete glucose oxidation with an exit of acetyl-CoA and α-ketoglutarate from the TCA cycle to the syntheses of amino acids, such as arginine and leucine. This mitochondrial response achieves a trade-off between energy metabolism and nitrogenic anabolism, which serves as an effector mechanism promoting cell survival under MR.
Collapse
Affiliation(s)
- Wen Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Liu Jiang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yibing Zhu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Sen Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Hong Qiu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jiou Cheng
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qingxi Liang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, 330022, China
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, 330022, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Cunqi Ye
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Walvekar AS, Kadamur G, Sreedharan S, Gupta R, Srinivasan R, Laxman S. Methylated PP2A stabilizes Gcn4 to enable a methionine-induced anabolic program. J Biol Chem 2020; 295:18390-18405. [PMID: 33122193 PMCID: PMC7939465 DOI: 10.1074/jbc.ra120.014248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/25/2020] [Indexed: 11/06/2022] Open
Abstract
Methionine, through S-adenosylmethionine, activates a multifaceted growth program in which ribosome biogenesis, carbon metabolism, and amino acid and nucleotide biosynthesis are induced. This growth program requires the activity of the Gcn4 transcription factor (called ATF4 in mammals), which facilitates the supply of metabolic precursors that are essential for anabolism. However, how Gcn4 itself is regulated in the presence of methionine is unknown. Here, we discover that Gcn4 protein levels are increased by methionine, despite conditions of high cell growth and translation (in which the roles of Gcn4 are not well-studied). We demonstrate that this mechanism of Gcn4 induction is independent of transcription, as well as the conventional Gcn2/eIF2α-mediated increased translation of Gcn4. Instead, when methionine is abundant, Gcn4 phosphorylation is decreased, which reduces its ubiquitination and therefore degradation. Gcn4 is dephosphorylated by the protein phosphatase 2A (PP2A); our data show that when methionine is abundant, the conserved methyltransferase Ppm1 methylates and alters the activity of the catalytic subunit of PP2A, shifting the balance of Gcn4 toward a dephosphorylated, stable state. The absence of Ppm1 or the loss of the PP2A methylation destabilizes Gcn4 even when methionine is abundant, leading to collapse of the Gcn4-dependent anabolic program. These findings reveal a novel, methionine-dependent signaling and regulatory axis. Here methionine directs the conserved methyltransferase Ppm1 via its target phosphatase PP2A to selectively stabilize Gcn4. Through this, cells conditionally modify a major phosphatase to stabilize a metabolic master regulator and drive anabolism.
Collapse
Affiliation(s)
- Adhish S Walvekar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Ganesh Kadamur
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Sreesa Sreedharan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India; School of Chemical and Biotechnology, SASTRA University, Tanjavur, India
| | - Ritu Gupta
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | | | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.
| |
Collapse
|