1
|
Li SY, Ma D, Shi WJ, Zhang JG, Tang B, Lu ZJ, Yao CR, Long XB, Liu X, Huang CS, Ying GG. New Psychoactive Substance Esketamine Causes Endocrine-Disrupting Effects and Developmental Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8417-8427. [PMID: 40263251 DOI: 10.1021/acs.est.5c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Esketamine (ESK), a new psychoactive substance known for its strong hallucinogenic effect, has been detected in surface water worldwide. The toxicity of ESK to fish at a certain environmental concentration remains unclear. In this study, zebrafish embryos and ZF4 cells were exposed to ESK (0, 0.12, 1.02, and 10.6 μg L-1, marked by SC, LC, MC, and HC, respectively) for 14 days post fertilization (dpf) and 24 h, respectively. Biphasic dose responses induced by ESK were observed after 24 h of exposure. ESK-LC and ESK-MC obviously increased embryo area and length, height, and volume of yolk sac, whereas ESK-HC had the opposite effect. ESK-LC and ESK-MC appreciably upregulated the transcription and expression levels of vtg, disrupting the cell cycle after 24 h of exposure. After 14 dpf exposure, KEGG analysis indicated that circadian rhythm, nucleotide excision repair, and estrogen signaling pathways were the top three impacted pathways, with ESK significantly enhancing gene transcription in these three pathways, except for cyp7a1 and bh1he41. Correspondingly, ESK notably increased the VTG level, aligning with the relatively high affinity of estrogen receptors, as analyzed through molecular docking. Our research demonstrated that ESK exhibits developmental toxicity and endocrine-disrupting effects in zebrafish, highlighting the need to address its ecological toxicity in fish.
Collapse
Affiliation(s)
- Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dongdong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Bo Tang
- School of Physics, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chong-Rui Yao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xin Liu
- Anti-Drug Technology Center of Guangdong Province, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Chu-Shu Huang
- Anti-Drug Technology Center of Guangdong Province, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
2
|
Wang Z, Wang S, Bi Y, Boiti A, Zhang S, Vallone D, Lan X, Foulkes NS, Zhao H. Light-regulated microRNAs shape dynamic gene expression in the zebrafish circadian clock. PLoS Genet 2025; 21:e1011545. [PMID: 39777894 PMCID: PMC11750094 DOI: 10.1371/journal.pgen.1011545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/21/2025] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
A key property of the circadian clock is that it is reset by light to remain synchronized with the day-night cycle. An attractive model to explore light input to the circadian clock in vertebrates is the zebrafish. Circadian clocks in zebrafish peripheral tissues and even zebrafish-derived cell lines are entrainable by direct light exposure thus providing unique insight into the function and evolution of light regulatory pathways. Our previous work has revealed that light-induced gene transcription is a key step in the entrainment of the circadian clock as well as enabling the more general adaptation of zebrafish cells to sunlight exposure. However, considerable evidence points to post-transcriptional regulatory mechanisms, notably microRNAs (miRNAs), playing an essential role in shaping dynamic changes in mRNA levels. Therefore, does light directly impact the function of miRNAs? Are there light-regulated miRNAs and if so, which classes of mRNA do they target? To address these questions, we performed a complete sequencing analysis of light-induced changes in the zebrafish transcriptome, encompassing small non-coding RNAs as well as mRNAs. Importantly, we identified sets of light-regulated miRNAs, with many regulatory targets representing light-inducible mRNAs including circadian clock genes and genes involved in redox homeostasis. We subsequently focused on the light-responsive miR-204-3-3p and miR-430a-3p which are predicted to regulate the expression of cryptochrome genes (cry1a and cry1b). Luciferase reporter assays validated the target binding of miR-204-3-3p and miR-430a-3p to the 3'UTRs of cry1a and cry1b, respectively. Furthermore, treatment with mimics and inhibitors of these two miRNAs significantly affected the dynamic expression of their target genes but also other core clock components (clock1a, bmal1b, per1b, per2, per3), as well as the rhythmic locomotor activity of zebrafish larvae. Thus, our identification of light-responsive miRNAs reveals new intricacy in the multi-level regulation of the circadian clockwork by light.
Collapse
Affiliation(s)
- Zuo Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Shuang Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Yi Bi
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Alessandra Boiti
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Shengxiang Zhang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Daniela Vallone
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Nicholas S. Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Di Rosa V, Frigato E, Negrini P, Cristiano W, López-Olmeda JF, Rétaux S, Sánchez-Vázquez FJ, Foulkes NS, Bertolucci C. Sporadic feeding regulates robust food entrainable circadian clocks in blind cavefish. iScience 2024; 27:110171. [PMID: 38974965 PMCID: PMC11225386 DOI: 10.1016/j.isci.2024.110171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/14/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
The circadian clock represents a key timing system entrained by various periodic signals that ensure synchronization with the environment. Many investigations have pointed to the existence of two distinct circadian oscillators: one regulated by the light-dark cycle and the other set by feeding time. Blind cavefish have evolved under extreme conditions where they completely lack light exposure and experience food deprivation. Here, we have investigated feeding regulated clocks in two cavefish species, the Somalian cavefish Phreatichthys andruzzii and the Mexican cavefish Astyanax mexicanus, in comparison with the surface-dwelling zebrafish Danio rerio. Our results reveal that feeding represents an extremely strong synchronizer for circadian locomotor rhythmicity in subterranean cavefish. Indeed, we showed that consuming just one meal every 4 days is sufficient to entrain circadian rhythmicity in both cavefish species, but not in zebrafish. These profound adaptations to an extreme environment provide insight into the connections between feeding and circadian clocks.
Collapse
Affiliation(s)
- Viviana Di Rosa
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Elena Frigato
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Pietro Negrini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Walter Cristiano
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Ecosystems and Health Unit, Environment and Health Department, Italian National Institute of Health, 00161 Rome, Italy
| | - Jose Fernando López-Olmeda
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, 91400 Saclay, France
| | - Francisco Javier Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
| | - Nicholas S. Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
4
|
Vijayakumar S, Yesudhason BV, Anandharaj JL, Sathyaraj WV, Selvan Christyraj JRS. Impact of double-strand breaks induced by uv radiation on neuroinflammation and neurodegenerative disorders. Mol Biol Rep 2024; 51:725. [PMID: 38851636 DOI: 10.1007/s11033-024-09693-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Exposure to UV affects the development and growth of a wide range of organisms. Nowadays, researchers are focusing on the impact of UV radiation and its underlying molecular mechanisms, as well as devising strategies to mitigate its harmful effects. Different forms of UV radiation, their typical exposure effects, the impact of UV on DNA integrity, and the deterioration of genetic material are discussed in this review; furthermore, we also review the effects of UV radiation that affect the biological functions of the organisms. Subsequently, we address the processes that aid organisms in navigating the damage in genetic material, neuroinflammation, and neurodegeneration brought on by UV-mediated double-strand breaks. To emphasize the molecular pathways, we conclude the review by going over the animal model studies that highlight the genes and proteins that are impacted by UV radiation.
Collapse
Affiliation(s)
- Srilakshmi Vijayakumar
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Beryl Vedha Yesudhason
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Jenif Leo Anandharaj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Weslen Vedakumari Sathyaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| |
Collapse
|
5
|
Rice MC, Little JH, Forrister DL, Machado J, Clark NL, Gagnon JA. Gadusol is a maternally provided sunscreen that protects fish embryos from DNA damage. Curr Biol 2023; 33:3229-3237.e4. [PMID: 37369210 PMCID: PMC10528378 DOI: 10.1016/j.cub.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Exposure to ultraviolet radiation (UVR) is harmful to living cells, leading organisms to evolve protective mechanisms against UVR-induced cellular damage and stress.1,2 UVR, particularly UVB (280-320 nm), can damage proteins and DNA, leading to errors during DNA repair and replication. Excessive UVR can induce cellular death. Aquatic organisms face risk of UV exposure as biologically harmful levels of UVB can penetrate >10 m in clear water.3 While melanin is the only known sunscreen in vertebrates, it often emerges late in embryonic development, rendering embryos of many species vulnerable during the earlier stages. Algae and microbes produce a class of sunscreening compounds known as mycosporine-like amino acids (MAAs).4 Fish eggs contain a similar compound called gadusol, whose role as a sunscreen has yet to be tested despite its discovery over 40 years ago.5 The recent finding that many vertebrate genomes contain a biosynthetic pathway for gadusol suggests that many fish may produce and use this molecule as a sunscreen.6 We generated a gadusol-deficient mutant zebrafish to investigate the role of gadusol in protecting fish embryos and larvae from UVR. Our results demonstrate that maternally provided gadusol is the primary sunscreen in embryonic and larval development, while melanin provides modest secondary protection. The gadusol biosynthetic pathway is retained in the vast majority of teleost genomes but is repeatedly lost in species whose young are no longer exposed to UVR. Our data demonstrate that gadusol is a maternally provided sunscreen that is critical for early-life survival in the most species-rich branch of the vertebrate phylogeny.
Collapse
Affiliation(s)
- Marlen C Rice
- School of Biological Sciences, 257 1400 E, University of Utah, Salt Lake City, UT 84112, USA
| | - Jordan H Little
- Department of Human Genetics, 15 N 2030 E, University of Utah, Salt Lake City, UT 84112, USA
| | - Dale L Forrister
- School of Biological Sciences, 257 1400 E, University of Utah, Salt Lake City, UT 84112, USA
| | - Julane Machado
- School of Biological Sciences, 257 1400 E, University of Utah, Salt Lake City, UT 84112, USA
| | - Nathan L Clark
- Department of Human Genetics, 15 N 2030 E, University of Utah, Salt Lake City, UT 84112, USA
| | - James A Gagnon
- School of Biological Sciences, 257 1400 E, University of Utah, Salt Lake City, UT 84112, USA; Henry Eyring Center for Cell & Genome Science, 1390 Presidents Circle, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
6
|
Lungu-Mitea S, Han Y, Lundqvist J. Development, scrutiny, and modulation of transient reporter gene assays of the xenobiotic metabolism pathway in zebrafish hepatocytes. Cell Biol Toxicol 2023; 39:991-1013. [PMID: 34654992 PMCID: PMC10406726 DOI: 10.1007/s10565-021-09659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
The "toxicology in the twenty-first century" paradigm shift demands the development of alternative in vitro test systems. Especially in the field of ecotoxicology, coverage of aquatic species-specific assays is relatively scarce. Transient reporter gene assays could be a quick, economical, and reliable bridging technology. However, the user should be aware of potential pitfalls that are influenced by reporter vector geometry. Here, we report the development of an AhR-responsive transient reporter-gene assay in the permanent zebrafish hepatocytes cell line (ZFL). Additionally, we disclose how viral, constitutive promoters within reporter-gene assay cassettes induce squelching of the primary signal. To counter this, we designed a novel normalization vector, bearing an endogenous zebrafish-derived genomic promoter (zfEF1aPro), which rescues the squelching-delimited system, thus, giving new insights into the modulation of transient reporter systems under xenobiotic stress. Finally, we uncovered how the ubiquitously used ligand BNF promiscuously activates multiple toxicity pathways of the xenobiotic metabolism and cellular stress response in an orchestral manner, presumably leading to a concentration-related inhibition of the AhR/ARNT/XRE-toxicity pathway and non-monotonous concentration-response curves. We named such a multi-level inhibitory mechanism that might mask effects as "maisonette squelching." A transient reporter gene assay in zebrafish cell lines utilizing endogenous regulatory gene elements shows increased in vitro toxicity testing performance. Synthetic and constitutive promotors interfere with signal transduction ("squelching") and might increase cellular stress (cytotoxicity). The squelching phenomenon might occur on multiple levels (toxicity pathway crosstalk and normalization vector), leading to a complete silencing of the reporter signal.
Collapse
Affiliation(s)
- Sebastian Lungu-Mitea
- Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07, Uppsala, Sweden.
| | - Yuxin Han
- Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07, Uppsala, Sweden
| | - Johan Lundqvist
- Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07, Uppsala, Sweden
| |
Collapse
|