1
|
Zhang H, Meléndez A. Conserved components of the macroautophagy machinery in Caenorhabditis elegans. Genetics 2025; 229:iyaf007. [PMID: 40180610 PMCID: PMC12005284 DOI: 10.1093/genetics/iyaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/13/2024] [Indexed: 04/05/2025] Open
Abstract
Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and its subsequent delivery to lysosomes for degradation and recycling. In Caenorhabditis elegans, autophagy participates in diverse processes such as stress resistance, cell fate specification, tissue remodeling, aging, and adaptive immunity. Genetic screens in C. elegans have identified a set of metazoan-specific autophagy genes that form the basis for our molecular understanding of steps unique to the autophagy pathway in multicellular organisms. Suppressor screens have uncovered multiple mechanisms that modulate autophagy activity under physiological conditions. C. elegans also provides a model to investigate how autophagy activity is coordinately controlled at an organismal level. In this chapter, we will discuss the molecular machinery, regulation, and physiological functions of autophagy, and also methods utilized for monitoring autophagy during C. elegans development.
Collapse
Affiliation(s)
- Hong Zhang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Alicia Meléndez
- Department of Biology, Queens College, City University of New York, Flushing, NY 11367, USA
- Molecular, Cellular and Developmental Biology and Biochemistry Ph.D. Programs, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
2
|
Yang B, Cheng L, Li Y, Liu Z, Zhou C, Zhou T, Zhao Y, Du H, Liao Z, Xu A. Moderate static magnetic field modulated lipid metabolism abnormalities induced by continuous artificial light in Caenorhabditis elegans: Role of iron ions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117959. [PMID: 40022825 DOI: 10.1016/j.ecoenv.2025.117959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/17/2024] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Excessive use of artificial light sources has led to a significant increase in light pollution, which has raised serious concerns due to its serious adverse effects on lipid metabolism. Although moderate static magnetic fields (SMFs) have shown potential in health intervention and treatment as non-invasive and highly permeable physical field, the influence of SMFs on lipid metabolic disturbance induced by lights remains largely unknown. In this study, we explored the lipid metabolism of Caenorhabditis elegans (C. elegans) under varying wavelengths of light ranging from 395 nm to 635 nm, both in the presence and absence of a 0.5 T SMF, and elucidated their underlying mechanisms. Exposure of C. elegans to artificial light at 200 lux resulted in a shortened lifespan while significantly increasing fat accumulation in a wavelength-dependent manner. The presence of 0.5 T SMF significantly extended the lifespan and reduced the size of fat droplets, as well as the content of triglyceride in light exposed worms. These effects were achieved by upregulating the expression of genes related to lipolysis and downregulating the expression of genes related to lipid synthesis. Moreover, the 0.5 T SMF alleviated abnormalities in lipid metabolism caused by light through the regulation of iron ions. Our findings provided clear evidence that moderate SMFs have significant protective effects on lipid metabolism abnormalities induced by artificial light via mediating iron homeostasis, which might contribute to a better understanding of the combined photomagnetic effects in living organisms.
Collapse
Affiliation(s)
- Baolin Yang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Lei Cheng
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Yang Li
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Zicheng Liu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Chenxi Zhou
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Tong Zhou
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Yanan Zhao
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Hua Du
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Zhongcai Liao
- Heye Health Technology Co., Ltd., Huzhou 313300, PR China
| | - An Xu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China.
| |
Collapse
|
3
|
Li G, Cao X, Tumukunde E, Zeng Q, Wang S. The target of rapamycin signaling pathway regulates vegetative development, aflatoxin biosynthesis, and pathogenicity in Aspergillus flavus. eLife 2024; 12:RP89478. [PMID: 38990939 PMCID: PMC11239180 DOI: 10.7554/elife.89478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
The target of rapamycin (TOR) signaling pathway is highly conserved and plays a crucial role in diverse biological processes in eukaryotes. Despite its significance, the underlying mechanism of the TOR pathway in Aspergillus flavus remains elusive. In this study, we comprehensively analyzed the TOR signaling pathway in A. flavus by identifying and characterizing nine genes that encode distinct components of this pathway. The FK506-binding protein Fkbp3 and its lysine succinylation are important for aflatoxin production and rapamycin resistance. The TorA kinase plays a pivotal role in the regulation of growth, spore production, aflatoxin biosynthesis, and responses to rapamycin and cell membrane stress. As a significant downstream effector molecule of the TorA kinase, the Sch9 kinase regulates aflatoxin B1 (AFB1) synthesis, osmotic and calcium stress response in A. flavus, and this regulation is mediated through its S_TKc, S_TK_X domains, and the ATP-binding site at K340. We also showed that the Sch9 kinase may have a regulatory impact on the high osmolarity glycerol (HOG) signaling pathway. TapA and TipA, the other downstream components of the TorA kinase, play a significant role in regulating cell wall stress response in A. flavus. Moreover, the members of the TapA-phosphatase complexes, SitA and Ppg1, are important for various biological processes in A. flavus, including vegetative growth, sclerotia formation, AFB1 biosynthesis, and pathogenicity. We also demonstrated that SitA and Ppg1 are involved in regulating lipid droplets (LDs) biogenesis and cell wall integrity (CWI) signaling pathways. In addition, another phosphatase complex, Nem1/Spo7, plays critical roles in hyphal development, conidiation, aflatoxin production, and LDs biogenesis. Collectively, our study has provided important insight into the regulatory network of the TOR signaling pathway and has elucidated the underlying molecular mechanisms of aflatoxin biosynthesis in A. flavus.
Collapse
Affiliation(s)
- Guoqi Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic, Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaohong Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic, Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Elisabeth Tumukunde
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic, Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Qianhua Zeng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic, Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic, Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
4
|
The p38 MAPK/PMK-1 Pathway Is Required for Resistance to Nocardia farcinica Infection in Caenorhabditis elegance. Pathogens 2022; 11:pathogens11101071. [PMID: 36297128 PMCID: PMC9609018 DOI: 10.3390/pathogens11101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/02/2022] Open
Abstract
Nocardia farcinica is an opportunistic pathogen that causes nocardiosis primarily in patients with compromised immune systems. In this study, we used the genetically tractable organism Caenorhabditis elegans as a model to study the innate immune responses to N. farcinica infection. We found that unlike other pathogenic bacteria such as Pseudomonas aeruginosa and Staphylococcus aureus, N. farcinica failed to kill adult worms. In another words, adult worms exposed to N. farcinica exhibited a normal lifespan, compared with those fed the standard laboratory food bacterium Escherichia coli OP50. Interestingly, deletion of three core genes (pmk-1, nsy-1 and sek-1) in the p38 MAPK/PMK-1 pathway reduced the survival of worm exposure to N. farcinica, highlighting a crucial role of this pathway for C. elegans in resistance to N. farcinica. Furthermore, our results revealed that N. farcinica exposure up-regulated the level of PMK-1 phosphorylation. The activation of PMK-1 promoted nuclear translocation of a transcription factor SKN-1/Nrf2, which in turn mediated N. farcinica infection resistance in C. elegans. Our results provide an excellent example that the integrity of immune system is key aspect for counteract with pathogenesis of N. farcinica.
Collapse
|
5
|
Structural and functional relationship of mammalian and nematode ferritins. BIOTECHNOLOGIA 2021; 102:457-471. [PMID: 36605605 PMCID: PMC9642938 DOI: 10.5114/bta.2021.111110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023] Open
Abstract
Ferritin is a unique buffering protein in iron metabolism. By storing or releasing iron in a tightly controlled manner, it prevents the negative effects of free ferrous ions on biomolecules in all domains of life - from bacteria to mammals. This review focuses on the structural features and activity of the ferritin protein family with an emphasis on nematode ferritins and the similarities in their biological roles with mammalian ferritins. The conservative characteristic of the ferritin family across the species originates from the ferroxidase activity against redox-active iron. The antioxidative function of these proteins translates into their involvement in a wide range of important biological processes, e.g., aging, fat metabolism, immunity, anticancer activity, and antipathogenic activity. Moreover, disturbances in ferritin expression lead to severe iron-associated diseases. Research on the Caenorhabditis elegans model organism may allow us to better understand the wide spectrum of mechanisms involving ferritin activity.
Collapse
|