1
|
Higgins K, Nyabashi V, Anderson S. Conservation of imprinted expression across genotypes is correlated with consistency of imprinting across endosperm development in maize. G3 (BETHESDA, MD.) 2025; 15:jkaf028. [PMID: 39948030 PMCID: PMC12005164 DOI: 10.1093/g3journal/jkaf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/28/2025] [Indexed: 04/18/2025]
Abstract
Imprinted expression is an essential process for seed viability affecting hundreds of genes in Zea mays endosperm; however, most studies have examined just one time point for analysis. The focus on single time points can limit our ability to identify imprinted genes and our ability to draw conclusions for the role of imprinting in endosperm. In this study, we examine imprinted expression across 4 time points ranging from the transition to endoreduplication from mitotic division through the beginning of programmed cell death. Additionally, we assessed imprinting variation across 8 diverse maize lines, 6 of which have never before been assessed for imprinting. Through this analysis, we identify over 700 imprinted genes with varying consistency across time points including 255 genes imprinted at every time point and 105 genes displaying transient imprinting. We find a correlation between high consistency of imprinting across time and high conservation of parental bias across 8 diverse maize lines reciprocally crossed with B73. Additionally, we identify evidence of imprinting for 3 zein genes that are critical for nutrient accumulation in the endosperm, suggesting that imprinting may play a more important role in seed composition than previously thought. Taken together, this study provides a more holistic view of imprinting variation across time and across genotypes in maize and enables us to more thoroughly investigate the complex imprinting landscape.
Collapse
Affiliation(s)
- Kaitlin Higgins
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50010, USA
| | - Vital Nyabashi
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50010, USA
| | - Sarah Anderson
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
2
|
Pal AK, Gandhivel VHS, Nambiar AB, Shivaprasad PV. Upstream regulator of genomic imprinting in rice endosperm is a small RNA-associated chromatin remodeler. Nat Commun 2024; 15:7807. [PMID: 39242590 PMCID: PMC11379814 DOI: 10.1038/s41467-024-52239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Genomic imprinting is observed in endosperm, a placenta-like seed tissue, where transposable elements (TEs) and repeat-derived small RNAs (sRNAs) mediate epigenetic changes in plants. In imprinting, uniparental gene expression arises due to parent-specific epigenetic marks on one allele but not on the other. The importance of sRNAs and their regulation in endosperm development or in imprinting is poorly understood in crops. Here we show that a previously uncharacterized CLASSY (CLSY)-family chromatin remodeler named OsCLSY3 is essential for rice endosperm development and imprinting, acting as an upstream player in the sRNA pathway. Comparative transcriptome and genetic analysis indicated its endosperm-preferred expression and its likely paternal imprinted nature. These important features are modulated by RNA-directed DNA methylation (RdDM) of tandemly arranged TEs in its promoter. Upon perturbation of OsCLSY3 in transgenic lines, we observe defects in endosperm development and a loss of around 70% of all sRNAs. Interestingly, well-conserved endosperm-specific sRNAs (siren) that are vital for reproductive fitness in angiosperms are also dependent on OsCLSY3. We observed that many imprinted genes and seed development-associated genes are under the control of OsCLSY3. These results support an essential role of OsCLSY3 in rice endosperm development and imprinting, and propose similar regulatory strategies involving CLSY3 homologs among other cereals.
Collapse
Affiliation(s)
- Avik Kumar Pal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Vivek Hari-Sundar Gandhivel
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Amruta B Nambiar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - P V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India.
| |
Collapse
|
3
|
Gent JI, Higgins KM, Swentowsky KW, Fu FF, Zeng Y, Kim DW, Dawe RK, Springer NM, Anderson SN. The maize gene maternal derepression of r1 encodes a DNA glycosylase that demethylates DNA and reduces siRNA expression in the endosperm. THE PLANT CELL 2022; 34:3685-3701. [PMID: 35775949 PMCID: PMC9516051 DOI: 10.1093/plcell/koac199] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/27/2022] [Indexed: 06/01/2023]
Abstract
Demethylation of transposons can activate the expression of nearby genes and cause imprinted gene expression in the endosperm; this demethylation is hypothesized to lead to expression of transposon small interfering RNAs (siRNAs) that reinforce silencing in the next generation through transfer either into egg or embryo. Here we describe maize (Zea mays) maternal derepression of r1 (mdr1), which encodes a DNA glycosylase with homology to Arabidopsis thaliana DEMETER and which is partially responsible for demethylation of thousands of regions in endosperm. Instead of promoting siRNA expression in endosperm, MDR1 activity inhibits it. Methylation of most repetitive DNA elements in endosperm is not significantly affected by MDR1, with an exception of Helitrons. While maternally-expressed imprinted genes preferentially overlap with MDR1 demethylated regions, the majority of genes that overlap demethylated regions are not imprinted. Double mutant megagametophytes lacking both MDR1 and its close homolog DNG102 result in early seed failure, and double mutant microgametophytes fail pre-fertilization. These data establish DNA demethylation by glycosylases as essential in maize endosperm and pollen and suggest that neither transposon repression nor genomic imprinting is its main function in endosperm.
Collapse
Affiliation(s)
| | - Kaitlin M Higgins
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Kyle W Swentowsky
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Fang-Fang Fu
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
- Co‐Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yibing Zeng
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Dong won Kim
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - R Kelly Dawe
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Sarah N Anderson
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
4
|
Shapiro JA. What we have learned about evolutionary genome change in the past 7 decades. Biosystems 2022; 215-216:104669. [DOI: 10.1016/j.biosystems.2022.104669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
|