1
|
Tomkova M, McClellan MJ, Crevel G, Shahid AM, Mozumdar N, Tomek J, Shepherd E, Cotterill S, Schuster-Böckler B, Kriaucionis S. Human DNA polymerase ε is a source of C>T mutations at CpG dinucleotides. Nat Genet 2024; 56:2506-2516. [PMID: 39390083 PMCID: PMC11549043 DOI: 10.1038/s41588-024-01945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
C-to-T transitions in CpG dinucleotides are the most prevalent mutations in human cancers and genetic diseases. These mutations have been attributed to deamination of 5-methylcytosine (5mC), an epigenetic modification found on CpGs. We recently linked CpG>TpG mutations to replication and hypothesized that errors introduced by polymerase ε (Pol ε) may represent an alternative source of mutations. Here we present a new method called polymerase error rate sequencing (PER-seq) to measure the error spectrum of DNA polymerases in isolation. We find that the most common human cancer-associated Pol ε mutant (P286R) produces an excess of CpG>TpG errors, phenocopying the mutation spectrum of tumors carrying this mutation and deficiencies in mismatch repair. Notably, we also discover that wild-type Pol ε has a sevenfold higher error rate when replicating 5mCpG compared to C in other contexts. Together, our results from PER-seq and human cancers demonstrate that replication errors are a major contributor to CpG>TpG mutagenesis in replicating cells, fundamentally changing our understanding of this important disease-causing mutational mechanism.
Collapse
Affiliation(s)
- Marketa Tomkova
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK.
| | | | - Gilles Crevel
- Molecular and Cellular Sciences, St George's University London, London, UK
| | | | - Nandini Mozumdar
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Jakub Tomek
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Emelie Shepherd
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Sue Cotterill
- Molecular and Cellular Sciences, St George's University London, London, UK
| | | | | |
Collapse
|
2
|
Guasch MB, Krapivsky PL, Antal T. Error-induced extinction in a multi-type critical birth-death process. J Math Biol 2024; 89:36. [PMID: 39222150 PMCID: PMC11369052 DOI: 10.1007/s00285-024-02134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 07/02/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Extreme mutation rates in microbes and cancer cells can result in error-induced extinction (EEX), where every descendant cell eventually acquires a lethal mutation. In this work, we investigate critical birth-death processes with n distinct types as a birth-death model of EEX in a growing population. Each type-i cell divides independently ( i ) → ( i ) + ( i ) or mutates ( i ) → ( i + 1 ) at the same rate. The total number of cells grows exponentially as a Yule process until a cell of type-n appears, which cell type can only divide or die at rate one. This makes the whole process critical and hence after the exponentially growing phase eventually all cells die with probability one. We present large-time asymptotic results for the general n-type critical birth-death process. We find that the mass function of the number of cells of type-k has algebraic and stationary tail( size ) - 1 - χ k , withχ k = 2 1 - k , for k = 2 , ⋯ , n , in sharp contrast to the exponential tail of the first type. The same exponents describe the tail of the asymptotic survival probability( time ) - ξ k . We present applications of the results for studying extinction due to intolerable mutation rates in biological populations.
Collapse
Affiliation(s)
- Meritxell Brunet Guasch
- School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh, EH9 3FD, UK.
| | - P L Krapivsky
- Department of Physics, Boston University, Boston, MA, 02215, USA
- Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - Tibor Antal
- School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh, EH9 3FD, UK
| |
Collapse
|
3
|
Acs-Szabo L, Papp LA, Miklos I. Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:288-311. [PMID: 39104724 PMCID: PMC11299203 DOI: 10.15698/mic2024.08.833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024]
Abstract
The role of model organisms such as yeasts in life science research is crucial. Although the baker's yeast (Saccharomyces cerevisiae) is the most popular model among yeasts, the contribution of the fission yeasts (Schizosaccharomyces) to life science is also indisputable. Since both types of yeasts share several thousands of common orthologous genes with humans, they provide a simple research platform to investigate many fundamental molecular mechanisms and functions, thereby contributing to the understanding of the background of human diseases. In this review, we would like to highlight the many advantages of fission yeasts over budding yeasts. The usefulness of fission yeasts in virus research is shown as an example, presenting the most important research results related to the Human Immunodeficiency Virus Type 1 (HIV-1) Vpr protein. Besides, the potential role of fission yeasts in the study of prion biology is also discussed. Furthermore, we are keen to promote the uprising model yeast Schizosaccharomyces japonicus, which is a dimorphic species in the fission yeast genus. We propose the hyphal growth of S. japonicus as an unusual opportunity as a model to study the invadopodia of human cancer cells since the two seemingly different cell types can be compared along fundamental features. Here we also collect the latest laboratory protocols and bioinformatics tools for the fission yeasts to highlight the many possibilities available to the research community. In addition, we present several limiting factors that everyone should be aware of when working with yeast models.
Collapse
Affiliation(s)
- Lajos Acs-Szabo
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| | - Laszlo Attila Papp
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| | - Ida Miklos
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| |
Collapse
|
4
|
Selves J, de Castro E Gloria H, Brunac AC, Saffi J, Guimbaud R, Brousset P, Hoffmann JS. Exploring the basis of heterogeneity of cancer aggressiveness among the mutated POLE variants. Life Sci Alliance 2024; 7:e202302290. [PMID: 37891003 PMCID: PMC10610022 DOI: 10.26508/lsa.202302290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Germline pathogenic variants in the exonuclease domain of the replicative DNA polymerase Pol ε encoded by the POLE gene, predispose essentially to colorectal and endometrial tumors by inducing an ultramutator phenotype. It is still unclear whether all the POLE alterations influence similar strength tumorigenesis, immune microenvironment, and treatment response. In this review, we summarize the current understanding of the mechanisms and consequences of POLE mutations in human malignancies; we highlight the heterogeneity of mutation rate and cancer aggressiveness among POLE variants, propose some mechanistic basis underlining such heterogeneity, and discuss novel considerations for the choice and efficacy of therapies of POLE tumors.
Collapse
Affiliation(s)
- Janick Selves
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse; Centre Hospitalier Universitaire (CHU), Toulouse, France
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, Toulouse, France
| | - Helena de Castro E Gloria
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Anne-Cécile Brunac
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse; Centre Hospitalier Universitaire (CHU), Toulouse, France
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Rosine Guimbaud
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, Toulouse, France
- Department of Digestive Oncology, Centre Hospitalier Universitaire (CHU), Toulouse, France
- Department of Digestive Surgery, Centre Hospitalier Universitaire (CHU), Toulouse, France
| | - Pierre Brousset
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse; Centre Hospitalier Universitaire (CHU), Toulouse, France
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Toulouse, France
| | - Jean-Sébastien Hoffmann
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse; Centre Hospitalier Universitaire (CHU), Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Toulouse, France
| |
Collapse
|
5
|
Crevel G, Kearsey S, Cotterill S. A simple bypass assay for DNA polymerases shows that cancer-associated hypermutating variants exhibit differences in vitro. FEBS J 2023; 290:5744-5758. [PMID: 37592814 PMCID: PMC10953417 DOI: 10.1111/febs.16936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
Errors made by DNA polymerases contribute to both natural variation and, in extreme cases, genome instability and its associated diseases. Recently, the importance of polymerase misincorporation in disease has been highlighted by the identification of cancer-associated polymerase variants with mutations in the exonuclease domain. A subgroup of these variants have a hypermutation phenotype in tumours, and when modelled in yeast, they show mutation rates in excess of that seen with polymerase with simple loss of proofreading activity. We have developed a bypass assay to rapidly determine the tendency of a polymerase to misincorporate in vitro. We have used the assay to compare misincorporation by wild-type, exonuclease-defective and two hypermutating human DNA polymerase ε variants, P286R and V411L. The assay clearly distinguished between the misincorporation rates of wild-type, exonuclease dead and P286R polymerases. However, the V411L polymerase showed misincorporation rate comparable to the exonuclease dead enzyme rather than P286R, suggesting that there may be some differences in the way that these variants cause hypermutation. Using this assay, misincorporation opposite a templated C nucleotide was consistently higher than for other nucleotides, and this caused predominantly C-to-T transitions. This is consistent with the observation that C-to-T transitions are commonly seen in DNA polymerase ε mutant tumours.
Collapse
|
6
|
Strauss JD, Pursell ZF. Replication DNA polymerases, genome instability and cancer therapies. NAR Cancer 2023; 5:zcad033. [PMID: 37388540 PMCID: PMC10304742 DOI: 10.1093/narcan/zcad033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/24/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023] Open
Abstract
It has been over a decade since the initial identification of exonuclease domain mutations in the genes encoding the catalytic subunits of replication DNA polymerases ϵ and δ (POLE and POLD1) in tumors from highly mutated endometrial and colorectal cancers. Interest in studying POLE and POLD1 has increased significantly since then. Prior to those landmark cancer genome sequencing studies, it was well documented that mutations in replication DNA polymerases that reduced their DNA synthesis accuracy, their exonuclease activity or their interactions with other factors could lead to increased mutagenesis, DNA damage and even tumorigenesis in mice. There are several recent, well-written reviews of replication DNA polymerases. The aim of this review is to gather and review in some detail recent studies of DNA polymerases ϵ and δ as they pertain to genome instability, cancer and potential therapeutic treatments. The focus here is primarily on recent informative studies on the significance of mutations in genes encoding their catalytic subunits (POLE and POLD1), mutational signatures, mutations in associated genes, model organisms, and the utility of chemotherapy and immune checkpoint inhibition in polymerase mutant tumors.
Collapse
Affiliation(s)
- Juliet D Strauss
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, 70118 LA, USA
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, 70118 LA, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, 70118 LA, USA
| |
Collapse
|
7
|
Pai CC, Heitzer E, Bertrand S, Toumazou S, Humphrey TC, Kearsey SE. Using canavanine resistance to measure mutation rates in Schizosaccharomyces pombe. PLoS One 2023; 18:e0271016. [PMID: 36626373 PMCID: PMC9831302 DOI: 10.1371/journal.pone.0271016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
We constructed a panel of S. pombe strains expressing DNA polymerase ε variants associated with cancer, specifically POLES297F, POLEV411L, POLEL424V, POLES459F, and used these to compare mutation rates determined by canavanine resistance with other selective methods. Canavanine-resistance mutation rates are broadly similar to those seen with reversion of the ade-485 mutation to adenine prototrophy, but lower than 5-fluoroorotic acid (FOA)-resistance rates (inactivation of ura4+ or ura5+ genes). Inactivation of several genes has been associated with canavanine resistance in S. pombe but surprisingly whole genome sequencing showed that 8/8 spontaneous canavanine-resistant mutants have an R175C mutation in the any1/arn1 gene. This gene encodes an α-arrestin-like protein involved in mediating Pub1 ubiquitylation of target proteins, and the phenotypic resistance to canavanine by this single mutation is similar to that shown by the original "can1-1" strain, which also has the any1R175C mutation. Some of the spontaneous mutants have additional mutations in arginine transporters, suggesting that this may marginally increase resistance to canavanine. The any1R175C strain showed internalisation of the Cat1 arginine transporter as previously reported, explaining the canavanine-resistance phenotype.
Collapse
Affiliation(s)
- Chen-Chun Pai
- Department of Oncology, CRUK-MRC Oxford Institute for Radiation Oncology, University of Oxford, ORCRB, Oxford, United Kingdom
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | | | | | - Timothy C. Humphrey
- Department of Oncology, CRUK-MRC Oxford Institute for Radiation Oncology, University of Oxford, ORCRB, Oxford, United Kingdom
| | | |
Collapse
|
8
|
Polymerase Epsilon-Associated Ultramutagenesis in Cancer. Cancers (Basel) 2022; 14:cancers14061467. [PMID: 35326618 PMCID: PMC8946778 DOI: 10.3390/cancers14061467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
With advances in next generation sequencing (NGS) technologies, efforts have been made to develop personalized medicine, targeting the specific genetic makeup of an individual. Somatic or germline DNA Polymerase epsilon (PolE) mutations cause ultramutated (>100 mutations/Mb) cancer. In contrast to mismatch repair-deficient hypermutated (>10 mutations/Mb) cancer, PolE-associated cancer is primarily microsatellite stable (MSS) In this article, we provide a comprehensive review of this PolE-associated ultramutated tumor. We describe its molecular characteristics, including the mutation sites and mutation signature of this type of tumor and the mechanism of its ultramutagenesis. We discuss its good clinical prognosis and elucidate the mechanism for enhanced immunogenicity with a high tumor mutation burden, increased neoantigen load, and enriched tumor-infiltrating lymphocytes. We also provide the rationale for immune checkpoint inhibitors in PolE-mutated tumors.
Collapse
|