1
|
Lykkesfeldt J, Carr AC, Tveden-Nyborg P. The pharmacology of vitamin C. Pharmacol Rev 2025; 77:100043. [PMID: 39986139 DOI: 10.1016/j.pharmr.2025.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 01/14/2025] [Indexed: 02/24/2025] Open
Abstract
Ascorbic acid, the reduced form of vitamin C, is a ubiquitous small carbohydrate. Despite decades of focused research, new metabolic functions of this universal electron donor are still being discovered and add to the complexity of our view of vitamin C in human health. Although praised as an unsurpassed water-soluble antioxidant in plasma and cells, the most interesting functions of vitamin C seem to be its roles as specific electron donor in numerous biological reactions ranging from the well-known hydroxylation of proline to cofactor for the epigenetic master regulators ten-eleven translocation enzymes and Jumonji domain-containing histone-lysine demethylases. Some of these functions may have important implications for disease prevention and treatment and have spiked renewed interest in, eg, vitamin C's potential in cancer therapy. Moreover, some fundamental pharmacokinetic properties of vitamin C remain to be established including if other mechanisms than passive diffusion governs the efflux of ascorbate anions from the cell. Taken together, there still seems to be much to learn about the pharmacology of vitamin C and its role in health and disease. This review explores new avenues of vitamin C and integrates our present knowledge of its pharmacology. SIGNIFICANCE STATEMENT: Vitamin C is involved in multiple biological reactions of which most are essential to human health. Hundreds of millions of people are considered deficient in vitamin C according to accepted guidelines, but little is known about the long-term consequences. Although the complexity of vitamin C's physiology and pharmacology has been widely disregarded in clinical studies for decades, it seems clear that a deeper understanding of particularly its pharmacology holds the key to unravel and possibly exploit the potential of vitamin C in disease prevention and therapy.
Collapse
Affiliation(s)
- Jens Lykkesfeldt
- Section of Biomedicine, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anitra C Carr
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Pernille Tveden-Nyborg
- Section of Biomedicine, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Lopes M, Louzada S, Gama-Carvalho M, Chaves R. Pericentromeric satellite RNAs as flexible protein partners in the regulation of nuclear structure. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1868. [PMID: 38973000 DOI: 10.1002/wrna.1868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024]
Abstract
Pericentromeric heterochromatin is mainly composed of satellite DNA sequences. Although being historically associated with transcriptional repression, some pericentromeric satellite DNA sequences are transcribed. The transcription events of pericentromeric satellite sequences occur in highly flexible biological contexts. Hence, the apparent randomness of pericentromeric satellite transcription incites the discussion about the attribution of biological functions. However, pericentromeric satellite RNAs have clear roles in the organization of nuclear structure. Silencing pericentromeric heterochromatin depends on pericentromeric satellite RNAs, that, in a feedback mechanism, contribute to the repression of pericentromeric heterochromatin. Moreover, pericentromeric satellite RNAs can also act as scaffolding molecules in condensate subnuclear structures (e.g., nuclear stress bodies). Since the formation/dissociation of nuclear condensates provides cell adaptability, pericentromeric satellite RNAs can be an epigenetic platform for regulating (sub)nuclear structure. We review current knowledge about pericentromeric satellite RNAs that, irrespective of the meaning of biological function, should be functionally addressed in regular and disease settings. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Mariana Lopes
- CytoGenomics Lab-Department of Genetics and Biotechnology (DGB), University of Trás os Montes and Alto Douro (UTAD), Vila Real, Portugal
- BioISI: Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Sandra Louzada
- CytoGenomics Lab-Department of Genetics and Biotechnology (DGB), University of Trás os Montes and Alto Douro (UTAD), Vila Real, Portugal
- BioISI: Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Margarida Gama-Carvalho
- BioISI: Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Raquel Chaves
- CytoGenomics Lab-Department of Genetics and Biotechnology (DGB), University of Trás os Montes and Alto Douro (UTAD), Vila Real, Portugal
- BioISI: Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
- RISE-Health: Health Research Network, Faculty of Medicine, University of Porto, Porto, Portugal
- CACTMAD: Trás-os-Montes and Alto Douro Academic Clinic Center,University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
3
|
Ito T, Kubiura-Ichimaru M, Miura F, Tajima S, Surani MA, Ito T, Yamaguchi S, Tada M. DNMT1 can induce primary germ layer differentiation through de novo DNA methylation. Genes Cells 2024; 29:549-566. [PMID: 38811355 PMCID: PMC11447926 DOI: 10.1111/gtc.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
DNA methyltransferases and Ten-Eleven Translocation (TET) proteins regulate the DNA methylation and demethylation cycles during mouse embryonic development. Although DNMT1 mainly plays a role in the maintenance of DNA methylation after DNA replication, it is also reported to possess de novo methyltransferase capacity. However, its physiological significance remains unclear. Here, we demonstrate that full-length DNMT1 (FL) and a mutant lacking the N-terminus necessary for its maintenance activity (602) confer the differentiation potential of mouse Dnmt1, Dnmt3a, and Dnmt3b (Dnmts-TKO) embryonic stem cells (ESCs). Both FL and 602 inhibit the spontaneous differentiation of Dnmts-TKO ESCs in the undifferentiated state. Dnmts-TKO ESCs showed loss of DNA methylation and de-repression of primitive endoderm-related genes, but these defects were partially restored in Dnmts-TKO + FL and Dnmts-TKO + 602 ESCs. Upon differentiation, Dnmts-TKO + FL ESCs show increased 5mC and 5hmC levels across chromosomes, including pericentromeric regions. In contrast, Dnmts-TKO + 602 ESCs didn't accumulate 5mC, and sister chromatids showed 5hmC asynchronously. Furthermore, in comparison with DNMT1_602, DNMT1_FL effectively promoted commitment to the epiblast-like cells and beyond, driving cell-autonomous mesendodermal and germline differentiation through embryoid body-based methods. With precise target selectivity achieved by its N-terminal region, DNMT1 may play a role in gene regulation leading to germline development.
Collapse
Affiliation(s)
- Takamasa Ito
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Musashi Kubiura-Ichimaru
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shoji Tajima
- Laboratory of Epigenetics Institute for Protein Research, Osaka University, Suita, Japan
| | - M Azim Surani
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge, UK
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shinpei Yamaguchi
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Masako Tada
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| |
Collapse
|
4
|
Lando D, Ma X, Cao Y, Jartseva A, Stevens TJ, Boucher W, Reynolds N, Montibus B, Hall D, Lackner A, Ragheb R, Leeb M, Hendrich BD, Laue ED. Enhancer-promoter interactions are reconfigured through the formation of long-range multiway hubs as mouse ES cells exit pluripotency. Mol Cell 2024; 84:1406-1421.e8. [PMID: 38490199 PMCID: PMC7616059 DOI: 10.1016/j.molcel.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 12/19/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024]
Abstract
Enhancers bind transcription factors, chromatin regulators, and non-coding transcripts to modulate the expression of target genes. Here, we report 3D genome structures of single mouse ES cells as they are induced to exit pluripotency and transition through a formative stage prior to undergoing neuroectodermal differentiation. We find that there is a remarkable reorganization of 3D genome structure where inter-chromosomal intermingling increases dramatically in the formative state. This intermingling is associated with the formation of a large number of multiway hubs that bring together enhancers and promoters with similar chromatin states from typically 5-8 distant chromosomal sites that are often separated by many Mb from each other. In the formative state, genes important for pluripotency exit establish contacts with emerging enhancers within these multiway hubs, suggesting that the structural changes we have observed may play an important role in modulating transcription and establishing new cell identities.
Collapse
Affiliation(s)
- David Lando
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Xiaoyan Ma
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Yang Cao
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | - Tim J Stevens
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Wayne Boucher
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Nicola Reynolds
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Bertille Montibus
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Dominic Hall
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK; Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Andreas Lackner
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Ramy Ragheb
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Martin Leeb
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Brian D Hendrich
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK; Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK.
| | - Ernest D Laue
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK; Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK.
| |
Collapse
|
5
|
Brenner LM, Meyer F, Yang H, Köhler AR, Bashtrykov P, Guo M, Jeltsch A, Lungu C, Olayioye MA. Repeat DNA methylation is modulated by adherens junction signaling. Commun Biol 2024; 7:286. [PMID: 38454140 PMCID: PMC10920906 DOI: 10.1038/s42003-024-05990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
Through its involvement in gene transcription and heterochromatin formation, DNA methylation regulates how cells interact with their environment. Nevertheless, the extracellular signaling cues that modulate the distribution of this central chromatin modification are largely unclear. DNA methylation is highly abundant at repetitive elements, but its investigation in live cells has been complicated by methodological challenges. Utilizing a CRISPR/dCas9 biosensor that reads DNA methylation of human α-satellite repeats in live cells, we here uncover a signaling pathway linking the chromatin and transcriptional state of repetitive elements to epithelial adherens junction integrity. Specifically, we find that in confluent breast epithelial cell monolayers, α-satellite repeat methylation is reduced by comparison to low density cultures. This is coupled with increased transcriptional activity at repeats. Through comprehensive perturbation experiments, we identify the junctional protein E-cadherin, which links to the actin cytoskeleton, as a central molecular player for signal relay into the nucleus. Furthermore, we find that this pathway is impaired in cancer cells that lack E-cadherin and are not contact-inhibited. This suggests that the molecular connection between cell density and repetitive element methylation could play a role in the maintenance of epithelial tissue homeostasis.
Collapse
Affiliation(s)
- Lisa-Marie Brenner
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Florian Meyer
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Haiqian Yang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Anja R Köhler
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Cristiana Lungu
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Nobelstraße 15, 70569, Stuttgart, Germany.
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Nobelstraße 15, 70569, Stuttgart, Germany.
| |
Collapse
|
6
|
Wang J, Chen Y, Xiao Z, Liu X, Liu C, Huang K, Chen H. Phase Separation of Chromatin Structure-related Biomolecules: A Driving Force for Epigenetic Regulations. Curr Protein Pept Sci 2024; 25:553-566. [PMID: 38551058 DOI: 10.2174/0113892037296216240301074253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 07/25/2024]
Abstract
Intracellularly, membrane-less organelles are formed by spontaneous fusion and fission of macro-molecules in a process called phase separation, which plays an essential role in cellular activities. In certain disease states, such as cancers and neurodegenerative diseases, aberrant phase separations take place and participate in disease progression. Chromatin structure-related proteins, based on their characteristics and upon external stimuli, phase separate to exert functions like genome assembly, transcription regulation, and signal transduction. Moreover, many chromatin structure-related proteins, such as histones, histone-modifying enzymes, DNA-modifying enzymes, and DNA methylation binding proteins, are involved in epigenetic regulations through phase separation. This review introduces phase separation and how phase separation affects epigenetics with a focus on chromatin structure-related molecules.
Collapse
Affiliation(s)
- Jiao Wang
- Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zixuan Xiao
- ISA Wenhua Wuhan High School, Fenglin Road, Junshan New Town, Wuhan Economics & Technological Development Zone, Wuhan, Hubei 430119, China
| | - Xikai Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chengyu Liu
- Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
7
|
Agredo A, Kasinski AL. Histone 4 lysine 20 tri-methylation: a key epigenetic regulator in chromatin structure and disease. Front Genet 2023; 14:1243395. [PMID: 37671044 PMCID: PMC10475950 DOI: 10.3389/fgene.2023.1243395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
Chromatin is a vital and dynamic structure that is carefully regulated to maintain proper cell homeostasis. A great deal of this regulation is dependent on histone proteins which have the ability to be dynamically modified on their tails via various post-translational modifications (PTMs). While multiple histone PTMs are studied and often work in concert to facilitate gene expression, here we focus on the tri-methylation of histone H4 on lysine 20 (H4K20me3) and its function in chromatin structure, cell cycle, DNA repair, and development. The recent studies evaluated in this review have shed light on how H4K20me3 is established and regulated by various interacting partners and how H4K20me3 and the proteins that interact with this PTM are involved in various diseases. Through analyzing the current literature on H4K20me3 function and regulation, we aim to summarize this knowledge and highlights gaps that remain in the field.
Collapse
Affiliation(s)
- Alejandra Agredo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Life Sciences Interdisciplinary Program (PULSe), Purdue University, West Lafayette, IN, United States
| | - Andrea L. Kasinski
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
8
|
DNMT1 regulates the timing of DNA methylation by DNMT3 in an enzymatic activity-dependent manner in mouse embryonic stem cells. PLoS One 2022; 17:e0262277. [PMID: 34986190 PMCID: PMC8730390 DOI: 10.1371/journal.pone.0262277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/21/2021] [Indexed: 01/01/2023] Open
Abstract
DNA methylation (DNAme; 5-methylcytosine, 5mC) plays an essential role in mammalian development, and the 5mC profile is regulated by a balance of opposing enzymatic activities: DNA methyltransferases (DNMTs) and Ten-eleven translocation dioxygenases (TETs). In mouse embryonic stem cells (ESCs), de novo DNAme by DNMT3 family enzymes, demethylation by the TET-mediated conversion of 5mC to 5-hydroxymethylation (5hmC), and maintenance of the remaining DNAme by DNMT1 are actively repeated throughout cell cycles, dynamically forming a constant 5mC profile. Nevertheless, the detailed mechanism and physiological significance of this active cyclic DNA modification in mouse ESCs remain unclear. Here by visualizing the localization of DNA modifications on metaphase chromosomes and comparing whole-genome methylation profiles before and after the mid-S phase in ESCs lacking Dnmt1 (1KO ESCs), we demonstrated that in 1KO ESCs, DNMT3-mediated remethylation was interrupted during and after DNA replication. This results in a marked asymmetry in the distribution of 5hmC between sister chromatids at mitosis, with one chromatid being almost no 5hmC. When introduced in 1KO ESCs, the catalytically inactive form of DNMT1 (DNMT1CI) induced an increase in DNAme in pericentric heterochromatin and the DNAme-independent repression of IAPEz, a retrotransposon family, in 1KO ESCs. However, DNMT1CI could not restore the ability of DNMT3 to methylate unmodified dsDNA de novo in S phase in 1KO ESCs. Furthermore, during in vitro differentiation into epiblasts, 1KO ESCs expressing DNMT1CI showed an even stronger tendency to differentiate into the primitive endoderm than 1KO ESCs and were readily reprogrammed into the primitive streak via an epiblast-like cell state, reconfirming the importance of DNMT1 enzymatic activity at the onset of epiblast differentiation. These results indicate a novel function of DNMT1, in which DNMT1 actively regulates the timing and genomic targets of de novo methylation by DNMT3 in an enzymatic activity-dependent and independent manner, respectively.
Collapse
|