1
|
Xu Z, Wei H, Li M, Qiu Y, Li L, Xu KW, Guo Z. Impact of Chromosomal Fusion and Transposable Elements on the Genomic Evolution and Genetic Diversity of Ilex Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:2649. [PMID: 39339625 PMCID: PMC11435385 DOI: 10.3390/plants13182649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
The genus Ilex belongs to the sole family and is the single genus within the order Aquifoliales, exhibiting significant phenotypic diversity. However, the genetic differences underlying these phenotypic variations have rarely been studied. In this study, collinearity analyses of three Ilex genomes, Ilex latifolia Thunb., Ilex polyneura (Hand.-Mazz.) S. Y. Hu, and Ilex asprella Champ. ex Benth., indicated a recent fusion event contributing to the reduction of chromosomes in I. asprella. Comparative genome analyses showed slight differences in gene annotation among the three species, implying a minimal disruption of genes following chromosomal fusion in I. asprella. Comprehensive annotation of transposable elements (TEs) revealed that TEs constitute a significant portion of the Ilex genomes, with LTR transposons being predominant. TEs exhibited an inverse relationship with gene density, potentially influencing gene regulation and chromosomal architecture. TE insertions were shown to affect the conformation and binding sites of key genes such as 7-deoxyloganetin glucosyltransferase and transmembrane kinase (TMK) genes, highlighting potential functional impacts. The structural variations caused by TE insertions suggest significant roles in the evolutionary dynamics, leading to either loss or gain of gene function. This study underscores the importance of TEs in shaping the genomic landscape and evolutionary trajectories of Ilex species.
Collapse
Affiliation(s)
- Zhenxiu Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.X.); (H.W.)
| | - Haikun Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.X.); (H.W.)
| | - Mingyue Li
- Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Yingjie Qiu
- Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Lei Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang 261000, China
| | - Ke-Wang Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.X.); (H.W.)
| | - Zhonglong Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.X.); (H.W.)
| |
Collapse
|
2
|
Badet T, Tralamazza SM, Feurtey A, Croll D. Recent reactivation of a pathogenicity-associated transposable element is associated with major chromosomal rearrangements in a fungal wheat pathogen. Nucleic Acids Res 2024; 52:1226-1242. [PMID: 38142443 PMCID: PMC10853768 DOI: 10.1093/nar/gkad1214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023] Open
Abstract
Transposable elements (TEs) are key drivers of genomic variation contributing to recent adaptation in most species. Yet, the evolutionary origins and insertion dynamics within species remain poorly understood. We recapitulate the spread of the pathogenicity-associated Styx element across five species that last diverged ∼11 000 years ago. We show that the element likely originated in the Zymoseptoria fungal pathogen genus and underwent multiple independent reactivation events. Using a global 900-genome panel of the wheat pathogen Zymoseptoria tritici, we assess Styx copy number variation and identify renewed transposition activity in Oceania and South America. We show that the element can mobilize to create additional Styx copies in a four-generation pedigree. Importantly, we find that new copies of the element are not affected by genomic defenses suggesting minimal control against the element. Styx copies are preferentially located in recombination breakpoints and likely triggered multiple types of large chromosomal rearrangements. Taken together, we establish the origin, diversification and reactivation of a highly active TE with likely major consequences for chromosomal integrity and the expression of disease.
Collapse
Affiliation(s)
- Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Sabina Moser Tralamazza
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Alice Feurtey
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
- Plant Pathology, D-USYS, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
3
|
She H, Liu Z, Li S, Xu Z, Zhang H, Cheng F, Wu J, Wang X, Deng C, Charlesworth D, Gao W, Qian W. Evolution of the spinach sex-linked region within a rarely recombining pericentromeric region. PLANT PHYSIOLOGY 2023; 193:1263-1280. [PMID: 37403642 DOI: 10.1093/plphys/kiad389] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023]
Abstract
Sex chromosomes have evolved independently in many different plant lineages. Here, we describe reference genomes for spinach (Spinacia oleracea) X and Y haplotypes by sequencing homozygous XX females and YY males. The long arm of 185-Mb chromosome 4 carries a 13-Mb X-linked region (XLR) and 24.1-Mb Y-linked region (YLR), of which 10 Mb is Y specific. We describe evidence that this reflects insertions of autosomal sequences creating a "Y duplication region" or "YDR" whose presence probably directly reduces genetic recombination in the immediately flanking regions, although both the X and Y sex-linked regions are within a large pericentromeric region of chromosome 4 that recombines rarely in meiosis of both sexes. Sequence divergence estimates using synonymous sites indicate that YDR genes started diverging from their likely autosomal progenitors about 3 MYA, around the time when the flanking YLR stopped recombining with the XLR. These flanking regions have a higher density of repetitive sequences in the YY than the XX assembly and include slightly more pseudogenes compared with the XLR, and the YLR has lost about 11% of the ancestral genes, suggesting some degeneration. Insertion of a male-determining factor would have caused Y linkage across the entire pericentromeric region, creating physically small, highly recombining, terminal pseudoautosomal regions. These findings provide a broader understanding of the origin of sex chromosomes in spinach.
Collapse
Affiliation(s)
- Hongbing She
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyuan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shufen Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Zhaosheng Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Helong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Feng Cheng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuanliang Deng
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Deborah Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Wujun Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Wei Qian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|