1
|
Everitt T, Rönneburg T, Elsner D, Olsson A, Liu Y, Larva T, Korb J, Webster MT. Unexpectedly low recombination rates and presence of hotspots in termite genomes. Genome Res 2025; 35:1124-1137. [PMID: 40113265 PMCID: PMC12047536 DOI: 10.1101/gr.279180.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Meiotic recombination is a fundamental evolutionary process that facilitates adaptation and the removal of deleterious genetic variation. Social Hymenoptera exhibit some of the highest recombination rates among metazoans, whereas high recombination rates have not been found among nonsocial species from this insect order. It is unknown whether elevated recombination rates are a ubiquitous feature of all social insects. In many metazoan taxa, recombination is mainly restricted to hotspots a few kilobases in length. However, little is known about the prevalence of recombination hotspots in insect genomes. Here we infer recombination rate and its fine-scale variation across the genomes of two social species from the insect order Blattodea: the termites Macrotermes bellicosus and Cryptotermes secundus We used linkage disequilibrium-based methods to infer recombination rate. We infer that recombination rates are close to 1 cM/Mb in both species, similar to the average metazoan rate. We also observe a highly punctate distribution of recombination in both termite genomes, indicative of the presence of recombination hotspots. We infer the presence of full-length PRDM9 genes in the genomes of both species, which suggests recombination hotspots in termites might be determined by PRDM9, as they are in mammals. We also find that recombination rates in genes are correlated with inferred levels of germline DNA methylation. The finding of low recombination rates in termites indicates that eusociality is not universally connected to elevated recombination rate. We speculate that the elevated recombination rates in social Hymenoptera are instead promoted by intense selection among haploid males.
Collapse
Affiliation(s)
- Turid Everitt
- Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Tilman Rönneburg
- Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Daniel Elsner
- Evolutionary Biology and Ecology, University of Freiburg, D-79104 Freiburg, Germany
| | - Anna Olsson
- Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Yuanzhen Liu
- Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Tuuli Larva
- Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Judith Korb
- Evolutionary Biology and Ecology, University of Freiburg, D-79104 Freiburg, Germany
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina Campus, Darwin, Casuarina NT 0909, Australia
| | - Matthew T Webster
- Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden;
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|
2
|
Lai Y, Wang S. Epigenetic Regulation in Insect-Microbe Interactions. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:293-311. [PMID: 39374433 DOI: 10.1146/annurev-ento-022724-010640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Insects have evolved diverse interactions with a variety of microbes, such as pathogenic fungi, bacteria, and viruses. The immune responses of insect hosts, along with the dynamic infection process of microbes in response to the changing host environment and defenses, require rapid and fine-tuned regulation of gene expression programs. Epigenetic mechanisms, including DNA methylation, histone modifications, and noncoding RNA regulation, play important roles in regulating the expression of genes involved in insect immunity and microbial pathogenicity. This review highlights recent discoveries and insights into epigenetic regulatory mechanisms that modulate insect-microbe interactions. A deeper understanding of these regulatory mechanisms underlying insect-microbe interactions holds promise for the development of novel strategies for biological control of insect pests and mitigation of vector-borne diseases.
Collapse
Affiliation(s)
- Yiling Lai
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China;
| | - Sibao Wang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China;
| |
Collapse
|
3
|
Yu Z, Pei T, Shi X, Nwanade CF, Bing Z, Gao Z, Meng J, Li L, Liu J. The functions of DNA methyltransferases during the feeding and development of Haemaphysalis longicornis are potentially associated with lysosome pathways. BMC Genomics 2024; 25:1109. [PMID: 39563221 DOI: 10.1186/s12864-024-11049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND DNA methylation is an epigenetic modification that plays an important role in animal and plant development. Among the diverse types of DNA methylation modifications, methylation of cytosines catalyzed by DNA cytosine methyltransferases (DNMTs) is the most common. Recently, we characterized DNA methyltransferase genes including HlDnmt1 and HlDnmt from the Asian longhorned tick, Haemaphysalis longicornis. However, the dynamic expression and functions of these DNMTs at different developmental stages and feeding statuses of the important vector tick H. longicornis remain unknown. RESULTS The expression levels of HlDnmt1 and HlDnmt were significantly different at the four developmental stages: eggs, larvae, nymphs, and adults, with the highest expression levels observed in the larval stage. HlDnmt1 and HlDnmt showed different expression trends in the midguts, ovary, Malpighian tubules, and salivary glands of engorged adults, with the highest expression of HlDnmt1 observed in the ovary and the lowest in the midguts; HlDnmt expression was the highest in the midguts and the lowest in the Malpighian tubules. After RNA interference, the relative expression of HlDnmt1 and HlDnmt in H. longicornis decreased significantly, resulting in a significant decrease in the biting rate of H. longicornis. RNA-seq revealed that the differentially expressed genes were mainly enriched in the biological processes of peptide biosynthesis and the cell components of ribosomes. Molecular functions were mainly concentrated on oxidoreductase activity, ribosome structure composition, serine-type endopeptidase activity, molecular function regulators, and endopeptidase inhibitor activity. KEGG enrichment analysis showed that the differentially expressed genes were mainly enriched in autophagy and lysosome pathways, amino sugar and nucleotide sugar metabolism, glyceride metabolism, ribosomes, and other pathways. CONCLUSIONS HlDnmt1 and HlDnmt played an important role during development and feeding of H. longicornis, and their functions were potentially associated with lysosome pathways. These results provide basic knowledge for understanding the epigenetic regulation of the development of the tick H. longicornis, which sheds light on control strategies for ticks and tick-borne diseases.
Collapse
Affiliation(s)
- Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Tingwei Pei
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xinyue Shi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Chuks F Nwanade
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ziyan Bing
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ziwen Gao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jianglei Meng
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Lu Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| |
Collapse
|
4
|
Cunningham CB, Shelby EA, McKinney EC, Simmons AM, Moore AJ, Moore PJ. An association between Dnmt1 and Wnt in the production of oocytes in the whitefly Bemisia tabaci. INSECT MOLECULAR BIOLOGY 2024; 33:467-480. [PMID: 38335444 DOI: 10.1111/imb.12893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
The function of DNA methylation in insects and the DNA methyltransferase (Dnmt) genes that influence methylation remains uncertain. We used RNA interference to reduce the gene expression of Dnmt1 within the whitefly Bemisia tabaci (Hemiptera:Aleyrodidae; Gennadius), a hemipteran species that relies on Dnmt1 for proper gametogenesis. We then used RNA-seq to test an a priori hypothesis that meiosis-related genetic pathways would be perturbed. We generally did not find an overall effect on meiosis-related pathways. However, we found that genes in the Wnt pathway, genes associated with the entry into meiosis in vertebrates, were differentially expressed. Our results are consistent with Dnmt1 knockdown influencing specific pathways and not causing general transcriptional response. This is a finding that is also seen with other insect species. We also characterised the methylome of B. tabaci and assessed the influence of Dnmt1 knockdown on cytosine methylation. This species has methylome characteristics comparable to other hemipterans regarding overall level, enrichment within gene bodies, and a bimodal distribution of methylated/non-methylated genes. Very little differential methylation was observed, and difference in methylation were not associated with differences in gene expression. The effect on Wnt presents an interesting new candidate pathway for future studies.
Collapse
Affiliation(s)
| | - Emily A Shelby
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | | | - Alvin M Simmons
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, South Carolina, USA
| | - Allen J Moore
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Patricia J Moore
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Hunt BJ, Pegoraro M, Marshall H, Mallon EB. A role for DNA methylation in bumblebee morphogenesis hints at female-specific developmental erasure. INSECT MOLECULAR BIOLOGY 2024; 33:481-492. [PMID: 38348493 DOI: 10.1111/imb.12897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/23/2024] [Indexed: 08/20/2024]
Abstract
Epigenetic mechanisms, such as DNA methylation, are crucial factors in animal development. In some mammals, almost all DNA methylation is erased during embryo development and re-established in a sex- and cell-specific manner. This erasure and re-establishment is thought to primarily be a vertebrate-specific trait. Insects are particularly interesting in terms of development as many species often undergo remarkable morphological changes en route to maturity, that is, morphogenesis. However, little is known about the role of epigenetic mechanisms in this process across species. We have used whole-genome bisulfite sequencing to track genome-wide DNA methylation changes through the development of an economically and environmentally important pollinator species, the bumblebee Bombus terrestris (Hymenoptera:Apidae Linnaeus). We find overall levels of DNA methylation vary throughout development, and we find developmentally relevant differentially methylated genes throughout. Intriguingly, we have identified a depletion of DNA methylation in ovaries/eggs and an enrichment of highly methylated genes in sperm. We suggest this could represent a sex-specific DNA methylation erasure event. To our knowledge, this is the first suggestion of possible developmental DNA methylation erasure in an insect species. This study lays the required groundwork for functional experimental work to determine if there is a causal nature to the DNA methylation differences identified. Additionally, the application of single-cell methylation sequencing to this system will enable more accurate identification of if or when DNA methylation is erased during development.
Collapse
Affiliation(s)
- Ben J Hunt
- Centre for Ecology and Conservation, University of Exeter, Cornwall, UK
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Mirko Pegoraro
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Hollie Marshall
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Eamonn B Mallon
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| |
Collapse
|
6
|
Yoon K, Williams S, Duncan EJ. DNA methylation machinery is involved in development and reproduction in the viviparous pea aphid (Acyrthosiphon pisum). INSECT MOLECULAR BIOLOGY 2024; 33:534-549. [PMID: 38923717 DOI: 10.1111/imb.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Epigenetic mechanisms, such as DNA methylation, have been proposed to mediate plastic responses in insects. The pea aphid (Acyrthosiphon pisum), like the majority of extant aphids, displays cyclical parthenogenesis - the ability of mothers to switch the reproductive mode of their offspring from reproducing parthenogenetically to sexually in response to environmental cues. The pea aphid genome encodes two paralogs of the de novo DNA methyltransferase gene, dnmt3a and dnmt3x. Here we show, using phylogenetic analysis, that this gene duplication event occurred at least 150 million years ago, likely after the divergence of the lineage leading to the Aphidomorpha (phylloxerans, adelgids and true aphids) from that leading to the scale insects (Coccomorpha) and that the two paralogs are maintained in the genomes of all aphids examined. We also show that the mRNA of both dnmt3 paralogs is maternally expressed in the viviparous aphid ovary. During development both paralogs are expressed in the germ cells of embryos beginning at stage 5 and persisting throughout development. Treatment with 5-azactyidine, a chemical that generally inhibits the DNA methylation machinery, leads to defects of oocytes and early-stage embryos and causes a proportion of later stage embryos to be born dead or die soon after birth. These phenotypes suggest a role for DNA methyltransferases in reproduction, consistent with that seen in other insects. Taking the vast evolutionary history of the dnmt3 paralogs, and the localisation of their mRNAs in the ovary, we suggest there is a role for dnmt3a and/or dnmt3x in early development, and a role for DNA methylation machinery in reproduction and development of the viviparous pea aphid.
Collapse
Affiliation(s)
- Kane Yoon
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Stephanie Williams
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Elizabeth J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
7
|
Yi SV. Epigenetics Research in Evolutionary Biology: Perspectives on Timescales and Mechanisms. Mol Biol Evol 2024; 41:msae170. [PMID: 39235767 PMCID: PMC11376073 DOI: 10.1093/molbev/msae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
Epigenetics research in evolutionary biology encompasses a variety of research areas, from regulation of gene expression to inheritance of environmentally mediated phenotypes. Such divergent research foci can occasionally render the umbrella term "epigenetics" ambiguous. Here I discuss several areas of contemporary epigenetics research in the context of evolutionary biology, aiming to provide balanced views across timescales and molecular mechanisms. The importance of epigenetics in development is now being assessed in many nonmodel species. These studies not only confirm the importance of epigenetic marks in developmental processes, but also highlight the significant diversity in epigenetic regulatory mechanisms across taxa. Further, these comparative epigenomic studies have begun to show promise toward enhancing our understanding of how regulatory programs evolve. A key property of epigenetic marks is that they can be inherited along mitotic cell lineages, and epigenetic differences that occur during early development can have lasting consequences on the organismal phenotypes. Thus, epigenetic marks may play roles in short-term (within an organism's lifetime or to the next generation) adaptation and phenotypic plasticity. However, the extent to which observed epigenetic variation occurs independently of genetic influences remains uncertain, due to the widespread impact of genetics on epigenetic variation and the limited availability of comprehensive (epi)genomic resources from most species. While epigenetic marks can be inherited independently of genetic sequences in some species, there is little evidence that such "transgenerational inheritance" is a general phenomenon. Rather, molecular mechanisms of epigenetic inheritance are highly variable between species.
Collapse
Affiliation(s)
- Soojin V Yi
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
8
|
Guynes K, Sarre LA, Carrillo-Baltodano AM, Davies BE, Xu L, Liang Y, Martín-Zamora FM, Hurd PJ, de Mendoza A, Martín-Durán JM. Annelid methylomes reveal ancestral developmental and aging-associated epigenetic erosion across Bilateria. Genome Biol 2024; 25:204. [PMID: 39090757 PMCID: PMC11292947 DOI: 10.1186/s13059-024-03346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND DNA methylation in the form of 5-methylcytosine (5mC) is the most abundant base modification in animals. However, 5mC levels vary widely across taxa. While vertebrate genomes are hypermethylated, in most invertebrates, 5mC concentrates on constantly and highly transcribed genes (gene body methylation; GbM) and, in some species, on transposable elements (TEs), a pattern known as "mosaic". Yet, the role and developmental dynamics of 5mC and how these explain interspecies differences in DNA methylation patterns remain poorly understood, especially in Spiralia, a large clade of invertebrates comprising nearly half of the animal phyla. RESULTS Here, we generate base-resolution methylomes for three species with distinct genomic features and phylogenetic positions in Annelida, a major spiralian phylum. All possible 5mC patterns occur in annelids, from typical invertebrate intermediate levels in a mosaic distribution to hypermethylation and methylation loss. GbM is common to annelids with 5mC, and methylation differences across species are explained by taxon-specific transcriptional dynamics or the presence of intronic TEs. Notably, the link between GbM and transcription decays during development, alongside a gradual and global, age-dependent demethylation in adult stages. Additionally, reducing 5mC levels with cytidine analogs during early development impairs normal embryogenesis and reactivates TEs in the annelid Owenia fusiformis. CONCLUSIONS Our study indicates that global epigenetic erosion during development and aging is an ancestral feature of bilateral animals. However, the tight link between transcription and gene body methylation is likely more important in early embryonic stages, and 5mC-mediated TE silencing probably emerged convergently across animal lineages.
Collapse
Affiliation(s)
- Kero Guynes
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, 1030, Austria
| | - Luke A Sarre
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Allan M Carrillo-Baltodano
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Billie E Davies
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Lan Xu
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Yan Liang
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Francisco M Martín-Zamora
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- Altos Labs, Cambridge, UK
| | - Paul J Hurd
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
9
|
Brink K, Thomas CL, Jones A, Chan TW, Mallon EB. Exploring the ageing methylome in the model insect, Nasonia vitripennis. BMC Genomics 2024; 25:305. [PMID: 38519892 PMCID: PMC10958858 DOI: 10.1186/s12864-024-10211-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The ageing process is a multifaceted phenomenon marked by the gradual deterioration of cellular and organismal functions, accompanied by an elevated susceptibility to diseases. The intricate interplay between genetic and environmental factors complicates research, particularly in complex mammalian models. In this context, simple invertebrate organisms have been pivotal, but the current models lack detectable DNA methylation limiting the exploration of this critical epigenetic ageing mechanism. This study introduces Nasonia vitripennis, the jewel wasp, as an innovative invertebrate model for investigating the epigenetics of ageing. Leveraging its advantages as a model organism and possessing a functional DNA methylation system, Nasonia emerges as a valuable addition to ageing research. RESULTS Whole-genome bisulfite sequencing unveiled dynamic alterations in DNA methylation, with differentially methylated CpGs between distinct time points in both male and female wasps. These changes were associated with numerous genes, enriching for functions related to telomere maintenance, histone methylation, and mRNA catabolic processes. Additionally, other CpGs were found to be variably methylated at each timepoint. Sex-specific effects on epigenetic entropy were observed, indicating differential patterns in the loss of epigenetic stability over time. Constructing an epigenetic clock containing 19 CpGs revealed a robust correlation between epigenetic age and chronological age. CONCLUSIONS Nasonia vitripennis emerges as a promising model for investigating the epigenetics of ageing, shedding light on the intricate dynamics of DNA methylation and their implications for age-related processes. This research not only expands the repertoire of ageing models but also opens avenues for deeper exploration of epigenetic mechanisms in the context of ageing.
Collapse
Affiliation(s)
- K Brink
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, UK
| | - C L Thomas
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, UK
| | - A Jones
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstrabe, Muenster, Germany
| | - T W Chan
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, UK
| | - E B Mallon
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, UK.
| |
Collapse
|
10
|
Bogan SN, Yi SV. Potential Role of DNA Methylation as a Driver of Plastic Responses to the Environment Across Cells, Organisms, and Populations. Genome Biol Evol 2024; 16:evae022. [PMID: 38324384 PMCID: PMC10899001 DOI: 10.1093/gbe/evae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
There is great interest in exploring epigenetic modifications as drivers of adaptive organismal responses to environmental change. Extending this hypothesis to populations, epigenetically driven plasticity could influence phenotypic changes across environments. The canonical model posits that epigenetic modifications alter gene regulation and subsequently impact phenotypes. We first discuss origins of epigenetic variation in nature, which may arise from genetic variation, spontaneous epimutations, epigenetic drift, or variation in epigenetic capacitors. We then review and synthesize literature addressing three facets of the aforementioned model: (i) causal effects of epigenetic modifications on phenotypic plasticity at the organismal level, (ii) divergence of epigenetic patterns in natural populations distributed across environmental gradients, and (iii) the relationship between environmentally induced epigenetic changes and gene expression at the molecular level. We focus on DNA methylation, the most extensively studied epigenetic modification. We find support for environmentally associated epigenetic structure in populations and selection on stable epigenetic variants, and that inhibition of epigenetic enzymes frequently bears causal effects on plasticity. However, there are pervasive confounding issues in the literature. Effects of chromatin-modifying enzymes on phenotype may be independent of epigenetic marks, alternatively resulting from functions and protein interactions extrinsic of epigenetics. Associations between environmentally induced changes in DNA methylation and expression are strong in plants and mammals but notably absent in invertebrates and nonmammalian vertebrates. Given these challenges, we describe emerging approaches to better investigate how epigenetic modifications affect gene regulation, phenotypic plasticity, and divergence among populations.
Collapse
Affiliation(s)
- Samuel N Bogan
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Soojin V Yi
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| |
Collapse
|
11
|
Zhao Z, Li L, Zeng R, Lin L, Yuan D, Wen Y, Li N, Cui Y, Zhu S, Zhang ZM, Li S, Ren C. 5mC modification orchestrates choriogenesis and fertilization by preventing prolonged ftz-f1 expression. Nat Commun 2023; 14:8234. [PMID: 38086980 PMCID: PMC10716119 DOI: 10.1038/s41467-023-43987-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
DNA methylation at the fifth position of cytosine (5-methylcytosine, 5mC) is a crucial epigenetic modification for regulating gene expression, but little is known about how it regulates gene expression in insects. Here, we pursue the detailed molecular mechanism by which DNMT1-mediated 5mC maintenance regulates female reproduction in the German cockroach, Blattella germanica. Our results show that Dnmt1 knockdown decreases the level of 5mC in the ovary, upregulating numerous genes during choriogenesis, especially the transcription factor ftz-f1. The hypomethylation at the ftz-f1 promoter region increases and prolongs ftz-f1 expression in ovarian follicle cells during choriogenesis, which consequently causes aberrantly high levels of 20-hydroxyecdysone and excessively upregulates the extracellular matrix remodeling gene Mmp1. These changes further impair choriogenesis and disrupt fertilization by causing anoikis of the follicle cells, a shortage of chorion proteins, and malformation of the sponge-like bodies. This study significantly advances our understanding of how DNA 5mC modification regulates female reproduction in insects.
Collapse
Affiliation(s)
- Zheng Zhao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779, China
| | - Liang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Ruichen Zeng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Liangguan Lin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Dongwei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yejie Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Na Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779, China
| | - Yingying Cui
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shiming Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhi-Min Zhang
- College of Pharmacy, Jinan University, 510632, Guangzhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510631, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779, China.
| | - Chonghua Ren
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779, China.
| |
Collapse
|
12
|
Abstract
Eusocial insects exemplify a remarkable system of division of labor within the same colony. This behavioral range, which is sometimes accompanied by morphological or physiological differences, provides an opportunity to study the relationship between complex behaviors and their underlying molecular mechanisms. This is especially true in ants because certain genera have an elaborate caste system and can dramatically change their stereotypical behavior over their lifetime. Recent studies experimentally alter ant behavior over short times, thus opening the study of underlying plasticity pathways. The molecular underpinnings of these behaviors are neuromodulators as well as the regulation of chromatin. Here, we concisely review the current understanding of the relationship between neuromodulators, epigenetics, and social behavior in ants. We discuss future directions in light of experimental limitations of the ant system.
Collapse
Affiliation(s)
- Matan Sorek
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shelley L. Berger
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Cunningham CB, Shelby EA, McKinney EC, Schmitz RJ, Moore AJ, Moore PJ. The role of Dmnt1 during spermatogenesis of the insect Oncopeltus fasciatus. Epigenetics Chromatin 2023; 16:28. [PMID: 37393253 DOI: 10.1186/s13072-023-00496-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/22/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND The function of DNA methyltransferase genes of insects is a puzzle, because an association between gene expression and methylation is not universal for insects. If the genes normally involved in cytosine methylation are not influencing gene expression, what might be their role? We previously demonstrated that gametogenesis of Oncopeltus fasciatus is interrupted at meiosis following knockdown of DNA methyltransferase 1 (Dnmt1) and this is unrelated to changes in levels of cytosine methylation. Here, using transcriptomics, we tested the hypothesis that Dmnt1 is a part of the meiotic gene pathway. Testes, which almost exclusively contain gametes at varying stages of development, were sampled at 7 days and 14 days following knockdown of Dmnt1 using RNAi. RESULTS Using microscopy, we found actively dividing spermatocysts were reduced at both timepoints. However, as with other studies, we saw Dnmt1 knockdown resulted in condensed nuclei after mitosis-meiosis transition, and then cellular arrest. We found limited support for a functional role for Dnmt1 in our predicted cell cycle and meiotic pathways. An examination of a priori Gene Ontology terms showed no enrichment for meiosis. We then used the full data set to reveal further candidate pathways influenced by Dnmt1 for further hypotheses. Very few genes were differentially expressed at 7 days, but nearly half of all transcribed genes were differentially expressed at 14 days. We found no strong candidate pathways for how Dnmt1 knockdown was achieving its effect through Gene Ontology term overrepresentation analysis. CONCLUSIONS We, therefore, suggest that Dmnt1 plays a role in chromosome dynamics based on our observations of condensed nuclei and cellular arrest with no specific molecular pathways disrupted.
Collapse
Affiliation(s)
| | - Emily A Shelby
- Dept. of Entomology, University of Georgia, Athens, GA, USA
| | | | | | - Allen J Moore
- Dept. of Entomology, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
14
|
Shelby EA, McKinney EC, Cunningham CB, Simmons AM, Moore AJ, Moore PJ. The role of Dnmt1 in oocyte development. JOURNAL OF INSECT PHYSIOLOGY 2023; 147:104507. [PMID: 37011857 DOI: 10.1016/j.jinsphys.2023.104507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/02/2023]
Abstract
The whitefly Bemisia tabaci is a globally important crop pest that is difficult to manage through current commercially available methods. While RNA interference (RNAi) is a promising strategy for managing this pest, effective target genes remain unclear. We suggest DNA methyltransferase 1 (Dnmt1) as a potential target gene due to its effect on fecundity in females in other taxa of insects. We investigated the role of Dnmt1 in B. tabaci using RNAi and immunohistochemistry to confirm its potential conserved function in insect reproduction, which will define its usefulness as a target gene. Using RNAi to downregulate Dnmt1 in female B. tabaci, we show that Dnmt1 indeed has a conserved role in reproduction, as knockdown interfered with oocyte development. Females in which Dnmt1 was knocked down had greatly reduced fecundity and fertility; this supports Dnmt1 as a suitable target gene for RNAi-mediated pest management of B. tabaci.
Collapse
Affiliation(s)
- Emily A Shelby
- Department of Entomology, University of Georgia, 120 Cedar Street, Athens, GA 30602, United States
| | - Elizabeth C McKinney
- Department of Entomology, University of Georgia, 120 Cedar Street, Athens, GA 30602, United States
| | - Christopher B Cunningham
- Department of Entomology, University of Georgia, 120 Cedar Street, Athens, GA 30602, United States
| | - Alvin M Simmons
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC 29414, United States
| | - Allen J Moore
- Department of Entomology, University of Georgia, 120 Cedar Street, Athens, GA 30602, United States
| | - Patricia J Moore
- Department of Entomology, University of Georgia, 120 Cedar Street, Athens, GA 30602, United States.
| |
Collapse
|
15
|
Ivasyk I, Olivos-Cisneros L, Valdés-Rodríguez S, Droual M, Jang H, Schmitz RJ, Kronauer DJC. DNMT1 mutant ants develop normally but have disrupted oogenesis. Nat Commun 2023; 14:2201. [PMID: 37072475 PMCID: PMC10113331 DOI: 10.1038/s41467-023-37945-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/06/2023] [Indexed: 04/20/2023] Open
Abstract
Although DNA methylation is an important gene regulatory mechanism in mammals, its function in arthropods remains poorly understood. Studies in eusocial insects have argued for its role in caste development by regulating gene expression and splicing. However, such findings are not always consistent across studies, and have therefore remained controversial. Here we use CRISPR/Cas9 to mutate the maintenance DNA methyltransferase DNMT1 in the clonal raider ant, Ooceraea biroi. Mutants have greatly reduced DNA methylation, but no obvious developmental phenotypes, demonstrating that, unlike mammals, ants can undergo normal development without DNMT1 or DNA methylation. Additionally, we find no evidence of DNA methylation regulating caste development. However, mutants are sterile, whereas in wild-type ants, DNMT1 is localized to the ovaries and maternally provisioned into nascent oocytes. This supports the idea that DNMT1 plays a crucial but unknown role in the insect germline.
Collapse
Affiliation(s)
- Iryna Ivasyk
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA.
| | | | - Stephany Valdés-Rodríguez
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Marie Droual
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Hosung Jang
- Department of Genetics, University of Georgia, Athens, GA, USA
| | | | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|