Brunßen D, Suter B. Effects of unstable β-PheRS on food avoidance, growth, and development are suppressed by the appetite hormone CCHa2.
Fly (Austin) 2024;
18:2308737. [PMID:
38374657 PMCID:
PMC10880493 DOI:
10.1080/19336934.2024.2308737]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
Amino acyl-tRNA synthetases perform diverse non-canonical functions aside from their essential role in charging tRNAs with their cognate amino acid. The phenylalanyl-tRNA synthetase (PheRS/FARS) is an α2β2 tetramer that is needed for charging the tRNAPhe for its translation activity. Fragments of the α-subunit have been shown to display an additional, translation-independent, function that activates growth and proliferation and counteracts Notch signalling. Here we show in Drosophila that overexpressing the β-subunit in the context of the complete PheRS leads to larval roaming, food avoidance, slow growth, and a developmental delay that can last several days and even prevents pupation. These behavioural and developmental phenotypes are induced by PheRS expression in CCHa2+ and Pros+ cells. Simultaneous expression of β-PheRS, α-PheRS, and the appetite-inducing CCHa2 peptide rescued these phenotypes, linking this β-PheRS activity to the appetite-controlling pathway. The fragmentation dynamic of the excessive β-PheRS points to β-PheRS fragments as possible candidate inducers of these phenotypes. Because fragmentation of human FARS has also been observed in human cells and mutations in human β-PheRS (FARSB) can lead to problems in gaining weight, Drosophila β-PheRS can also serve as a model for the human phenotype and possibly also for obesity.
Collapse