1
|
Bientz L, Guyet U, Guiraud J, Metifiot M, Moulieras M, Aillerie S, Coulange-Mayonnove L, Boureima-Abdou B, Groppi A, Nikolski M, Bébéar C, Pereyre S, Dubois V. Mobilization of an ICEclc-Like Element as a Potential Mechanism for the Spread of IMP-13 Carbapenemase in Pseudomonas aeruginosa. J Glob Antimicrob Resist 2025; 41:44-51. [PMID: 39706477 DOI: 10.1016/j.jgar.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/01/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa is a global public health concern. IMP-13 is a carbapenemase that was described for the first time in 2001 but is often underestimated due to poor hydrolysis of carbapenems and a lack of molecular detection. The aim of this study was to characterize the genetic support of blaIMP-13 in P. aeruginosa and to assess the ability of mobile genetic elements to disseminate this resistance. A retrospective analysis conducted between 2010 and 2020 revealed eight multiresistant P. aeruginosa isolates by their production of the carbapenemase IMP-13 in Bordeaux. Additionally, three of the studied isolates exhibited high-level resistance to imipenem and imipenem-relebactam that was linked to an insertion sequence in the oprD gene. Successful mating was achieved, and transconjugants and parental clinical isolate genomes were sequenced. All clinical isolates were found to be ST621 strains. The data revealed that blaIMP-13 was carried on an Integrative and Conjugative Element (ICEclc-like) of 88,589 bp with a 62% GC content harboring 85 CDSs, and was inserted at the tRNAGly locus PA0729.1. The ICE was identical in the eight studied clinical isolates and in all the ST621 strains found in the databases. The conjugation rate was low, at approximately 10-8 transconjugants per donor and ICE transfer appeared to mobilize some adjacent parental genes located immediately downstream of the ICE. In conclusion, these results suggest that even if the spread of blaIMP-13 is mainly due to an epidemic ST621 clone, the mobilization of a blaIMP-13-carrying ICEclc-like element is possible and should not be underestimated.
Collapse
Affiliation(s)
- Léa Bientz
- ARMYNE Team, UMR 5234, Microbiologie Fondamentale et Pathogénicité (MFP), University of Bordeaux, Centre National de la Recherche Scientifique (CNRS), Bordeaux, France; Bacteriology Department, Bordeaux University Hospital, Bordeaux, France
| | - Ulysse Guyet
- Centre de Bioinformatique de Bordeaux (CBiB), University of Bordeaux, Bordeaux, CEDEX, France; IBGC (CNRS-UMR 5095), University of Bordeaux, Bordeaux, CEDEX, France
| | - Jennifer Guiraud
- ARMYNE Team, UMR 5234, Microbiologie Fondamentale et Pathogénicité (MFP), University of Bordeaux, Centre National de la Recherche Scientifique (CNRS), Bordeaux, France; Bacteriology Department, Bordeaux University Hospital, Bordeaux, France
| | - Mathieu Metifiot
- ANDEVIR Team, UMR 5234, Microbiologie Fondamentale et Pathogénicité (MFP), University of Bordeaux, Bordeaux, France
| | - Mikeldi Moulieras
- ARMYNE Team, UMR 5234, Microbiologie Fondamentale et Pathogénicité (MFP), University of Bordeaux, Centre National de la Recherche Scientifique (CNRS), Bordeaux, France
| | - Sabine Aillerie
- ARMYNE Team, UMR 5234, Microbiologie Fondamentale et Pathogénicité (MFP), University of Bordeaux, Centre National de la Recherche Scientifique (CNRS), Bordeaux, France
| | - Laure Coulange-Mayonnove
- ARMYNE Team, UMR 5234, Microbiologie Fondamentale et Pathogénicité (MFP), University of Bordeaux, Centre National de la Recherche Scientifique (CNRS), Bordeaux, France
| | - Bachir Boureima-Abdou
- ARMYNE Team, UMR 5234, Microbiologie Fondamentale et Pathogénicité (MFP), University of Bordeaux, Centre National de la Recherche Scientifique (CNRS), Bordeaux, France
| | - Alexis Groppi
- Centre de Bioinformatique de Bordeaux (CBiB), University of Bordeaux, Bordeaux, CEDEX, France; IBGC (CNRS-UMR 5095), University of Bordeaux, Bordeaux, CEDEX, France
| | - Macha Nikolski
- Centre de Bioinformatique de Bordeaux (CBiB), University of Bordeaux, Bordeaux, CEDEX, France; IBGC (CNRS-UMR 5095), University of Bordeaux, Bordeaux, CEDEX, France
| | - Cécile Bébéar
- ARMYNE Team, UMR 5234, Microbiologie Fondamentale et Pathogénicité (MFP), University of Bordeaux, Centre National de la Recherche Scientifique (CNRS), Bordeaux, France; Bacteriology Department, Bordeaux University Hospital, Bordeaux, France
| | - Sabine Pereyre
- ARMYNE Team, UMR 5234, Microbiologie Fondamentale et Pathogénicité (MFP), University of Bordeaux, Centre National de la Recherche Scientifique (CNRS), Bordeaux, France; Bacteriology Department, Bordeaux University Hospital, Bordeaux, France
| | - Véronique Dubois
- ARMYNE Team, UMR 5234, Microbiologie Fondamentale et Pathogénicité (MFP), University of Bordeaux, Centre National de la Recherche Scientifique (CNRS), Bordeaux, France; Bacteriology Department, Bordeaux University Hospital, Bordeaux, France.
| |
Collapse
|
2
|
Benigno V, Carraro N, Sarton-Lohéac G, Romano-Bertrand S, Blanc DS, van der Meer JR. Diversity and evolution of an abundant ICE clc family of integrative and conjugative elements in Pseudomonas aeruginosa. mSphere 2023; 8:e0051723. [PMID: 37902330 PMCID: PMC10732049 DOI: 10.1128/msphere.00517-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE Microbial populations swiftly adapt to changing environments through horizontal gene transfer. While the mechanisms of gene transfer are well known, the impact of environmental conditions on the selection of transferred gene functions remains less clear. We investigated ICEs, specifically the ICEclc-type, in Pseudomonas aeruginosa clinical isolates. Our findings revealed co-evolution between ICEs and their hosts, with ICE transfers occurring within strains. Gene functions carried by ICEs are positively selected, including potential virulence factors and heavy metal resistance. Comparison to publicly available P. aeruginosa genomes unveiled widespread antibiotic-resistance determinants within ICEclc clades. Thus, the ubiquitous ICEclc family significantly contributes to P. aeruginosa's adaptation and fitness in diverse environments.
Collapse
Affiliation(s)
- Valentina Benigno
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Garance Sarton-Lohéac
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sara Romano-Bertrand
- Hydrosciences Montpellier, IRD, CNRS, University of Montpellier, Hospital Hygiene and Infection Control Team, University Hospital of Montpellier, Montpellier, France
| | - Dominique S. Blanc
- Prevention and Infection Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
3
|
Daveri A, Benigno V, van der Meer JR. Characterization of an atypical but widespread type IV secretion system for transfer of the integrative and conjugative element (ICEclc) in Pseudomonas putida. Nucleic Acids Res 2023; 51:2345-2362. [PMID: 36727472 PMCID: PMC10018362 DOI: 10.1093/nar/gkad024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/23/2022] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Conjugation of DNA relies on multicomponent protein complexes bridging two bacterial cytoplasmic compartments. Whereas plasmid conjugation systems have been well documented, those of integrative and conjugative elements (ICEs) have remained poorly studied. We characterize here the conjugation system of the ICEclc element in Pseudomonas putida UWC1 that is a model for a widely distributed family of ICEs. By in frame deletion and complementation, we show the importance on ICE transfer of 22 genes in a 20-kb conserved ICE region. Protein comparisons recognized seven homologs to plasmid type IV secretion system components, another six homologs to frequent accessory proteins, and the rest without detectable counterparts. Stationary phase imaging of P. putida ICEclc with in-frame fluorescent protein fusions to predicted type IV components showed transfer-competent cell subpopulations with multiple fluorescent foci, largely overlapping in dual-labeled subcomponents, which is suggestive for multiple conjugation complexes per cell. Cross-dependencies between subcomponents in ICE-type IV secretion system assembly were revealed by quantitative foci image analysis in a variety of ICEclc mutant backgrounds. In conclusion, the ICEclc family presents an evolutionary distinct type IV conjugative system with transfer competent cells specialized in efficient transfer.
Collapse
Affiliation(s)
- Andrea Daveri
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Valentina Benigno
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
4
|
Key Role of Transconjugants for Dissemination of the Integrative Conjugative Element ICE Bs1 in Biofilms. J Bacteriol 2022; 204:e0032722. [PMID: 36106855 PMCID: PMC9578416 DOI: 10.1128/jb.00327-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this issue of the Journal of Bacteriology, J.-S. Bourassa, G. Jeannotte, S. Lebel-Beaucage, and P. B. Beauregard (J Bacteriol 204:e00181-22, 2022, https://doi.org/10.1128/jb.00181-22) showed that ICEBs1 propagation in Bacillus subtilis biofilm relies almost exclusively on transconjugants. It appears restricted to clusters of bacteria in a close neighborhood of initial donor cells, which are heterogeneously distributed in the biofilm and expand vertically toward the air-liquid interface.
Collapse
|