1
|
Kurogi Y, Mizuno Y, Hayashi R, Goyins K, Okamoto N, Barton L, Niwa R. The seminal vesicle is a juvenile hormone-responsive tissue in adult male Drosophila melanogaster. Open Biol 2024; 14:240315. [PMID: 39689858 DOI: 10.1098/rsob.240315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024] Open
Abstract
Juvenile hormone (JH) is one of the most essential hormones controlling insect metamorphosis and physiology. While it is well known that JH affects many tissues throughout the insect life cycle, the difference in JH responsiveness and the repertoire of JH-inducible genes among different tissues has not been fully investigated. In this study, we monitored JH responsiveness in vivo using transgenic Drosophila melanogaster flies carrying a JH response element-GFP (JHRE-GFP) construct. Our data highlight the high responsiveness of the epithelial cells within the seminal vesicle, a component of the male reproductive tract, to JH. Specifically, we observe an elevation in the JHRE-GFP signal within the seminal vesicle epithelium upon JH analogue administration, while suppression occurs upon knockdown of a gene encoding the intracellular JH receptor, germ cell-expressed. Starting from published transcriptomic and proteomics datasets, we next identified Lactate dehydrogenase as a JH-response gene expressed in the seminal vesicle epithelium, suggesting insect seminal vesicles undergo metabolic regulation by JH. Together, this study sheds new light on the biology of the insect reproductive regulatory system.
Collapse
Affiliation(s)
- Yoshitomo Kurogi
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Yosuke Mizuno
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Ryosuke Hayashi
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Krystal Goyins
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8577, Japan
| | - Lacy Barton
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
2
|
Lorenzo MG, Fernandes GDR, Latorre-Estivalis JM. Local age-dependent neuromodulation in Rhodnius prolixus antennae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22106. [PMID: 38597092 DOI: 10.1002/arch.22106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Kissing bugs do not respond to host cues when recently molted and only exhibit robust host-seeking several days after ecdysis. Behavioral plasticity has peripheral correlates in antennal gene expression changes through the week after ecdysis. The mechanisms regulating these peripheral changes are still unknown, but neuropeptide, G-protein coupled receptor, nuclear receptor, and takeout genes likely modulate peripheral sensory physiology. We evaluated their expression in antennal transcriptomes along the first week postecdysis of Rhodnius prolixus 5th instar larvae. Besides, we performed clustering and co-expression analyses to reveal relationships between neuromodulatory (NM) and sensory genes. Significant changes in transcript abundance were detected for 50 NM genes. We identified 73 sensory-related and NM genes that were assigned to nine clusters. According to their expression patterns, clusters were classified into four groups: two including genes up or downregulated immediately after ecdysis; and two with genes with expression altered at day 2. Several NM genes together with sensory genes belong to the first group, suggesting functional interactions. Co-expression network analysis revealed a set of genes that seem to connect with sensory system maturation. Significant expression changes in NM components were described in the antennae of R. prolixus after ecdysis, suggesting that a local NM system acts on antennal physiology. These changes may modify the sensitivity of kissing bugs to host cues during this maturation interval.
Collapse
Affiliation(s)
- Marcelo Gustavo Lorenzo
- Instituto de Investigaciones en Biodiversidad y Biotecnología, CONICET, Mar del Plata, Buenos Aires, Argentina
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | | | - Jose Manuel Latorre-Estivalis
- Laboratorio de Insectos Sociales, Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
3
|
Kurogi Y, Mizuno Y, Okamoto N, Barton L, Niwa R. The seminal vesicle is a juvenile hormone-responsive tissue in adult male Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585833. [PMID: 38562788 PMCID: PMC10983971 DOI: 10.1101/2024.03.20.585833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Juvenile hormone (JH) is one of the most essential hormones controlling insect metamorphosis and physiology. While it is well known that JH affects many tissues throughout the insects life cycle, the difference in JH responsiveness and the repertoire of JH-inducible genes among different tissues has not been fully investigated. In this study, we monitored JH responsiveness in vivo using transgenic Drosophila melanogaster flies carrying a JH response element-GFP (JHRE-GFP) construct. Our data highlight the high responsiveness of the epithelial cells within the seminal vesicle, a component of the male reproductive tract, to JH. Specifically, we observe an elevation in the JHRE-GFP signal within the seminal vesicle epithelium upon JH analog administration, while suppression occurs upon knockdown of genes encoding the intracellular JH receptors, Methoprene-tolerant and germ cell-expressed. Starting from published transcriptomic and proteomics datasets, we next identified Lactate dehydrogenase as a JH-response gene expressed in the seminal vesicle epithelium, suggesting insect seminal vesicles undergo metabolic regulation by JH. Together, this study sheds new light on biology of the insect reproductive regulatory system.
Collapse
Affiliation(s)
- Yoshitomo Kurogi
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Yosuke Mizuno
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8577, Japan
| | - Lacy Barton
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
4
|
Goncharova AA, Besedina NG, Bragina JV, Danilenkova LV, Kamysheva EA, Fedotov SA. Courtship suppression in Drosophila melanogaster: The role of mating failure. PLoS One 2023; 18:e0290048. [PMID: 37561803 PMCID: PMC10414572 DOI: 10.1371/journal.pone.0290048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Drosophila melanogaster is a popular model organism in the study of memory due to a wide arsenal of methods used to analyze neuronal activity. The most commonly used tests in research of behavioral plasticity are shock avoidance associated with chemosensory cues and courtship suppression after mating failure. Many authors emphasize the value of courtship suppression as a model of behavior most appropriate to natural conditions. However, researchers often investigate courtship suppression using immobilized and decapitated females as targets of courtship by males, which makes the data obtained from such flies less valuable. In our study, we evaluate courtship suppression towards immature mobile non-receptive females after training with mated or immature females combined with an aversive stimulus (quinine). We have shown that the previously described mechanisms of courtship suppression, as a result of the association of the courtship object with the repellent, as well as due to increased sensitivity to the anti-aphrodisiac cVA after mating failure, are not confirmed when immature mobile females are used. We discuss the reasons for the discrepancies between our results and literature data, define the conditions to be met in the courtship suppression test if the aim is to analyze the natural forms of behavioral plasticity, and present data on the test modifications to approximate conditions to natural ones.
Collapse
Affiliation(s)
- Anna A. Goncharova
- Laboratory of Comparative Behavioral Genetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Natalia G. Besedina
- Laboratory of Comparative Behavioral Genetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Julia V. Bragina
- Laboratory of Comparative Behavioral Genetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Larisa V. Danilenkova
- Laboratory of Comparative Behavioral Genetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena A. Kamysheva
- Laboratory of Comparative Behavioral Genetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Sergei A. Fedotov
- Laboratory of Comparative Behavioral Genetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
- Laboratory of Toxinology and Molecular Systematics, L.A. Orbeli Institute of Physiology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
- Laboratory of Amyloid Biology, Saint Petersburg University, St. Petersburg, Russia
| |
Collapse
|