Wagner A, Mutschler H. Design of Novel Synthetic RNA Replicons Based on
Emesvirus zinderi.
ACS Synth Biol 2024;
13:1773-1780. [PMID:
38806167 PMCID:
PMC11197098 DOI:
10.1021/acssynbio.4c00097]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
Self-replicating RNAs (srRNAs) are synthetic molecules designed to mimic the self-replicating ability of viral RNAs. srRNAs hold significant promise for a range of applications, including enhancing protein expression, reprogramming cells into pluripotent stem cells, and creating cell-free systems for experimental evolution. However, the development of srRNAs for use in bacterial systems remains limited. Here, we demonstrate how a srRNA scaffold from Emesvirus zinderi can be engineered into a self-encoding srRNA by incorporating the coding region of the catalytically active replicase subunit. With the help of in vitro replication assays, including an in vitro translation-coupled replication approach, we show that the resulting system enables complete replication cycles of RNA both in cis and trans, including long cargo RNAs such as tethered 5S, 16S, and 23S rRNAs. In summary, our findings suggest that these srRNAs have significant potential for fundamental research, synthetic biology, and general in vitro evolution.
Collapse