1
|
McKenna BG, Lussier AA, Suderman MJ, Walton E, Simpkin AJ, Hüls A, Dunn EC. Strengthening Rigor and Reproducibility in Epigenome-Wide Association Studies of Social Exposures and Brain-Based Health Outcomes. Curr Environ Health Rep 2025; 12:19. [PMID: 40254641 PMCID: PMC12009779 DOI: 10.1007/s40572-024-00469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2024] [Indexed: 04/22/2025]
Abstract
PURPOSE OF REVIEW Studies examining the effects of social factors on the epigenome have proliferated over the last two decades. Social epigenetics research to date has broadly demonstrated that social factors spanning childhood adversity, to neighborhood disadvantage, educational attainment, and economic instability are associated with alterations to DNA methylation that may have a functional impact on health. These relationships are particularly relevant to brain-based health outcomes such as psychiatric disorders, which are strongly influenced by social exposures and are also the leading cause of disability worldwide. However, social epigenetics studies are limited by the many challenges faced by both epigenome-wide association studies (EWAS) and the study of social factors. FINDINGS In this manuscript, we provide a framework to achieve greater rigor and reproducibility in social epigenetics research. We discuss current limitations of the social epigenetics field, as well as existing and new solutions to improve rigor and reproducibility. Readers will gain a better understanding of the current considerations and processes that could maximize rigor when conducting social epigenetics research, as well as the technologies and approaches that merit attention and investment to propel continued discovery into the future.
Collapse
Affiliation(s)
- Brooke G McKenna
- Center for Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Department of Sociology, Purdue University, West Lafayette, IN, USA.
| | - Alexandre A Lussier
- Center for Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Matthew J Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| | - Andrew J Simpkin
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
| | - Anke Hüls
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Erin C Dunn
- Center for Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Sociology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
2
|
Zhu T, Tong H, Du Z, Beck S, Teschendorff AE. An improved epigenetic counter to track mitotic age in normal and precancerous tissues. Nat Commun 2024; 15:4211. [PMID: 38760334 PMCID: PMC11101651 DOI: 10.1038/s41467-024-48649-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
The cumulative number of stem cell divisions in a tissue, known as mitotic age, is thought to be a major determinant of cancer-risk. Somatic mutational and DNA methylation (DNAm) clocks are promising tools to molecularly track mitotic age, yet their relationship is underexplored and their potential for cancer risk prediction in normal tissues remains to be demonstrated. Here we build and validate an improved pan-tissue DNAm counter of total mitotic age called stemTOC. We demonstrate that stemTOC's mitotic age proxy increases with the tumor cell-of-origin fraction in each of 15 cancer-types, in precancerous lesions, and in normal tissues exposed to major cancer risk factors. Extensive benchmarking against 6 other mitotic counters shows that stemTOC compares favorably, specially in the preinvasive and normal-tissue contexts. By cross-correlating stemTOC to two clock-like somatic mutational signatures, we confirm the mitotic-like nature of only one of these. Our data points towards DNAm as a promising molecular substrate for detecting mitotic-age increases in normal tissues and precancerous lesions, and hence for developing cancer-risk prediction strategies.
Collapse
Affiliation(s)
- Tianyu Zhu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Huige Tong
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Zhaozhen Du
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Stephan Beck
- Medical Genomics Group, UCL Cancer Institute, University College London, 72 Huntley Street, WC1E 6BT, London, UK
| | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| |
Collapse
|
3
|
Bell CG. Epigenomic insights into common human disease pathology. Cell Mol Life Sci 2024; 81:178. [PMID: 38602535 PMCID: PMC11008083 DOI: 10.1007/s00018-024-05206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The epigenome-the chemical modifications and chromatin-related packaging of the genome-enables the same genetic template to be activated or repressed in different cellular settings. This multi-layered mechanism facilitates cell-type specific function by setting the local sequence and 3D interactive activity level. Gene transcription is further modulated through the interplay with transcription factors and co-regulators. The human body requires this epigenomic apparatus to be precisely installed throughout development and then adequately maintained during the lifespan. The causal role of the epigenome in human pathology, beyond imprinting disorders and specific tumour suppressor genes, was further brought into the spotlight by large-scale sequencing projects identifying that mutations in epigenomic machinery genes could be critical drivers in both cancer and developmental disorders. Abrogation of this cellular mechanism is providing new molecular insights into pathogenesis. However, deciphering the full breadth and implications of these epigenomic changes remains challenging. Knowledge is accruing regarding disease mechanisms and clinical biomarkers, through pathogenically relevant and surrogate tissue analyses, respectively. Advances include consortia generated cell-type specific reference epigenomes, high-throughput DNA methylome association studies, as well as insights into ageing-related diseases from biological 'clocks' constructed by machine learning algorithms. Also, 3rd-generation sequencing is beginning to disentangle the complexity of genetic and DNA modification haplotypes. Cell-free DNA methylation as a cancer biomarker has clear clinical utility and further potential to assess organ damage across many disorders. Finally, molecular understanding of disease aetiology brings with it the opportunity for exact therapeutic alteration of the epigenome through CRISPR-activation or inhibition.
Collapse
Affiliation(s)
- Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
4
|
Stabile AM, Pistilli A, Mariangela R, Rende M, Bartolini D, Di Sante G. New Challenges for Anatomists in the Era of Omics. Diagnostics (Basel) 2023; 13:2963. [PMID: 37761332 PMCID: PMC10529314 DOI: 10.3390/diagnostics13182963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Anatomic studies have traditionally relied on macroscopic, microscopic, and histological techniques to investigate the structure of tissues and organs. Anatomic studies are essential in many fields, including medicine, biology, and veterinary science. Advances in technology, such as imaging techniques and molecular biology, continue to provide new insights into the anatomy of living organisms. Therefore, anatomy remains an active and important area in the scientific field. The consolidation in recent years of some omics technologies such as genomics, transcriptomics, proteomics, and metabolomics allows for a more complete and detailed understanding of the structure and function of cells, tissues, and organs. These have been joined more recently by "omics" such as radiomics, pathomics, and connectomics, supported by computer-assisted technologies such as neural networks, 3D bioprinting, and artificial intelligence. All these new tools, although some are still in the early stages of development, have the potential to strongly contribute to the macroscopic and microscopic characterization in medicine. For anatomists, it is time to hitch a ride and get on board omics technologies to sail to new frontiers and to explore novel scenarios in anatomy.
Collapse
Affiliation(s)
- Anna Maria Stabile
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| | - Alessandra Pistilli
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| | - Ruggirello Mariangela
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| | - Desirée Bartolini
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Gabriele Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| |
Collapse
|