1
|
Lukhtanov VA, Pazhenkova EA. Cytogenetics of insects in the era of chromosome-level genome assemblies. Vavilovskii Zhurnal Genet Selektsii 2025; 29:230-237. [PMID: 40297294 PMCID: PMC12036569 DOI: 10.18699/vjgb-25-26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 04/30/2025] Open
Abstract
Over the past few years, a revolution has occurred in cytogenetics, driven by the emergence and spread of methods for obtaining high-quality chromosome-level genome assemblies. In fact, this has led to a new tool for studying chromosomes and chromosomal rearrangements, and this tool is thousands of times more powerful than light microscopy. This tool has revolutionized the cytogenetics of many groups of insects for which previously karyotype information, if available at all, was limited to the chromosome number. Even more impressive are the achievements of the genomic approach for studying the general patterns of chromosome organization and evolution in insects. Thus, it has been shown that rapid transformations of chromosomal numbers, which are often found in the order Lepidoptera, are most often carried out in the most parsimonious way, as a result of simple fusions and fissions of chromosomes. It has been established that these fusions and fissions are not random and occur independently in different phylogenetic lineages due to the reuse of the same ancestral chromosomal breakpoints. It has been shown that the tendency for chromosome fissions is correlated with the presence in chromosomes of the so-called interstitial telomeres, i. e. telomere-like structures located not at the ends of chromosomes, but inside them. It has been revealed that, in most insects, telomeric DNA is not just a set of short repeats, but a very long sequence consisting of (TTAGG)n (or other telomeric motifs), regularly and specifically interrupted by retrotransposons, and the telomeric motifs are diverse in terms of their length and nucleotide composition. The number of high-quality chromosome-level genome assemblies available for insects in the GenBank database is growing exponentially and now exceeds a thousand species. Therefore, the exceptional prospects for using genomic data for karyotype analysis are beyond doubt.
Collapse
Affiliation(s)
- V A Lukhtanov
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | | |
Collapse
|
2
|
Ebdon S, Laetsch DR, Vila R, Baird SJE, Lohse K. Genomic regions of current low hybridisation mark long-term barriers to gene flow in scarce swallowtail butterflies. PLoS Genet 2025; 21:e1011655. [PMID: 40209170 PMCID: PMC12040345 DOI: 10.1371/journal.pgen.1011655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 04/29/2025] [Accepted: 03/14/2025] [Indexed: 04/12/2025] Open
Abstract
Many closely related species continue to hybridise after millions of generations of divergence. However, the extent to which current patterning in hybrid zones connects back to the speciation process remains unclear: does evidence for current multilocus barriers support the hypothesis of speciation due to multilocus divergence? We analyse whole-genome sequencing data to investigate the speciation history of the scarce swallowtails Iphiclidespodalirius and I . feisthamelii, which abut at a narrow ( ∼ 25 km) contact zone north of the Pyrenees. We first quantify the heterogeneity of effective migration rate under a model of isolation with migration, using genomes sampled across the range to identify long-term barriers to gene flow. Secondly, we investigate the recent ancestry of individuals from the hybrid zone using genome polarisation and estimate the coupling coefficient under a model of a multilocus barrier. We infer a low rate of long-term gene flow from I . feisthamelii into I . podalirius - the direction of which matches the admixture across the hybrid zone - and complete reproductive isolation across ≈ 33% of the genome. Our contrast of recent and long-term gene flow shows that regions of low recent hybridisation are indeed enriched for long-term barriers which maintain divergence between these hybridising sister species. This finding paves the way for future analysis of the evolution of reproductive isolation along the speciation continuum.
Collapse
Affiliation(s)
- Sam Ebdon
- Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh, United Kingdom
| | - Dominik R. Laetsch
- Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh, United Kingdom
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Stuart J. E. Baird
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Konrad Lohse
- Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Steckenborn S, Marques A. Centromere diversity and its evolutionary impacts on plant karyotypes and plant reproduction. THE NEW PHYTOLOGIST 2025; 245:1879-1886. [PMID: 39763092 PMCID: PMC11798908 DOI: 10.1111/nph.20376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/11/2024] [Indexed: 02/07/2025]
Abstract
Karyotype changes are a formidable evolutionary force by directly impacting cross-incompatibility, gene dosage, genetic linkage, chromosome segregation, and meiotic recombination landscape. These changes often arise spontaneously and are commonly detected within plant lineages, even between closely related accessions. One element that can influence drastic karyotype changes after only one (or few) plant generations is the alteration of the centromere position, number, distribution, or even its strength. Here, we briefly explore how these different centromere configurations can directly result in karyotype rearrangements, impacting plant reproduction and meiotic recombination.
Collapse
Affiliation(s)
- Stefan Steckenborn
- Department of Chromosome BiologyMax Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 1050829CologneGermany
| | - André Marques
- Department of Chromosome BiologyMax Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 1050829CologneGermany
| |
Collapse
|
4
|
Boman J, Näsvall K, Vila R, Wiklund C, Backström N. Evolution of Hybrid Inviability Associated With Chromosome Fusions. Mol Ecol 2025:e17672. [PMID: 39895489 DOI: 10.1111/mec.17672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/22/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
Chromosomal rearrangements, such as inversions, have received considerable attention in the speciation literature due to their hampering effects on recombination. Less is known about how other rearrangements, such as chromosome fissions and fusions, can affect the evolution of reproductive isolation. Here, we use crosses between populations of the wood white butterfly (Leptidea sinapis) with different karyotypes to identify genomic regions associated with hybrid inviability. We map hybrid inviability candidate loci by contrasting allele frequencies between F2 hybrids that survived until the adult stage with individuals of the same cohort that succumbed to hybrid incompatibilities. Hybrid inviability candidate regions have high genetic differentiation between parental populations, reduced recombination rates, and are enriched near chromosome fusions. By analysing sequencing coverage, we exclude aneuploidies as a direct link between hybrid inviability and chromosome fusions. Instead, our results point to an indirect relationship between hybrid inviability and chromosome fusions, possibly related to reduced recombination in fused chromosomes. Thus, we map postzygotic isolation to chromosomal rearrangements, providing crucial empirical evidence for the idea that chromosome number differences between taxa can contribute to speciation.
Collapse
Affiliation(s)
- Jesper Boman
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| | - Karin Näsvall
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Christer Wiklund
- Department of Zoology: Division of Ecology, Stockholm University, Stockholm, Sweden
| | - Niclas Backström
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
De-Kayne R, Gordon IJ, Terblanche RF, Collins S, Saitoti Omufwoko K, Martins DJ, Martin SH. Incomplete recombination suppression fuels extensive haplotype diversity in a butterfly colour pattern supergene. PLoS Biol 2025; 23:e3003043. [PMID: 40019922 PMCID: PMC11918383 DOI: 10.1371/journal.pbio.3003043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 03/18/2025] [Accepted: 01/28/2025] [Indexed: 03/19/2025] Open
Abstract
Supergenes can evolve when recombination-suppressing mechanisms like inversions promote co-inheritance of alleles at two or more polymorphic loci that affect a complex trait. Theory shows that such genetic architectures can be favoured under balancing selection or local adaptation in the face of gene flow, but they can also bring costs associated with reduced opportunities for recombination. These costs may in turn be offset by rare 'gene flux' between inverted and ancestral haplotypes, with a range of possible outcomes. We aimed to shed light on these processes by investigating the 'BC supergene', a large genomic region comprising multiple rearrangements associated with three distinct wing colour morphs in Danaus chrysippus, a butterfly known as the African monarch, African queen and plain tiger. Using whole-genome resequencing data from 174 individuals, we first confirm the effects of BC on wing colour pattern: background melanism is associated with SNPs in the promoter region of yellow, within an inverted subregion of the supergene, while forewing tip pattern is most likely associated with copy-number variation in a separate subregion of the supergene. We then show that haplotype diversity within the supergene is surprisingly extensive: there are at least six divergent haplotype groups that experience suppressed recombination with respect to each other. Despite high divergence between these haplotype groups, we identify an unexpectedly large number of natural recombinant haplotypes. Several of the inferred crossovers occurred between adjacent inversion 'modules', while others occurred within inversions. Furthermore, we show that new haplotype groups have arisen through recombination between two pre-existing ones. Specifically, an allele for dark colouration in the promoter of yellow has recombined into distinct haplotype backgrounds on at least two separate occasions. Overall, our findings paint a picture of dynamic evolution of supergene haplotypes, fuelled by incomplete recombination suppression.
Collapse
Affiliation(s)
- Rishi De-Kayne
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Ian J. Gordon
- Centre of Excellence in Biodiversity and Natural Resource Management, University of Rwanda, Huye, Rwanda
| | - Reinier F. Terblanche
- Department of Conservation Ecology & Entomology, University of Stellenbosch, Stellenbosch, South Africa
| | - Steve Collins
- African Butterfly Research Institute, Nairobi, Kenya
| | - Kennedy Saitoti Omufwoko
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Dino J. Martins
- Turkana Basin Institute, Stony Brook University, Stony Brook, New York, United States of America
- Mpala Research Centre, Nanyuki, Kenya
| | - Simon H. Martin
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Palmer Droguett DH, Fletcher M, Alston BT, Kocher S, Cabral-de-Mello DC, Wright AE. Neo-Sex Chromosome Evolution in Treehoppers Despite Long-Term X Chromosome Conservation. Genome Biol Evol 2024; 16:evae264. [PMID: 39657114 DOI: 10.1093/gbe/evae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
Sex chromosomes follow distinct evolutionary trajectories compared to the rest of the genome. In many cases, sex chromosomes (X and Y or Z and W) significantly differentiate from one another resulting in heteromorphic sex chromosome systems. Such heteromorphic systems are thought to act as an evolutionary trap that prevents subsequent turnover of the sex chromosome system. For old, degenerated sex chromosome systems, chromosomal fusion with an autosome may be one way that sex chromosomes can "refresh" their sequence content. We investigated these dynamics using treehoppers (hemipteran insects of the family Membracidae), which ancestrally have XX/X0 sex chromosomes. We assembled the most complete reference assembly for treehoppers to date for Umbonia crassicornis and employed comparative genomic analyses of 12 additional treehopper species to analyze X chromosome variation across different evolutionary timescales. We find that the X chromosome is largely conserved, with one exception being an X-autosome fusion in Calloconophora caliginosa. We also compare the ancestral treehopper X with other X chromosomes in Auchenorrhyncha (the clade containing treehoppers, leafhoppers, spittlebugs, cicadas, and planthoppers), revealing X conservation across more than 300 million years. These findings shed light on chromosomal evolution dynamics in treehoppers and the role of chromosomal rearrangements in sex chromosome evolution.
Collapse
Affiliation(s)
- Daniela H Palmer Droguett
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Micah Fletcher
- Department of Ecology and Evolutionary Biology, the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Ben T Alston
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
| | - Sarah Kocher
- Department of Ecology and Evolutionary Biology, the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Diogo C Cabral-de-Mello
- Department of General and Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Alison E Wright
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
| |
Collapse
|
7
|
Mackintosh A, Vila R, Martin SH, Setter D, Lohse K. Do chromosome rearrangements fix by genetic drift or natural selection? Insights from Brenthis butterflies. Mol Ecol 2024; 33:e17146. [PMID: 37807966 PMCID: PMC11628658 DOI: 10.1111/mec.17146] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023]
Abstract
Large-scale chromosome rearrangements, such as fissions and fusions, are a common feature of eukaryote evolution. They can have considerable influence on the evolution of populations, yet it remains unclear exactly how rearrangements become established and eventually fix. Rearrangements could fix by genetic drift if they are weakly deleterious or neutral, or they may instead be favoured by positive natural selection. Here, we compare genome assemblies of three closely related Brenthis butterfly species and characterize a complex history of fission and fusion rearrangements. An inferred demographic history of these species suggests that rearrangements became fixed in populations with large long-term effective size (N e), consistent with rearrangements being selectively neutral or only very weakly underdominant. Using a recently developed analytic framework for characterizing hard selective sweeps, we find that chromosome fusions are not enriched for evidence of past sweeps compared to other regions of the genome. Nonetheless, we do infer a strong and recent selective sweep around one chromosome fusion in the B. daphne genome. Our results suggest that rearrangements in these species likely have weak absolute fitness effects and fix by genetic drift. However, one putative selective sweep raises the possibility that natural selection may sometimes play a role in the fixation of chromosome fusions.
Collapse
Affiliation(s)
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| | - Simon H. Martin
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| | - Derek Setter
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| | - Konrad Lohse
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| |
Collapse
|
8
|
Lewin TD, Liao IJY, Luo YJ. Annelid Comparative Genomics and the Evolution of Massive Lineage-Specific Genome Rearrangement in Bilaterians. Mol Biol Evol 2024; 41:msae172. [PMID: 39141777 PMCID: PMC11371463 DOI: 10.1093/molbev/msae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
The organization of genomes into chromosomes is critical for processes such as genetic recombination, environmental adaptation, and speciation. All animals with bilateral symmetry inherited a genome structure from their last common ancestor that has been highly conserved in some taxa but seemingly unconstrained in others. However, the evolutionary forces driving these differences and the processes by which they emerge have remained largely uncharacterized. Here, we analyze genome organization across the phylum Annelida using 23 chromosome-level annelid genomes. We find that while many annelid lineages have maintained the conserved bilaterian genome structure, the Clitellata, a group containing leeches and earthworms, possesses completely scrambled genomes. We develop a rearrangement index to quantify the extent of genome structure evolution and show that, compared to the last common ancestor of bilaterians, leeches and earthworms have among the most highly rearranged genomes of any currently sampled species. We further show that bilaterian genomes can be classified into two distinct categories-high and low rearrangement-largely influenced by the presence or absence, respectively, of chromosome fission events. Our findings demonstrate that animal genome structure can be highly variable within a phylum and reveal that genome rearrangement can occur both in a gradual, stepwise fashion, or rapid, all-encompassing changes over short evolutionary timescales.
Collapse
Affiliation(s)
- Thomas D Lewin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yi-Jyun Luo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
9
|
Höök L, Vila R, Wiklund C, Backström N. Temporal dynamics of faster neo-Z evolution in butterflies. Evolution 2024; 78:1554-1567. [PMID: 38813673 DOI: 10.1093/evolut/qpae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 05/31/2024]
Abstract
The faster-Z/X hypothesis predicts that sex-linked genes should diverge faster than autosomal genes. However, studies across different lineages have shown mixed support for this effect. So far, most analyses have focused on old and well-differentiated sex chromosomes, but less is known about the divergence of more recently acquired neo-sex chromosomes. In Lepidoptera (moths and butterflies), Z-autosome fusions are frequent, but the evolutionary dynamics of neo-Z chromosomes have not been explored in detail. Here, we analyzed the faster-Z effect in Leptidea sinapis, a butterfly with three Z chromosomes. We show that the neo-Z chromosomes have been acquired stepwise, resulting in strata of differentiation and masculinization. While all Z chromosomes showed evidence of the faster-Z effect, selection for genes on the youngest neo-Z chromosome (Z3) appears to have been hampered by a largely intact, homologous neo-W chromosome. However, the intermediately aged neo-Z chromosome (Z2), which lacks W gametologs, showed fewer evolutionary constraints, resulting in particularly fast evolution. Our results therefore support that neo-sex chromosomes can constitute temporary hot-spots of adaptation and divergence. The underlying dynamics are likely causally linked to shifts in selective constraints, evolution of gene expression, and degeneration of W-linked gametologs which gradually expose Z-linked genes to selection.
Collapse
Affiliation(s)
- Lars Höök
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), Barcelona, Spain
| | - Christer Wiklund
- Department of Zoology, Division of Ecology, Stockholm University, Stockholm, Sweden
| | - Niclas Backström
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Boman J, Wiklund C, Vila R, Backström N. Meiotic drive against chromosome fusions in butterfly hybrids. Chromosome Res 2024; 32:7. [PMID: 38702576 PMCID: PMC11068667 DOI: 10.1007/s10577-024-09752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Species frequently differ in the number and structure of chromosomes they harbor, but individuals that are heterozygous for chromosomal rearrangements may suffer from reduced fitness. Chromosomal rearrangements like fissions and fusions can hence serve as a mechanism for speciation between incipient lineages, but their evolution poses a paradox. How can rearrangements get fixed between populations if heterozygotes have reduced fitness? One solution is that this process predominantly occurs in small and isolated populations, where genetic drift can override natural selection. However, fixation is also more likely if a novel rearrangement is favored by a transmission bias, such as meiotic drive. Here, we investigate chromosomal transmission distortion in hybrids between two wood white (Leptidea sinapis) butterfly populations with extensive karyotype differences. Using data from two different crossing experiments, we uncover that there is a transmission bias favoring the ancestral chromosomal state for derived fusions, a result that shows that chromosome fusions actually can fix in populations despite being counteracted by meiotic drive. This means that meiotic drive not only can promote runaway chromosome number evolution and speciation, but also that it can be a conservative force acting against karyotypic change and the evolution of reproductive isolation. Based on our results, we suggest a mechanistic model for why chromosome fusion mutations may be opposed by meiotic drive and discuss factors contributing to karyotype evolution in Lepidoptera.
Collapse
Affiliation(s)
- Jesper Boman
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden.
| | - Christer Wiklund
- Department of Zoology: Division of Ecology, Stockholm University, Stockholm, Sweden
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), Passeig Marítim de La Barceloneta 37-49, 08003, Barcelona, Spain
| | - Niclas Backström
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| |
Collapse
|
11
|
Kyriacou RG, Mulhair PO, Holland PWH. GC Content Across Insect Genomes: Phylogenetic Patterns, Causes and Consequences. J Mol Evol 2024; 92:138-152. [PMID: 38491221 PMCID: PMC10978632 DOI: 10.1007/s00239-024-10160-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/06/2024] [Indexed: 03/18/2024]
Abstract
The proportions of A:T and G:C nucleotide pairs are often unequal and can vary greatly between animal species and along chromosomes. The causes and consequences of this variation are incompletely understood. The recent release of high-quality genome sequences from the Darwin Tree of Life and other large-scale genome projects provides an opportunity for GC heterogeneity to be compared across a large number of insect species. Here we analyse GC content along chromosomes, and within protein-coding genes and codons, of 150 insect species from four holometabolous orders: Coleoptera, Diptera, Hymenoptera, and Lepidoptera. We find that protein-coding sequences have higher GC content than the genome average, and that Lepidoptera generally have higher GC content than the other three insect orders examined. GC content is higher in small chromosomes in most Lepidoptera species, but this pattern is less consistent in other orders. GC content also increases towards subtelomeric regions within protein-coding genes in Diptera, Coleoptera and Lepidoptera. Two species of Diptera, Bombylius major and B. discolor, have very atypical genomes with ubiquitous increase in AT content, especially at third codon positions. Despite dramatic AT-biased codon usage, we find no evidence that this has driven divergent protein evolution. We argue that the GC landscape of Lepidoptera, Diptera and Coleoptera genomes is influenced by GC-biased gene conversion, strongest in Lepidoptera, with some outlier taxa affected drastically by counteracting processes.
Collapse
Affiliation(s)
- Riccardo G Kyriacou
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Peter O Mulhair
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Peter W H Holland
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| |
Collapse
|