1
|
Reimann GR, Edeen PT, Conquest S, Grant BD, Fay DS. PIKI-1, a class II phosphatidylinositol 3-kinase, functions in endocytic trafficking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.22.655458. [PMID: 40475523 PMCID: PMC12139958 DOI: 10.1101/2025.05.22.655458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Abstract
Membrane trafficking, including endocytosis and exocytosis, is a complex process that is coordinated by trafficking-associated proteins, cargo molecules, the cytoskeleton, and membrane lipid composition. The NIMA-related kinases NEKL-2 (human NEK8/9) and NEKL-3 (human NEK6/7) are conserved regulators of membrane trafficking in Caenorhabditis elegans and are required for successful molting. Through a genetic approach, we isolated reduction-of-function mutations in piki-1 that suppress nekl- associated molting defects. piki-1 encodes the sole predicted C. elegans Class II phosphatidylinositol 3-kinase (PI3Ks), an understudied class of lipid modifiers that contribute to the production of phosphatidylinositol 3-phosphate (PI(3)P) and phosphatidylinositol 3,4-bisphosphate (PI(3,4)P 2 ). Using a set of genetically encoded lipid sensors, we found that PIKI-1 was responsible for the production of PI(3,4)P 2 in the C. elegans epidermis but played only a minor role in the control of PI(3)P levels. Consistent with this, both PI(3,4)P 2 and PIKI-1 colocalized to early endosomes, and reduction of PIKI-1 function strongly affected early endosomal morphology and protein composition. Additionally, reduced PIKI-1 function led to excess tubulation of endosomal compartments associated with recycling or the degradation of cellular debris. In contrast to previous studies using mammalian cell culture, PIKI-1 was largely dispensable for clathrin-mediated endocytosis in the context of the worm epidermis, which is a polarized epithelium. Notably, reduction of PIKI-1 function strongly mitigated defects in early endosomes associated with the depletion of NEKL-2. We propose that reduction of PIKI-1 function may suppress nekl molting defects by partially restoring endocytic trafficking within specific compartments, including the early endosome. We also show that inhibition of the PI(3,4)P 2 -binding protein HIPR-1 (HIP1/HIPR1) suppresses nekl molting defects, suggesting that reduced PI(3,4)P 2 levels alter endosomal protein recruitment in a manner that antagonizes NEKL-2 function. Author summary The uptake of materials from outside the cell and their subsequent delivery to specific intracellular locations are essential for cell function and survival. Two of the mechanisms that control this complex intracellular pathway involve the modification of proteins and of lipids, processes that are highly conserved across species. In this study, we used the model organism Caenorhabditis elegans , which is highly amenable to cell biological and genetic approaches, to establish a novel connection between these two regulatory mechanisms and demonstrate the importance of lipid modifications in maintaining the normal functioning of intracellular transport. Our results also provide insights into the fundamental cellular functions of proteins associated with human disease including cancer and metabolic disease.
Collapse
|
2
|
Milne SM, Edeen PT, Fay DS. TAT-1, a phosphatidylserine flippase, affects molting and regulates membrane trafficking in the epidermis of Caenorhabditis elegans. Genetics 2025; 229:iyae216. [PMID: 39722491 PMCID: PMC12086690 DOI: 10.1093/genetics/iyae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Membrane trafficking is a conserved process required for the import, export, movement, and distribution of proteins and other macromolecules within cells. The Caenorhabditis elegans NIMA-related kinases NEKL-2 (human NEK8/9) and NEKL-3 (human NEK6/7) are conserved regulators of membrane trafficking and are required for the completion of molting. Using a genetic approach, we identified reduction-of-function mutations in tat-1 that suppress nekl-associated molting defects. tat-1 encodes the C. elegans ortholog of mammalian ATP8A1/2, a phosphatidylserine flippase that promotes the asymmetric distribution of phosphatidylserine on the cytosolic leaflet of lipid membrane bilayers. CHAT-1 (human CDC50), a conserved chaperone, was required for the correct localization of TAT-1, and chat-1 inhibition strongly suppressed nekl defects. Using a phosphatidylserine sensor, we found that TAT-1 was required for the normal localization of phosphatidylserine at apical endosomes and that loss of TAT-1 led to aberrant endosomal morphologies. Consistent with these data, TAT-1 localized to early endosomes and to recycling endosomes marked with RME-1, the C. elegans ortholog of the human EPS15 homology domain-containing protein, EHD1. TAT-1, phosphatidylserine biosynthesis, and the phosphatidylserine-binding protein RFIP-2 (human RAB11-FIP2) were all required for the normal localization of RME-1 to apical endosomes. Consistent with these proteins functioning together, inhibition of RFIP-2 or RME-1 led to the partial suppression of nekl molting defects, as did inhibition of phosphatidylserine biosynthesis. We propose that TAT-1 flippase activity, in conjunction with RFIP-2, promotes the recruitment of RME-1 to apical recycling endosomes and that inhibition of TAT-1-RFIP-2-RME-1 can compensate for a reduction in NEKL activities.
Collapse
Affiliation(s)
- Shae M Milne
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, United States
| | - Philip T Edeen
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, United States
| | - David S Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, United States
| |
Collapse
|
3
|
Modica G, Tejeda-Valencia L, Sauvageau E, Yasa S, Maes J, Skorobogata O, Lefrancois S. Phosphorylation on serine 72 modulates Rab7A palmitoylation and retromer recruitment. J Cell Sci 2025; 138:jcs262177. [PMID: 39584231 PMCID: PMC11828465 DOI: 10.1242/jcs.262177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024] Open
Abstract
Rab7A has a key role in regulating membrane trafficking at late endosomes. By interacting with several different effectors, this small GTPase controls late endosome mobility, orchestrates fusion events between late endosomes and lysosomes, and participates in the formation of and regulates the fusion between autophagosomes and lysosomes. Rab7A is also responsible for the spatiotemporal recruitment of retromer, which is required for the endosome-to-trans-Golgi network retrieval of cargo receptors such as sortilin (SORT1) and CI-MPR (also known as IGF2R). Recently, several post-translational modifications have been shown to modulate Rab7A functions, including palmitoylation, ubiquitination and phosphorylation. Here, we show that phosphorylation of Rab7A at serine 72 is important to modulate its interaction with retromer, as the non-phosphorylatable Rab7AS72A mutant is not able to interact with and recruit retromer to late endosomes. We have previously shown that Rab7A palmitoylation is also required for efficient retromer recruitment. We found that palmitoylation of Rab7AS72A is reduced compared to that of the wild-type protein, suggesting an interplay between S72 phosphorylation and palmitoylation in regulating the Rab7A-retromer interaction. Finally, we identify NEK7 as a kinase required to phosphorylate Rab7A to promote retromer binding and recruitment.
Collapse
Affiliation(s)
- Graziana Modica
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
| | - Laura Tejeda-Valencia
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
| | - Etienne Sauvageau
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
| | - Seda Yasa
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
| | - Juliette Maes
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
| | - Olga Skorobogata
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
| | - Stephane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal H3A 0C7, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal H2X 3Y7, Canada
| |
Collapse
|
4
|
Binti S, Edeen PT, Fay DS. Loss of the Na+/K+ cation pump CATP-1 suppresses nekl-associated molting defects. G3 (BETHESDA, MD.) 2024; 14:jkae244. [PMID: 39428996 PMCID: PMC11631496 DOI: 10.1093/g3journal/jkae244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The conserved Caenorhabditis elegans protein kinases NEKL-2 and NEKL-3 regulate membrane trafficking and are required for larval molting. Through a forward genetic screen we identified a mutation in catp-1 as a suppressor of molting defects in synthetically lethal nekl-2; nekl-3 double mutants. catp-1 encodes a membrane-associated P4-type ATPase involved in Na+-K+ exchange. A previous study found that wild-type worms exposed to the nicotinic agonist dimethylphenylpiperazinium (DMPP) exhibited larval arrest and molting-associated defects, which were suppressed by inhibition of catp-1. By testing a spectrum catp-1 alleles, we found that resistance to DMPP toxicity and the suppression of nekl defects did not strongly correlate, suggesting key differences in the mechanism of catp-1-mediated suppression. Through whole genome sequencing of additional nekl-2; nekl-3 suppressor strains, we identified two additional coding-altering mutations in catp-1. However, neither mutation, when introduced into nekl-2; nekl-3 mutants using CRISPR, was sufficient to elicit robust suppression of molting defects, suggesting the involvement of other loci. Endogenously tagged CATP-1 was primarily expressed in epidermal cells within punctate structures located near the apical plasma membrane, consistent with a role in regulating cellular processes within the epidermis. Based on previous studies, we tested the hypothesis that catp-1 inhibition induces entry into the pre-dauer L2d stage, potentially accounting for the ability of catp-1 mutants to suppress nekl molting defects. However, we found no evidence that loss of catp-1 leads to entry into L2d. As such, loss of catp-1 may suppress nekl-associated and DMPP-induced defects by altering electrochemical gradients within membrane-bound compartments.
Collapse
Affiliation(s)
- Shaonil Binti
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, USA
| | - Philip T Edeen
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, USA
| | - David S Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
5
|
Beyrent E, Wei DT, Beacham GM, Park S, Zheng J, Paszek MJ, Hollopeter G. Dimerization activates the Inversin complex in C. elegans. Mol Biol Cell 2024; 35:ar127. [PMID: 39110529 PMCID: PMC11481705 DOI: 10.1091/mbc.e24-05-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 09/21/2024] Open
Abstract
Genetic, colocalization, and biochemical studies suggest that the ankyrin repeat-containing proteins Inversin (INVS) and ANKS6 function with the NEK8 kinase to control tissue patterning and maintain organ physiology. It is unknown whether these three proteins assemble into a static "Inversin complex" or one that adopts multiple bioactive forms. Through the characterization of hyperactive alleles in C. elegans, we discovered that the Inversin complex is activated by dimerization. Genome engineering of an RFP tag onto the nematode homologues of INVS (MLT-4) and NEK8 (NEKL-2) induced a gain-of-function, cyst-like phenotype that was suppressed by monomerization of the fluorescent tag. Stimulated dimerization of MLT-4 or NEKL-2 using optogenetics was sufficient to recapitulate the phenotype of a constitutively active Inversin complex. Further, dimerization of NEKL-2 bypassed a lethal MLT-4 mutant, demonstrating that the dimeric form is required for function. We propose that dynamic switching between at least two functionally distinct states - an active dimer and an inactive monomer - gates the output of the Inversin complex.
Collapse
Affiliation(s)
- Erika Beyrent
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
- Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY 14853
| | - Derek T. Wei
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
- Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY 14853
| | - Gwendolyn M. Beacham
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
- Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY 14853
| | - Sangwoo Park
- Field of Biophysics, Cornell University, Ithaca, NY 14853
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Jian Zheng
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Matthew J. Paszek
- Field of Biophysics, Cornell University, Ithaca, NY 14853
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Gunther Hollopeter
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
- Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
6
|
Milne SM, Edeen PT, Fay DS. TAT-1, a phosphatidylserine flippase, affects molting and regulates membrane trafficking in the epidermis of C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613099. [PMID: 39314363 PMCID: PMC11419146 DOI: 10.1101/2024.09.15.613099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Membrane trafficking is a conserved process required for the movement and distribution of proteins and other macromolecules within cells. The Caenorhabditis elegans NIMA-related kinases NEKL-2 (human NEK8/9) and NEKL-3 (human NEK6/7) are conserved regulators of membrane trafficking and are required for the completion of molting. We used a genetic approach to identify reduction-of-function mutations in tat-1 that suppress nekl -associated molting defects. tat-1 encodes the C. elegans ortholog of mammalian ATP8A1/2, a phosphatidylserine (PS) flippase that promotes the asymmetric distribution of PS to the cytosolic leaflet of lipid membrane bilayers. CHAT-1 (human CDC50), a conserved chaperone, was required for the correct localization of TAT-1, and chat-1 inhibition strongly suppressed nekl defects. Using a PS sensor, we found that TAT-1 was required for the normal localization of PS at apical endosomes and that loss of TAT-1 led to aberrant endosomal morphologies. Consistent with this, TAT-1 localized to early endosomes and to recycling endosomes marked with RME-1, the C. elegans ortholog of the human EPS15 homology (EH) domain-containing protein, EHD1. TAT-1, PS biosynthesis, and the PS-binding protein RFIP-2 (human RAB11-FIP2) were all required for the normal localization of RME-1 to apical endosomes. Consistent with these proteins functioning together, inhibition of RFIP-2 or RME-1 led to the partial suppression of nekl molting defects, as did the inhibition of PS biosynthesis. Using the auxin-inducible degron system, we found that depletion of NEKL-2 or NEKL-3 led to defects in RME-1 localization and that a reduction in TAT-1 function partially restored RME-1 localization in NEKL-3-depleted cells. ARTICLE SUMMARY Endocytosis is an essential process required for the movement of proteins and lipids within cells. NEKL-2 and NEKL-3, two evolutionarily conserved proteins in the nematode Caenorhabditis elegans , are important regulators of endocytosis. In the current study, the authors describe a new functional link between the NEKLs and several proteins with known roles in endocytosis including TAT-1, a conserved enzyme that moves lipids between the bilayers of cellular membranes. As previous work implicated NEKLs in developmental defects and cancer, the present study can provide new insights into how the misregulation of endocytosis affects human health and disease.
Collapse
|
7
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
8
|
Binti S, Linder AG, Edeen PT, Fay DS. A conserved protein tyrosine phosphatase, PTPN-22, functions in diverse developmental processes in C. elegans. PLoS Genet 2024; 20:e1011219. [PMID: 39173071 PMCID: PMC11373843 DOI: 10.1371/journal.pgen.1011219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/04/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024] Open
Abstract
Protein tyrosine phosphatases non-receptor type (PTPNs) have been studied extensively in the context of the adaptive immune system; however, their roles beyond immunoregulation are less well explored. Here we identify novel functions for the conserved C. elegans phosphatase PTPN-22, establishing its role in nematode molting, cell adhesion, and cytoskeletal regulation. Through a non-biased genetic screen, we found that loss of PTPN-22 phosphatase activity suppressed molting defects caused by loss-of-function mutations in the conserved NIMA-related kinases NEKL-2 (human NEK8/NEK9) and NEKL-3 (human NEK6/NEK7), which act at the interface of membrane trafficking and actin regulation. To better understand the functions of PTPN-22, we carried out proximity labeling studies to identify candidate interactors of PTPN-22 during development. Through this approach we identified the CDC42 guanine-nucleotide exchange factor DNBP-1 (human DNMBP) as an in vivo partner of PTPN-22. Consistent with this interaction, loss of DNBP-1 also suppressed nekl-associated molting defects. Genetic analysis, co-localization studies, and proximity labeling revealed roles for PTPN-22 in several epidermal adhesion complexes, including C. elegans hemidesmosomes, suggesting that PTPN-22 plays a broad role in maintaining the structural integrity of tissues. Localization and proximity labeling also implicated PTPN-22 in functions connected to nucleocytoplasmic transport and mRNA regulation, particularly within the germline, as nearly one-third of proteins identified by PTPN-22 proximity labeling are known P granule components. Collectively, these studies highlight the utility of combined genetic and proteomic approaches for identifying novel gene functions.
Collapse
Affiliation(s)
- Shaonil Binti
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Adison G. Linder
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Philip T. Edeen
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - David S. Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| |
Collapse
|
9
|
Fouhy LE, Lai CQ, Parnell LD, Tucker KL, Ordovás JM, Noel SE. Genome-wide association study of osteoporosis identifies genetic risk and interactions with Dietary Approaches to Stop Hypertension diet and sugar-sweetened beverages in a Hispanic cohort of older adults. J Bone Miner Res 2024; 39:697-706. [PMID: 38484114 PMCID: PMC11472150 DOI: 10.1093/jbmr/zjae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/02/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Osteoporosis (OP) and low bone mass can be debilitating and costly conditions if not acted on quickly. This disease is also difficult to diagnose as the symptoms develop unnoticed until fracture occurs. Therefore, gaining understanding of the genetic risk associated with these conditions could be beneficial for health-care professionals in early detection and prevention. The Boston Puerto Rican Osteoporosis (BPROS) study, an ancillary study to the Boston Puerto Rican Health Study (BPRHS), collected information regarding bone and bone health. All bone measurements were taken during regular BPROS visits using dual-energy X-ray absorptiometry. The OP was defined as T-score ≤ -2.5 (≥2.5 SDs below peak bone mass). Dietary variables were collected at the second wave of the BPRHS via a food frequency questionnaire. We conducted genome-wide associations with bone outcomes, including BMD and OP for 978 participants. We also examined the interactions with dietary quality on the relationships between genotype and bone outcomes. We further tested if candidate genetic variants described in previous GWAS on OP and BMD contribute to OP risk in this population. Four variants were associated with OP: rs114829316 (IQ motif containing J gene), rs76603051, rs12214684 (melanin-concentrating hormone receptor 2 gene), and rs77303493 (Ras and Rab interactor 2 gene), and 2 variants were associated with BMD of lumbar spine (rs11855618, cingulin-like 1 gene) and hip (rs73480593, NTRK2), reaching the genome-wide significance threshold of P ≤ 5E-08. In a gene-diet interaction analysis, we found that 1 SNP showed a significant interaction with the overall Dietary Approaches to Stop Hypertension (DASH) score, and 7 SNPs with sugar-sweetened beverages (SSBs), a major contributor to the DASH score. This study identifies new genetic markers related to OP and BMD in older Hispanic adults. Additionally, we uncovered unique genetic markers that interact with dietary quality, specifically SSBs, in relation to bone health. These findings may be useful to guide early detection and preventative care.
Collapse
Affiliation(s)
- Liam E Fouhy
- Department of Biomedical and Nutritional Sciences and Center for Population Health, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Chao-Qiang Lai
- JM-US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, USDA ARS, Nutrition and Genomics Laboratory, Boston, MA 02111, USA
| | - Laurence D Parnell
- JM-US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, USDA ARS, Nutrition and Genomics Laboratory, Boston, MA 02111, USA
| | - Katherine L Tucker
- Department of Biomedical and Nutritional Sciences and Center for Population Health, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - José M Ordovás
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
- IMDEA-Food Institute, CEI UAM+CSIC, 28049 Madrid, Spain
| | - Sabrina E Noel
- Department of Biomedical and Nutritional Sciences and Center for Population Health, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
10
|
Beyrent E, Wei DT, Beacham GM, Park S, Zheng J, Paszek MJ, Hollopeter G. Dimerization activates the Inversin complex in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594761. [PMID: 38798613 PMCID: PMC11118560 DOI: 10.1101/2024.05.17.594761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Genetic, colocalization, and biochemical studies suggest that the ankyrin repeat-containing proteins Inversin (INVS) and ANKS6 function with the NEK8 kinase to control tissue patterning and maintain organ physiology. It is unknown whether these three proteins assemble into a static "Inversin complex" or one that adopts multiple bioactive forms. Through characterization of hyperactive alleles in C. elegans , we discovered that the Inversin complex is activated by dimerization. Genome engineering of an RFP tag onto the nematode homologs of INVS (MLT-4) and NEK8 (NEKL-2) induced a gain-of-function, cyst-like phenotype that was suppressed by monomerization of the fluorescent tag. Stimulated dimerization of MLT-4 or NEKL-2 using optogenetics was sufficient to recapitulate the phenotype of a constitutively active Inversin complex. Further, dimerization of NEKL-2 bypassed a lethal MLT-4 mutant, demonstrating that the dimeric form is required for function. We propose that dynamic switching between at least two functionally distinct states-an active dimer and an inactive monomer-gates the output of the Inversin complex.
Collapse
|
11
|
Binti S, Edeen PT, Fay DS. Loss of the Na + /K + cation pump CATP-1 suppresses nekl -associated molting defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585189. [PMID: 38559007 PMCID: PMC10979969 DOI: 10.1101/2024.03.15.585189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The conserved C. elegans protein kinases NEKL-2 and NEKL-3 regulate multiple steps of membrane trafficking and are required for larval molting. Through a forward genetic screen we identified a loss-of-function mutation in catp-1 as a suppressor of molting defects in synthetically lethal nekl-2; nekl-3 double mutants. catp-1 is predicted to encode a membrane- associated P4-type ATPase involved in Na + -K + exchange. Moreover, a mutation predicted to abolish CATP-1 ion-pump activity also suppressed nekl-2; nekl-3 mutants. Endogenously tagged CATP-1 was primarily expressed in epidermal (hypodermal) cells within punctate structures located at or near the apical plasma membrane. Through whole genome sequencing, we identified two additional nekl-2; nekl-3 suppressor strains containing coding-altering mutations in catp-1 but found that neither mutation, when introduced into nekl-2; nekl-3 mutants using CRISPR methods, was sufficient to elicit robust suppression of molting defects. Our data also suggested that the two catp-1 isoforms, catp-1a and catp-1b , may in some contexts be functionally redundant. On the basis of previously published studies, we tested the hypothesis that loss of catp-1 may suppress nekl -associated defects by inducing partial entry into the dauer pathway. Contrary to expectations, however, we failed to obtain evidence that loss of catp-1 suppresses nekl-2; nekl-3 defects through a dauer-associated mechanism or that loss of catp-1 leads to entry into the pre-dauer L2d stage. As such, loss of catp-1 may suppress nekl- associated molting and membrane trafficking defects by altering electrochemical gradients within membrane-bound compartments.
Collapse
|
12
|
Binti S, Linder AG, Edeen PT, Fay DS. A conserved protein tyrosine phosphatase, PTPN-22, functions in diverse developmental processes in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584557. [PMID: 38559252 PMCID: PMC10980042 DOI: 10.1101/2024.03.12.584557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Protein tyrosine phosphatases non-receptor type (PTPNs) have been studied extensively in the context of the adaptive immune system; however, their roles beyond immunoregulation are less well explored. Here we identify novel functions for the conserved C. elegans phosphatase PTPN-22, establishing its role in nematode molting, cell adhesion, and cytoskeletal regulation. Through a non-biased genetic screen, we found that loss of PTPN-22 phosphatase activity suppressed molting defects caused by loss-of-function mutations in the conserved NIMA-related kinases NEKL-2 (human NEK8/NEK9) and NEKL-3 (human NEK6/NEK7), which act at the interface of membrane trafficking and actin regulation. To better understand the functions of PTPN-22, we carried out proximity labeling studies to identify candidate interactors of PTPN-22 during development. Through this approach we identified the CDC42 guanine-nucleotide exchange factor DNBP-1 (human DNMBP) as an in vivo partner of PTPN-22. Consistent with this interaction, loss of DNBP-1 also suppressed nekl-associated molting defects. Genetic analysis, co-localization studies, and proximity labeling revealed roles for PTPN-22 in several epidermal adhesion complexes, including C. elegans hemidesmosomes, suggesting that PTPN-22 plays a broad role in maintaining the structural integrity of tissues. Localization and proximity labeling also implicated PTPN-22 in functions connected to nucleocytoplasmic transport and mRNA regulation, particularly within the germline, as nearly one-third of proteins identified by PTPN-22 proximity labeling are known P granule components. Collectively, these studies highlight the utility of combined genetic and proteomic approaches for identifying novel gene functions.
Collapse
Affiliation(s)
- Shaonil Binti
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming
| | - Adison G Linder
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming
| | - Philip T Edeen
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming
| | - David S Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming
| |
Collapse
|
13
|
Zhang J, Jiang Z, Chen C, Yao L, Gao Z, Cheng Z, Yan Y, Liu H, Shi A. Age-associated decline in RAB-10 efficacy impairs intestinal barrier integrity. NATURE AGING 2023; 3:1107-1127. [PMID: 37640905 DOI: 10.1038/s43587-023-00475-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/24/2023] [Indexed: 08/31/2023]
Abstract
The age-related decline in the ability of the intestinal barrier to maintain selective permeability can lead to various physiological disturbances. Adherens junctions play a vital role in regulating intestinal permeability, and their proper assembly is contingent upon endocytic recycling. However, how aging affects the recycling efficiency and, consequently, the integrity of adherens junctions remains unclear. Here we show that RAB-10/Rab10 functionality is reduced during senescence, leading to impaired adherens junctions in the Caenorhabditis elegans intestine. Mechanistic analysis reveals that SDPN-1/PACSINs is upregulated in aging animals, suppressing RAB-10 activation by competing with DENN-4/GEF. Consistently, SDPN-1 knockdown alleviates age-related abnormalities in adherens junction integrity and intestinal barrier permeability. Of note, the inhibitory effect of SDPN-1 on RAB-10 requires KGB-1/JUN kinase, which presumably enhances the potency of SDPN-1 by altering its oligomerization state. Together, by examining age-associated changes in endocytic recycling, our study sheds light on how aging can impact intestinal barrier permeability.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Zongyan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Changling Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Longfeng Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Ziwei Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Zihang Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yanling Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|