1
|
Roberts MD, Davis O, Josephs EB, Williamson RJ. K-mer-based Approaches to Bridging Pangenomics and Population Genetics. Mol Biol Evol 2025; 42:msaf047. [PMID: 40111256 PMCID: PMC11925024 DOI: 10.1093/molbev/msaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/10/2025] [Accepted: 02/04/2025] [Indexed: 03/12/2025] Open
Abstract
Many commonly studied species now have more than one chromosome-scale genome assembly, revealing a large amount of genetic diversity previously missed by approaches that map short reads to a single reference. However, many species still lack multiple reference genomes and correctly aligning references to build pangenomes can be challenging for many species, limiting our ability to study this missing genomic variation in population genetics. Here, we argue that k-mers are a very useful but underutilized tool for bridging the reference-focused paradigms of population genetics with the reference-free paradigms of pangenomics. We review current literature on the uses of k-mers for performing three core components of most population genetics analyses: identifying, measuring, and explaining patterns of genetic variation. We also demonstrate how different k-mer-based measures of genetic variation behave in population genetic simulations according to the choice of k, depth of sequencing coverage, and degree of data compression. Overall, we find that k-mer-based measures of genetic diversity scale consistently with pairwise nucleotide diversity (π) up to values of about π=0.025 (R2=0.97) for neutrally evolving populations. For populations with even more variation, using shorter k-mers will maintain the scalability up to at least π=0.1. Furthermore, in our simulated populations, k-mer dissimilarity values can be reliably approximated from counting bloom filters, highlighting a potential avenue to decreasing the memory burden of k-mer-based genomic dissimilarity analyses. For future studies, there is a great opportunity to further develop methods to identifying selected loci using k-mers.
Collapse
Affiliation(s)
- Miles D Roberts
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI 48824, USA
| | - Olivia Davis
- Department of Computer Science and Software Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803, USA
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Robert J Williamson
- Department of Computer Science and Software Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803, USA
- Department of Biology and Biomedical Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803, USA
| |
Collapse
|
2
|
Bell CG. Epigenomic insights into common human disease pathology. Cell Mol Life Sci 2024; 81:178. [PMID: 38602535 PMCID: PMC11008083 DOI: 10.1007/s00018-024-05206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The epigenome-the chemical modifications and chromatin-related packaging of the genome-enables the same genetic template to be activated or repressed in different cellular settings. This multi-layered mechanism facilitates cell-type specific function by setting the local sequence and 3D interactive activity level. Gene transcription is further modulated through the interplay with transcription factors and co-regulators. The human body requires this epigenomic apparatus to be precisely installed throughout development and then adequately maintained during the lifespan. The causal role of the epigenome in human pathology, beyond imprinting disorders and specific tumour suppressor genes, was further brought into the spotlight by large-scale sequencing projects identifying that mutations in epigenomic machinery genes could be critical drivers in both cancer and developmental disorders. Abrogation of this cellular mechanism is providing new molecular insights into pathogenesis. However, deciphering the full breadth and implications of these epigenomic changes remains challenging. Knowledge is accruing regarding disease mechanisms and clinical biomarkers, through pathogenically relevant and surrogate tissue analyses, respectively. Advances include consortia generated cell-type specific reference epigenomes, high-throughput DNA methylome association studies, as well as insights into ageing-related diseases from biological 'clocks' constructed by machine learning algorithms. Also, 3rd-generation sequencing is beginning to disentangle the complexity of genetic and DNA modification haplotypes. Cell-free DNA methylation as a cancer biomarker has clear clinical utility and further potential to assess organ damage across many disorders. Finally, molecular understanding of disease aetiology brings with it the opportunity for exact therapeutic alteration of the epigenome through CRISPR-activation or inhibition.
Collapse
Affiliation(s)
- Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
3
|
Cousins T, Tabin D, Patterson N, Reich D, Durvasula A. Accurate inference of population history in the presence of background selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576291. [PMID: 38313273 PMCID: PMC10838404 DOI: 10.1101/2024.01.18.576291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
All published methods for learning about demographic history make the simplifying assumption that the genome evolves neutrally, and do not seek to account for the effects of natural selection on patterns of variation. This is a major concern, as ample work has demonstrated the pervasive effects of natural selection and in particular background selection (BGS) on patterns of genetic variation in diverse species. Simulations and theoretical work have shown that methods to infer changes in effective population size over time (Ne(t)) become increasingly inaccurate as the strength of linked selection increases. Here, we introduce an extension to the Pairwise Sequentially Markovian Coalescent (PSMC) algorithm, PSMC+, which explicitly co-models demographic history and natural selection. We benchmark our method using forward-in-time simulations with BGS and find that our approach improves the accuracy of effective population size inference. Leveraging a high resolution map of BGS in humans, we infer considerable changes in the magnitude of inferred effective population size relative to previous reports. Finally, we separately infer Ne(t) on the X chromosome and on the autosomes in diverse great apes without making a correction for selection, and find that the inferred ratio fluctuates substantially through time in a way that differs across species, showing that uncorrected selection may be an important driver of signals of genetic difference on the X chromosome and autosomes.
Collapse
Affiliation(s)
- Trevor Cousins
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Daniel Tabin
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Nick Patterson
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Arun Durvasula
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Beichman AC, Robinson J, Lin M, Moreno-Estrada A, Nigenda-Morales S, Harris K. Evolution of the Mutation Spectrum Across a Mammalian Phylogeny. Mol Biol Evol 2023; 40:msad213. [PMID: 37770035 PMCID: PMC10566577 DOI: 10.1093/molbev/msad213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023] Open
Abstract
Although evolutionary biologists have long theorized that variation in DNA repair efficacy might explain some of the diversity of lifespan and cancer incidence across species, we have little data on the variability of normal germline mutagenesis outside of humans. Here, we shed light on the spectrum and etiology of mutagenesis across mammals by quantifying mutational sequence context biases using polymorphism data from thirteen species of mice, apes, bears, wolves, and cetaceans. After normalizing the mutation spectrum for reference genome accessibility and k-mer content, we use the Mantel test to deduce that mutation spectrum divergence is highly correlated with genetic divergence between species, whereas life history traits like reproductive age are weaker predictors of mutation spectrum divergence. Potential bioinformatic confounders are only weakly related to a small set of mutation spectrum features. We find that clock-like mutational signatures previously inferred from human cancers cannot explain the phylogenetic signal exhibited by the mammalian mutation spectrum, despite the ability of these signatures to fit each species' 3-mer spectrum with high cosine similarity. In contrast, parental aging signatures inferred from human de novo mutation data appear to explain much of the 1-mer spectrum's phylogenetic signal in combination with a novel mutational signature. We posit that future models purporting to explain the etiology of mammalian mutagenesis need to capture the fact that more closely related species have more similar mutation spectra; a model that fits each marginal spectrum with high cosine similarity is not guaranteed to capture this hierarchy of mutation spectrum variation among species.
Collapse
Affiliation(s)
- Annabel C Beichman
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jacqueline Robinson
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Meixi Lin
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Andrés Moreno-Estrada
- National Laboratory of Genomics for Biodiversity, Advanced Genomics Unit (UGA-LANGEBIO), CINVESTAV, Irapuato, Mexico
| | - Sergio Nigenda-Morales
- Department of Biological Sciences, California State University, San Marcos, San Marcos, CA, USA
| | - Kelley Harris
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Herbold Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|