1
|
Church SJ, Pulianmackal AJ, Dixon JA, Loftus LV, Amend SR, Pienta K, Cackowski FC, Buttitta LA. Oncogenic signaling in the Drosophila prostate-like accessory gland activates a pro-tumorigenic program in the absence of proliferation. Dis Model Mech 2025; 18:dmm052001. [PMID: 40304035 PMCID: PMC12067084 DOI: 10.1242/dmm.052001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
Drosophila models for tumorigenesis have revealed conserved mechanisms of signaling involved in mammalian cancer. Many of these models use highly mitotically active Drosophila tissues. Few Drosophila tumorigenesis models use adult tissues, when most cells are terminally differentiated and postmitotic. The Drosophila accessory glands are prostate-like tissues, and a model for prostate tumorigenesis using this tissue has been explored. In this prior model, oncogenic signaling was induced during the proliferative stages of accessory gland development, raising the question of how oncogenic activity impacts the terminally differentiated, postmitotic adult tissue. Here, we show that oncogenic signaling in the adult Drosophila accessory gland leads to activation of a conserved pro-tumorigenic program, similar to that of mitotic tissues, but in the absence of proliferation. In our experiments, oncogenic signaling in the adult gland led to tissue hypertrophy with nuclear anaplasia, in part through endoreduplication. Oncogene-induced gene expression changes in the adult Drosophila prostate-like model overlapped with those in polyploid prostate cancer cells after chemotherapy, which potentially mediate tumor recurrence. Thus, the adult accessory glands provide a useful model for aspects of prostate cancer progression that lack cellular proliferation.
Collapse
Affiliation(s)
- S. Jaimian Church
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ajai J. Pulianmackal
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph A. Dixon
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Luke V. Loftus
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah R. Amend
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kenneth Pienta
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Frank C. Cackowski
- Karmanos Cancer Institute and Wayne State University, Department of Oncology, Detroit, MI 48201, USA
| | - Laura A. Buttitta
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Ramesh NA, Box AM, Buttitta LA. Post-eclosion growth in the Drosophila ejaculatory duct is driven by Juvenile hormone signaling and is essential for male fertility. Dev Biol 2025; 519:122-141. [PMID: 39719194 PMCID: PMC12051359 DOI: 10.1016/j.ydbio.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
The Drosophila Ejaculatory duct (ED) is a secretory tissue of the somatic male reproductive system. The ED is involved in the secretion of seminal fluid components and ED-specific antimicrobial peptides that aid in fertility and the female post-mating response. The ED is composed of secretory epithelial cells surrounded by a layer of innervated contractile muscle. The ED grows in young adult males during the first 24 h post-eclosion, but the cell cycle status of the ED secretory cells and the role of post-eclosion ED growth have been unexplored. Here, we show that secretory cells of the adult Drosophila ED undergo variant cell cycles lacking mitosis called the endocycle, that lead to an increase in the cell and organ size of the ED post eclosion. The cells largely exit the endocycle by day 3 of adulthood, when the growth of the ED ceases, resulting in a tissue containing cells of ploidies ranging from 8C to 32C. The size of the ED directly correlates with the ploidy of the secretory cells, with additional ectopic endocycles increasing organ size. When endoreplication is compromised in ED secretory cells, it leads to reduced organ size, reduced protein synthesis and compromised fertility. We provide evidence that the growth and endocycling in the young adult male ED is dependent on Juvenile hormone (JH) signaling and we suggest that hormone-induced early adult endocycling is required for optimal fertility and function of the ED tissue. We propose to use the ED as a post-mitotic tissue model to study the role of polyploidy in regulating secretory tissue growth and function.
Collapse
Affiliation(s)
- Navyashree A Ramesh
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Allison M Box
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Laura A Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
von Saucken VE, Windner SE, Armetta G, Baylies MK. Postsynaptic BMP signaling regulates myonuclear properties in Drosophila larval muscles. J Cell Biol 2025; 224:e202404052. [PMID: 39475469 PMCID: PMC11530350 DOI: 10.1083/jcb.202404052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/13/2024] [Accepted: 10/13/2024] [Indexed: 11/04/2024] Open
Abstract
The syncytial mammalian muscle fiber contains a heterogeneous population of (myo)nuclei. At the neuromuscular junction (NMJ), myonuclei have specialized positioning and gene expression. However, it remains unclear how myonuclei are recruited and what regulates myonuclear output at the NMJ. Here, we identify specific properties of myonuclei located near the Drosophila larval NMJ. These synaptic myonuclei have increased size in relation to their surrounding cytoplasmic domain (size scaling), increased DNA content (ploidy), and increased levels of transcription factor pMad, a readout for BMP signaling activity. Our genetic manipulations show that local BMP signaling affects muscle size, nuclear size, ploidy, and NMJ size and function. In support, RNA sequencing analysis reveals that pMad regulates genes involved in muscle growth, ploidy (i.e., E2f1), and neurotransmission. Our data suggest that muscle BMP signaling instructs synaptic myonuclear output that positively shapes the NMJ synapse. This study deepens our understanding of how myonuclear heterogeneity supports local signaling demands to fine tune cellular function and NMJ activity.
Collapse
Affiliation(s)
- Victoria E. von Saucken
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell-Rockefeller-Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
- Biochemistry, Cell and Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Stefanie E. Windner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giovanna Armetta
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mary K. Baylies
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
4
|
Ramesh NA, Box AM, Buttitta LA. Post-eclosion growth in the Drosophila Ejaculatory Duct is driven by Juvenile Hormone signaling and is essential for male fertility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607650. [PMID: 39185157 PMCID: PMC11343125 DOI: 10.1101/2024.08.12.607650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The Drosophila Ejaculatory duct (ED) is a secretory tissue of the somatic male reproductive system. The ED is involved in the secretion of seminal fluid components and ED-specific antimicrobial peptides that aid in fertility and the female post-mating response. The ED is composed of secretory epithelial cells surrounded by a layer of innervated contractile muscle. The ED grows in young adult males during the first 24h post-eclosion, but the cell cycle status of the ED secretory cells and the role of post-eclosion ED growth have been unexplored. Here, we show that secretory cells of the adult Drosophila ED undergo variant cell cycles lacking mitosis called the endocycle, that lead to an increase in the cell and organ size of the ED post eclosion. The cells largely exit the endocycle by day 3 of adulthood, when the growth of the ED ceases, resulting in a tissue containing cells of ploidies ranging from 8C-32C. The size of the ED directly correlates with the ploidy of the secretory cells, with additional ectopic endocycles increasing organ size. When endoreplication is compromised in ED secretory cells, it leads to reduced organ size, reduced protein synthesis and compromised fertility. We provide evidence that the growth and endocycling in the young adult male ED is dependent on Juvenile hormone (JH) signaling and we suggest that hormone-induced early adult endocycling is required for optimal fertility and function of the ED tissue. We propose to use the ED as a post-mitotic tissue model to study the role of polyploidy in regulating secretory tissue growth and function.
Collapse
Affiliation(s)
- Navyashree A. Ramesh
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allison M. Box
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laura A. Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Box AM, Ramesh NA, Nandakumar S, Church SJ, Prasad D, Afrakhteh A, Taichman RS, Buttitta L. Cell cycle variants during Drosophila male accessory gland development. G3 (BETHESDA, MD.) 2024; 14:jkae089. [PMID: 38683731 PMCID: PMC11228851 DOI: 10.1093/g3journal/jkae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 01/31/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
The Drosophila melanogaster male accessory gland (AG) is a functional analog of the mammalian prostate and seminal vesicles containing two secretory epithelial cell types, termed main and secondary cells. This tissue is responsible for making and secreting seminal fluid proteins and other molecules that contribute to successful reproduction. The cells of this tissue are binucleate and polyploid, due to variant cell cycles that include endomitosis and endocycling during metamorphosis. Here, we provide evidence of additional cell cycle variants in this tissue. We show that main cells of the gland are connected by ring canals that form after the penultimate mitosis, and we describe an additional post-eclosion endocycle required for gland maturation that is dependent on juvenile hormone signaling. We present evidence that the main cells of the D. melanogaster AG undergo a unique cell cycle reprogramming throughout organ development that results in step-wise cell cycle truncations culminating in cells containing two octoploid nuclei with under-replicated heterochromatin in the mature gland. We propose this tissue as a model to study developmental and hormonal temporal control of cell cycle variants in terminally differentiating tissues.
Collapse
Affiliation(s)
- Allison M Box
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 1105 N. University Ave. Ann Arbor, MI 48109, USA
| | - Navyashree A Ramesh
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 1105 N. University Ave. Ann Arbor, MI 48109, USA
| | - Shyama Nandakumar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 1105 N. University Ave. Ann Arbor, MI 48109, USA
| | - Samuel Jaimian Church
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 1105 N. University Ave. Ann Arbor, MI 48109, USA
| | - Dilan Prasad
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 1105 N. University Ave. Ann Arbor, MI 48109, USA
| | - Ariana Afrakhteh
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 1105 N. University Ave. Ann Arbor, MI 48109, USA
| | - Russell S Taichman
- Department of Periodontology, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Laura Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 1105 N. University Ave. Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Church SJ, Pulianmackal AJ, Dixon JA, Loftus LV, Amend SR, Pienta K, Cackowski FC, Buttitta LA. Oncogenic signaling in the adult Drosophila prostate-like accessory gland leads to activation of a conserved pro-tumorigenic program, in the absence of proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593549. [PMID: 38853988 PMCID: PMC11160766 DOI: 10.1101/2024.05.10.593549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Drosophila models for tumorigenesis and metastasis have revealed conserved mechanisms of signaling that are also involved in mammalian cancer. Many of these models use the proliferating tissues of the larval stages of Drosophila development, when tissues are highly mitotically active, or stem cells are abundant. Fewer Drosophila tumorigenesis models use adult animals to initiate tumor formation when many tissues are largely terminally differentiated and postmitotic. The Drosophila accessory glands are prostate-like tissues and a model for some aspects of prostate tumorigenesis using this tissue has been explored. In this model, oncogenic signaling was induced during the proliferative stage of accessory gland development, raising the question of how oncogenic activity would impact the terminally differentiated and postmitotic adult tissue. Here, we show that oncogenic signaling in the adult Drosophila accessory gland leads to activation of a conserved pro-tumorigenic program, similar to that observed in mitotic larval tissues, but in the absence of proliferation. Oncogenic signaling in the adult postmitotic gland leads to tissue hyperplasia with nuclear anaplasia and aneuploidy through endoreduplication, which increases polyploidy and occasionally results in non-mitotic neoplastic-like extrusions. We compare gene expression changes in our Drosophila model with that of endocycling prostate cancer cells induced by chemotherapy, which potentially mediate tumor recurrence after treatment. Similar signaling pathways are activated in the Drosophila gland and endocycling cancer cells, suggesting the adult accessory glands provide a useful model for aspects of prostate cancer progression that do not involve cellular proliferation.
Collapse
Affiliation(s)
- S. Jaimian Church
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Ajai J. Pulianmackal
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Joseph A. Dixon
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Luke V. Loftus
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sarah R. Amend
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kenneth Pienta
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Frank C. Cackowski
- Karmanos Cancer Institute and Wayne State University Department of Oncology, Detroit, MI
| | - Laura A. Buttitta
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
7
|
Vialat M, Baabdaty E, Trousson A, Kocer A, Lobaccaro JMA, Baron S, Morel L, de Joussineau C. Cholesterol Dietary Intake and Tumor Cell Homeostasis Drive Early Epithelial Tumorigenesis: A Potential Modelization of Early Prostate Tumorigenesis. Cancers (Basel) 2024; 16:2153. [PMID: 38893271 PMCID: PMC11172085 DOI: 10.3390/cancers16112153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Epidemiological studies point to cholesterol as a possible key factor for both prostate cancer incidence and progression. It could represent a targetable metabolite as the most aggressive tumors also appear to be sensitive to therapies designed to decrease hypercholesterolemia, such as statins. However, it remains unknown whether and how cholesterol, through its dietary uptake and its metabolism, could be important for early tumorigenesis. Oncogene clonal induction in the Drosophila melanogaster accessory gland allows us to reproduce tumorigenesis from initiation to early progression, where tumor cells undergo basal extrusion to form extra-epithelial tumors. Here we show that these tumors accumulate lipids, and especially esterified cholesterol, as in human late carcinogenesis. Interestingly, a high-cholesterol diet has a limited effect on accessory gland tumorigenesis. On the contrary, cell-specific downregulation of cholesterol uptake, intracellular transport, or metabolic response impairs the formation of such tumors. Furthermore, in this context, a high-cholesterol diet suppresses this impairment. Interestingly, expression data from primary prostate cancer tissues indicate an early signature of redirection from cholesterol de novo synthesis to uptake. Taken together, these results reveal that during early tumorigenesis, tumor cells strongly increase their uptake and use of dietary cholesterol to specifically promote the step of basal extrusion. Hence, these results suggest the mechanism by which a reduction in dietary cholesterol could lower the risk and slow down the progression of prostate cancer.
Collapse
Affiliation(s)
- Marine Vialat
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Elissa Baabdaty
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Amalia Trousson
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Ayhan Kocer
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Jean-Marc A. Lobaccaro
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Silvère Baron
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Laurent Morel
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Cyrille de Joussineau
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| |
Collapse
|
8
|
von Saucken VE, Windner SE, Baylies MK. Postsynaptic BMP signaling regulates myonuclear properties in Drosophila larval muscles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588944. [PMID: 38645063 PMCID: PMC11030338 DOI: 10.1101/2024.04.10.588944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The syncytial mammalian muscle fiber contains a heterogeneous population of (myo)nuclei. At the neuromuscular junction (NMJ), myonuclei have specialized positioning and gene expression. However, it remains unclear how myonuclei are recruited and what regulates myonuclear output at the NMJ. Here, we identify specific properties of myonuclei located near the Drosophila larval NMJ. These synaptic myonuclei have increased size in relation to their surrounding cytoplasmic domain (scaling), increased DNA content (ploidy), and increased levels of transcription factor pMad, a readout for BMP signaling activity. Our genetic manipulations show local BMP signaling affects muscle size, nuclear size, ploidy, and NMJ size and function. In support, RNA sequencing analysis reveals that pMad regulates genes involved in muscle growth, ploidy (i.e., E2f1), and neurotransmission. Our data suggest that muscle BMP signaling instructs synaptic myonuclear output that then positively shapes the NMJ synapse. This study deepens our understanding of how myonuclear heterogeneity supports local signaling demands to fine tune cellular function and NMJ activity.
Collapse
Affiliation(s)
- Victoria E. von Saucken
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
- Weill Cornell-Rockefeller-Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065 USA
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065 USA
| | - Stefanie E. Windner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Mary K. Baylies
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| |
Collapse
|