1
|
Yang S, Song J, Deng M, Cheng S. Comprehensive analysis of aging-related gene expression patterns and identification of potential intervention targets. Postgrad Med J 2025; 101:219-231. [PMID: 39357883 DOI: 10.1093/postmj/qgae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/17/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE This study aims to understand the molecular mechanisms underlying the aging process and identify potential interventions to mitigate age-related decline and diseases. METHODS This study utilized the GSE168753 dataset to conduct comprehensive differential gene expression analysis and co-expression module analysis. Machine learning and Mendelian randomization analyses were employed to identify core aging-associated genes and potential drug targets. Molecular docking simulations and mediation analysis were also performed to explore potential compounds and mediators involved in the aging process. RESULTS The analysis identified 4164 differentially expressed genes, with 1893 upregulated and 2271 downregulated genes. Co-expression analysis revealed 21 modules, including both positively and negatively correlated modules between older age and younger age groups. Further exploration identified 509 aging-related genes with distinct biological functions. Machine learning and Mendelian randomization analyses identified eight core genes associated with aging, including DPP9, GNAZ, and RELL2. Molecular docking simulations suggested resveratrol, folic acid, and ethinyl estradiol as potential compounds capable of attenuating aging through modulation of RELL2 expression. Mediation analysis indicated that eosinophil counts and neutrophil count might act as mediators in the causal relationship between genes and aging-related indicators. CONCLUSION This comprehensive study provides valuable insights into the molecular mechanisms of aging and offers important implications for the development of anti-aging therapeutics. Key Messages What is already known on this topic - Prior research outlines aging's complexity, necessitating precise molecular targets for intervention. What this study adds - This study identifies novel aging-related genes, potential drug targets, and therapeutic compounds, advancing our understanding of aging mechanisms. How this study might affect research, practice, or policy - Findings may inform targeted therapies for age-related conditions, influencing future research and clinical practices.
Collapse
Affiliation(s)
- Sha Yang
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China
| | - Jianning Song
- Interventional Department, GuiQian International General Hospital, Guiyang, China
| | - Min Deng
- The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400000, China
| | - Si Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
2
|
Lv X, Sun X, Gao Y, Song X, Hu X, Gong L, Han L, He M, Wei M. Targeting RNA splicing modulation: new perspectives for anticancer strategy? J Exp Clin Cancer Res 2025; 44:32. [PMID: 39885614 PMCID: PMC11781073 DOI: 10.1186/s13046-025-03279-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
The excision of introns from pre-mRNA is a crucial process in the expression of the majority of genes. Alternative splicing allows a single gene to generate diverse mRNA and protein products. Aberrant RNA splicing is recognized as a molecular characteristic present in almost all types of tumors. Therefore, identifying cancer-specific subtypes from aberrant processing offers new opportunities for therapeutic development. Numerous splicing modulators, each utilizing different mechanisms, have been developed as promising anticancer therapies, some of which are in clinical trials. In this review, we summarize the splice-altered signatures of cancer cell transcriptomes and the contributions of splicing aberrations to tumorigenesis and progression. Especially, we discuss current and emerging RNA splicing-targeted strategies for cancer therapy, including pharmacological approaches and splice-switching antisense oligonucleotides (ASOs). Finally, we address the challenges and opportunities in translating these findings into clinical practice.
Collapse
Affiliation(s)
- Xuemei Lv
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China
- Central Laboratory, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China
| | - Yang Gao
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xiaoyun Hu
- Scientific Experimental Center, School of Pharmacy, China Medical University, Shenyang, 110122, P. R. China
| | - Lang Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China
| | - Li Han
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China.
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China.
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China.
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
- Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, China.
| |
Collapse
|
3
|
Batiste M, Joy B, Yee CK, Cho L, Christensen A, Abed I, Nguyen K, Yanumula A, Chang H, Cho ED, Wang W, Chou E, Chang EH, Shyu YL, Abram A, Alcaide J, Zhou J, Gillespie B, Senderovich M, Cusick GA, Le AV, Hoang F, Shi Y, Mohamed E, Cusick JK. RELT Is Upregulated in Breast Cancer and Induces Death in Breast Cancer Cells. Biomedicines 2024; 12:2667. [PMID: 39767574 PMCID: PMC11727564 DOI: 10.3390/biomedicines12122667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Receptor Expressed in Lymphoid Tissues (RELT) is a TNFRSF member that has two paralogs, RELL1 and RELL2; the three proteins are collectively referred to as RELT family members (RELTfms). METHODS We sought to evaluate RELT expression in cancerous cells by using real-time PCR, western blotting, flow cytometry, and immunohistochemistry (IHC). The mechanism of RELT-induced cell death was assessed by western blotting, flow cytometry, luciferase assays, and morphology staining. RELT localization was detected through immunofluorescence and western blotting, and co-immunoprecipitation was used to test whether a mutated RELT interacts with the OXSR1 kinase. RESULTS RELT and RELL1 protein expression was significantly elevated in cell lines representing breast and lung cancer, whereas RELL2 protein expression was relatively consistent across different cell lines. The surface expression of RELT was highest in monocytes. IHC staining revealed increased RELT expression in malignant breast cancer biopsies compared to patient-matched benign tissue. RELTfm overexpression induced death in MDA-MB-231 (231) breast cancer cells, accompanied by increased phosphatidylserine externalization and Caspase-3/7 activation. The co-transfection of plasmids predicted to block the phosphorylation of RELT by the OXSR1 kinase did not abrogate RELT-induced apoptosis, indicating that the activation of p38 by RELT through the OXSR1 kinase is not required for RELT-induced cell death. Interestingly, nuclear localization of RELT was detected in 231 and HEK-293 cells. CONCLUSIONS These results demonstrate that RELT induces death in breast cancer cells through an apoptotic pathway that does not require OXSR1 phosphorylation and that RELT possesses the ability to translocate to the nucleus, a novel finding that warrants further investigation.
Collapse
Affiliation(s)
- Maryann Batiste
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Bethany Joy
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Cara K. Yee
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Luke Cho
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Ashley Christensen
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Ihab Abed
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Kailey Nguyen
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Anusri Yanumula
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Hannah Chang
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Evan D. Cho
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Wenjia Wang
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Emily Chou
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Esther H. Chang
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Yennie L. Shyu
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Alyssa Abram
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Jessa Alcaide
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - James Zhou
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Brittany Gillespie
- Masters of Pharmaceutical Sciences Department, College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
| | - Michelle Senderovich
- Masters of Pharmaceutical Sciences Department, College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
| | - Gianne Almeida Cusick
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Ai-Vy Le
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Frank Hoang
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Yihui Shi
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Eslam Mohamed
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
- Masters of Pharmaceutical Sciences Department, College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
| | - John K. Cusick
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| |
Collapse
|
4
|
Zhang J, Xu X, Deng H, Liu L, Xiang Y, Feng J. Overcoming cancer drug-resistance calls for novel strategies targeting abnormal alternative splicing. Pharmacol Ther 2024; 261:108697. [PMID: 39025436 DOI: 10.1016/j.pharmthera.2024.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Abnormal gene alternative splicing (AS) events are strongly associated with cancer progression. Here, we summarize AS events that contribute to the development of drug resistance and classify them into three categories: alternative cis-splicing (ACS), alternative trans-splicing (ATS), and alternative back-splicing (ABS). The regulatory mechanisms underlying AS processes through cis-acting regulatory elements and trans-acting factors are comprehensively described, and the distinct functions of spliced variants, including linear spliced variants derived from ACS, chimeric spliced variants arising from ATS, and circRNAs generated through ABS, are discussed. The identification of dysregulated spliced variants, which contribute to drug resistance and hinder effective cancer treatment, suggests that abnormal AS processes may together serve as a precise regulatory mechanism enabling drug-resistant cancer cell survival or, alternatively, represent an evolutionary pathway for cancer cells to adapt to changes in the external environment. Moreover, this review summarizes recent advancements in treatment approaches targeting AS-associated drug resistance, focusing on cis-acting regulatory elements, trans-acting factors, and specific spliced variants. Collectively, gaining an in-depth understanding of the mechanisms underlying aberrant alternative splicing events and developing strategies to target this process hold great promise for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xinyu Xu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hongwei Deng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yuancai Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou city, Sichuan 646000, China.
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
5
|
Yue Q, Wang Z, Shen Y, Lan Y, Zhong X, Luo X, Yang T, Zhang M, Zuo B, Zeng T, Lu J, Wang Y, Liu B, Guo H. Histone H3K9 Lactylation Confers Temozolomide Resistance in Glioblastoma via LUC7L2-Mediated MLH1 Intron Retention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309290. [PMID: 38477507 PMCID: PMC11109612 DOI: 10.1002/advs.202309290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/03/2024] [Indexed: 03/14/2024]
Abstract
Temozolomide (TMZ) resistance remains the major obstacle in the treatment of glioblastoma (GBM). Lactylation is a novel post-translational modification that is involved in various tumors. However, whether lactylation plays a role in GBM TMZ resistance remains unclear. Here it is found that histone H3K9 lactylation (H3K9la) confers TMZ resistance in GBM via LUC7L2-mediated intron 7 retention of MLH1. Mechanistically, lactylation is upregulated in recurrent GBM tissues and TMZ-resistant cells, and is mainly concentrated in histone H3K9. Combined multi-omics analysis, including CUT&Tag, SLAM-seq, and RNA-seq, reveals that H3K9 lactylation is significantly enriched in the LUC7L2 promoter and activates LUC7L2 transcription to promote its expression. LUC7L2 mediates intron 7 retention of MLH1 to reduce MLH1 expression, and thereby inhibit mismatch repair (MMR), ultimately leading to GBM TMZ resistance. Of note, it is identified that a clinical anti-epileptic drug, stiripentol, which can cross the blood-brain barrier and inhibit lactate dehydrogenase A/B (LDHA/B) activity, acts as a lactylation inhibitor and renders GBM cells more sensitive to TMZ in vitro and in vivo. These findings not only shed light on the mechanism of lactylation in GBM TMZ resistance but also provide a potential combined therapeutic strategy for clinical GBM treatment.
Collapse
Affiliation(s)
- Qu Yue
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Zhao Wang
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Yixiong Shen
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Yufei Lan
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Xiangyang Zhong
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Xin Luo
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Tao Yang
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Manqing Zhang
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Boming Zuo
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Tianci Zeng
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Jiankun Lu
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Yuankai Wang
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Boyang Liu
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Hongbo Guo
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| |
Collapse
|
6
|
Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther 2024; 9:26. [PMID: 38302461 PMCID: PMC10835012 DOI: 10.1038/s41392-024-01734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Alternative splicing (AS) serves as a pivotal mechanism in transcriptional regulation, engendering transcript diversity, and modifications in protein structure and functionality. Across varying tissues, developmental stages, or under specific conditions, AS gives rise to distinct splice isoforms. This implies that these isoforms possess unique temporal and spatial roles, thereby associating AS with standard biological activities and diseases. Among these, AS-related RNA-binding proteins (RBPs) play an instrumental role in regulating alternative splicing events. Under physiological conditions, the diversity of proteins mediated by AS influences the structure, function, interaction, and localization of proteins, thereby participating in the differentiation and development of an array of tissues and organs. Under pathological conditions, alterations in AS are linked with various diseases, particularly cancer. These changes can lead to modifications in gene splicing patterns, culminating in changes or loss of protein functionality. For instance, in cancer, abnormalities in AS and RBPs may result in aberrant expression of cancer-associated genes, thereby promoting the onset and progression of tumors. AS and RBPs are also associated with numerous neurodegenerative diseases and autoimmune diseases. Consequently, the study of AS across different tissues holds significant value. This review provides a detailed account of the recent advancements in the study of alternative splicing and AS-related RNA-binding proteins in tissue development and diseases, which aids in deepening the understanding of gene expression complexity and offers new insights and methodologies for precision medicine.
Collapse
Affiliation(s)
- Yining Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Haoyu Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
- Shanghai Bone Tumor Institution, 200000, Shanghai, China.
| |
Collapse
|
7
|
Mi K, Zeng L, Chen Y, Ning J, Zhang S, Zhao P, Yang S. DHX38 enhances proliferation, metastasis, and EMT progression in NSCLC through the G3BP1-mediated MAPK pathway. Cell Signal 2024; 113:110962. [PMID: 37931691 DOI: 10.1016/j.cellsig.2023.110962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a prevalent and aggressive malignancy with limited therapeutic options. Despite advances in treatment, NSCLC remains a major cause of cancer-related death worldwide. Tumor heterogeneity and therapy resistance present challenges in achieving remission. Research is needed to provide molecular insights, identify new targets, and develop personalized therapies to improve outcomes. METHODS The protein expression level and prognostic value of DHX38 in NSCLC were explored in public databases and NSCLC tissue microarrays. DHX38 knockdown and overexpression cell lines were established to evaluate the role of DHX38 in NSCLC. In vitro and in vivo functional experiments were conducted to assess proliferation and metastasis. To determine the underlying molecular mechanism of DHX38 in human NSCLC, proteins that interact with DHX38 were isolated by IP and identified by LC-MS. KEGG analysis of DHX38-interacting proteins revealed the molecular pathway of DHX38 in human NSCLC. Abnormal pathway activation was verified by Western blot analysis and immunohistochemical (IHC) staining. A molecule-specific inhibitor was further used to explore potential therapeutic targets for NSCLC. The pathway-related target that interacted with DHX38 was verified by co-immunoprecipitation(co-IP) experiments. In cell lines with stable DHX38 overexpression, the target protein was knocked down to explore its complementary effect on DHX38 overexpression-induced tumor promotion. RESULTS The protein expression of DHX38 was increased in NSCLC, and patients with high DHX38 expression levels had a poor prognosis. In vitro and in vivo experiments showed that DHX38 promoted the proliferation, migration and invasion of human NSCLC cells. DHX38 overexpression caused abnormal activation of the MAPK pathway and promoted epithelial-mesenchymal transition (EMT) in tumours. SCH772984, a novel specific ERK1/2 inhibitor, significantly reduced the increases in cell proliferation, migration and invasion caused by DHX38 overexpression. The co-IP experiments confirmed that DHX38 interacted with the Ras GTPase-activating protein-binding protein G3BP1. DHX38 regulated the expression of G3BP1. Knocking down G3BP1 in cells with stable DHX38 overexpression prevented DHX38-induced tumor cell proliferation, migration and invasion. Silencing G3BP1 reversed the MAPK pathway activation and EMT induced by DHX38 overexpression. CONCLUSION In NSCLC, DHX38 functions as a tumor promoter. DHX38 modulates G3BP1 expression, leading to the activation of the MAPK signaling pathway, thus promoting tumor cell proliferation, metastasis, and the progression of epithelial-mesenchymal transition (EMT) in non-small cell lung cancer.
Collapse
Affiliation(s)
- Ke Mi
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lizhong Zeng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yang Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jingya Ning
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Siyuan Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peilin Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Cusick JK, Alcaide J, Shi Y. The RELT Family of Proteins: An Increasing Awareness of Their Importance for Cancer, the Immune System, and Development. Biomedicines 2023; 11:2695. [PMID: 37893069 PMCID: PMC10603948 DOI: 10.3390/biomedicines11102695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
This review highlights Receptor Expressed in Lymphoid Tissues (RELT), a Tumor Necrosis Factor Superfamily member, and its two paralogs, RELL1 and RELL2. Collectively, these three proteins are referred to as RELTfms and have gained much interest in recent years due to their association with cancer and other human diseases. A thorough knowledge of their physiological functions, including the ligand for RELT, is lacking, yet emerging evidence implicates RELTfms in a variety of processes including cytokine signaling and pathways that either promote cell death or survival. T cells from mice lacking RELT exhibit increased responses against tumors and increased inflammatory cytokine production, and multiple lines of evidence indicate that RELT may promote an immunosuppressive environment for tumors. The relationship of individual RELTfms in different cancers is not universal however, as evidence indicates that individual RELTfms may be risk factors in certain cancers yet appear to be protective in other cancers. RELTfms are important for a variety of additional processes related to human health including microbial pathogenesis, inflammation, behavior, reproduction, and development. All three proteins have been strongly conserved in all vertebrates, and this review aims to provide a clearer understanding of the current knowledge regarding these interesting proteins.
Collapse
Affiliation(s)
- John K. Cusick
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | - Jessa Alcaide
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | - Yihui Shi
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
- California Pacific Medical Center Research Institute, Sutter Bay Hospitals, San Francisco, CA 94107, USA
| |
Collapse
|