1
|
Magers B, Usmani M, Brumfield KD, Huq A, Colwell RR, Jutla AS. Assessment of water scarcity as a risk factor for cholera outbreaks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179412. [PMID: 40250229 DOI: 10.1016/j.scitotenv.2025.179412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/04/2025] [Accepted: 04/09/2025] [Indexed: 04/20/2025]
Abstract
INTRODUCTION Increasing aridity and incidence of droughts pose a significant threat to human health, primarily in exacerbating water scarcity, and is projected to become more frequent and severe as a result of related environmental changes in many regions globally. Concomitantly, water scarcity will force populations to utilize potentially contaminated water sources, hence increasing exposure to waterborne diseases, notably cholera. Proliferation of Vibrio cholerae, causative agent of cholera, is driven by environmental factors. Notably, temperature and precipitation have been employed in providing predictive awareness of cholera, allowing early warning and mitigation. The impact of droughts on incidence and spread of cholera is less understood. METHODS This study aimed to quantify relationships among temperature, precipitation, and droughts as a basis for establishing the connection of environmental parameters and outbreaks of cholera. Thirteen cholera outbreaks between 2003 and 2023 in four African countries (Ethiopia, Kenya, Nigeria, and Senegal) were assessed using odds ratio and k-means clustering analysis. RESULTS Cholera outbreaks were 3.07 (95 % CI: [0.95, 9.88]) times more likely when drought conditions (negative precipitation anomalies, positive temperature anomalies, and negative Standardized Precipitation-Evapotranspiration Index) were present, compared to their absence. When excess rainfall was also considered, the odds ratio increased to 3.50 (95 % CI: [1.03, 11.90]). Complementary evidence obtained using k-means clustering analysis supported the conclusion that outbreaks of cholera were common during drought conditions. CONCLUSIONS Considering the last few decades with increased severity and frequency of droughts in cholera-impacted regions, climate projections indicate the threat of cholera outbreaks will continue, especially noting increasing reports of cholera globally. Hence, predictive intelligence systems for rapid risk assessment, with respect to climate, drought, and human health, are warranted.
Collapse
Affiliation(s)
- Bailey Magers
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Moiz Usmani
- Civil, Construction and Environmental Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kyle D Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA; University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA; University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| | - Antarpreet S Jutla
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Hulland EN, Charpignon ML, El Hayek GY, Zhao L, Desai AN, Majumder MS. Estimating time-varying cholera transmission and oral cholera vaccine effectiveness in Haiti and Cameroon, 2021-2023. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.12.24308792. [PMID: 39185512 PMCID: PMC11343247 DOI: 10.1101/2024.06.12.24308792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
In 2023, cholera affected approximately 1 million people and caused more than 5000 deaths globally, predominantly in low-income and conflict settings. In recent years, the number of new cholera outbreaks has grown rapidly. Further, ongoing cholera outbreaks have been exacerbated by conflict, climate change, and poor infrastructure, resulting in prolonged crises. As a result, the demand for treatment and intervention is quickly outpacing existing resource availability. Prior to improved water and sanitation systems, cholera, a disease primarily transmitted via contaminated water sources, also routinely ravaged high-income countries. Crumbling infrastructure and climate change are now putting new locations at risk - even in high-income countries. Thus, understanding the transmission and prevention of cholera is critical. Combating cholera requires multiple interventions, the two most common being behavioral education and water treatment. Two-dose oral cholera vaccination (OCV) is often used as a complement to these interventions. Due to limited supply, countries have recently switched to single-dose vaccines (OCV1). One challenge lies in understanding where to allocate OCV1 in a timely manner, especially in settings lacking well-resourced public health surveillance systems. As cholera occurs and propagates in such locations, timely, accurate, and openly accessible outbreak data are typically inaccessible for disease modeling and subsequent decision-making. In this study, we demonstrated the value of open-access data to rapidly estimate cholera transmission and vaccine effectiveness. Specifically, we obtained non-machine readable (NMR) epidemic curves for recent cholera outbreaks in two countries, Haiti and Cameroon, from figures published in situation and disease outbreak news reports. We used computational digitization techniques to derive weekly counts of cholera cases, resulting in nominal differences when compared against the reported cumulative case counts (i.e., a relative error rate of 5.67% in Haiti and 0.54% in Cameroon). Given these digitized time series, we leveraged EpiEstim-an open-source modeling platform-to derive rapid estimates of time-varying disease transmission via the effective reproduction number (R t ). To compare OCV1 effectiveness in the two considered countries, we additionally used VaxEstim, a recent extension of EpiEstim that facilitates the estimation of vaccine effectiveness via the relation among three inputs: the basic reproduction number (R 0 ),R t , and vaccine coverage. Here, with Haiti and Cameroon as case studies, we demonstrated the first implementation of VaxEstim in low-resource settings. Importantly, we are the first to use VaxEstim with digitized data rather than traditional epidemic surveillance data. In the initial phase of the outbreak, weekly rolling average estimates ofR t were elevated in both countries: 2.60 in Haiti [95% credible interval: 2.42-2.79] and 1.90 in Cameroon [1.14-2.95]. These values are largely consistent with previous estimates ofR 0 in Haiti, where average values have ranged from 1.06 to 3.72, and in Cameroon, where average values have ranged from 1.10 to 3.50. In both Haiti and Cameroon, this initial period of high transmission preceded a longer period during whichR t oscillated around the critical threshold of 1. Our results derived from VaxEstim suggest that Haiti had higher OCV1 effectiveness than Cameroon (75.32% effective [54.00-86.39%] vs. 54.88% [18.94-84.90%]). These estimates of OCV1 effectiveness are generally aligned with those derived from field studies conducted in other countries. Thus, our case study reinforces the validity of VaxEstim as an alternative to costly, time-consuming field studies of OCV1 effectiveness. Indeed, prior work in South Sudan, Bangladesh, and the Democratic Republic of the Congo reported OCV1 effectiveness ranging from approximately 40% to 80%. This work underscores the value of combining NMR sources of outbreak case data with computational techniques and the utility of VaxEstim for rapid, inexpensive estimation of vaccine effectiveness in data-poor outbreak settings.
Collapse
Affiliation(s)
- Erin N Hulland
- Computational Health Informatics Program, Boston Children's Hospital & Harvard Medical School, Boston, MA, United States
- Comp Epi Dispersed Volunteer Research Network, Boston, MA, United States
| | - Marie-Laure Charpignon
- Comp Epi Dispersed Volunteer Research Network, Boston, MA, United States
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ghinwa Y El Hayek
- Comp Epi Dispersed Volunteer Research Network, Boston, MA, United States
| | - Lihong Zhao
- Comp Epi Dispersed Volunteer Research Network, Boston, MA, United States
- Department of Mathematics, Virginia Tech, Blacksburg, VA, United States
| | - Angel N Desai
- Comp Epi Dispersed Volunteer Research Network, Boston, MA, United States
- Department of Internal Medicine, Division of Infectious Diseases, University of California, Davis Health Medical Center, Sacramento, CA, United States
| | - Maimuna S Majumder
- Computational Health Informatics Program, Boston Children's Hospital & Harvard Medical School, Boston, MA, United States
- Comp Epi Dispersed Volunteer Research Network, Boston, MA, United States
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW We review current knowledge on the burden, impact and prevention of cholera among children who bear the brunt of cholera outbreaks in sub-Saharan Africa. RECENT FINDINGS Several studies have shown that recent outbreaks of cholera among African children are related to minimal progress in basic sanitation and infrastructural development. Poor hygiene practices such as open defecation and indiscriminate disposal of feces are still common in many parts of Africa. SUMMARY Cholera case fatality rates in sub-Saharan Africa remain unacceptably high. Children are disproportionately affected and bear the brunt of the disease. Controlling outbreaks of cholera among African children will require a synchronous implementation of the five levels of disease prevention.
Collapse
Affiliation(s)
- Agozie C Ubesie
- Department of Pediatrics, College of Medicine, University of Nigeria
| | - Chioma L Odimegwu
- Department of Pediatrics, College of Medicine, University of Nigeria
| | - Echezona Edozie Ezeanolue
- Center for Translation and Implementation Research, College of Medicine, University of Nigeria, Nsukka
- IVAN Research Institute, Enugu, Nigeria
- Healthy Sunrise Foundation, Las Vegas, USA
| |
Collapse
|