1
|
Christofidou P, Bell CG. The predictive power of profiling the DNA methylome in human health and disease. Epigenomics 2025:1-12. [PMID: 40346834 DOI: 10.1080/17501911.2025.2500907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/28/2025] [Indexed: 05/12/2025] Open
Abstract
Early and accurate diagnosis significantly improves the chances of disease survival. DNA methylation (5mC), the major DNA modification in the human genome, is now recognized as a biomarker of immense clinical potential. This is due to its ability to delineate precisely cell-type, quantitate both internal and external exposures, as well as tracking chronological and biological components of the aging process. Here, we survey the current state of DNA methylation as a biomarker and predictor of traits and disease. This includes Epigenome-wide association study (EWAS) findings that inform Methylation Risk Scores (MRS), EpiScore long-term estimators of plasma protein levels, and machine learning (ML) derived DNA methylation clocks. These all highlight the significant benefits of accessible peripheral blood DNA methylation as a surrogate measure. However, detailed DNA methylation biopsy analysis in real-time is also empowering pathological diagnosis. Furthermore, moving forward, in this multi-omic and biobank scale era, novel insights will be enabled by the amplified power of increasing sample sizes and data integration.
Collapse
Affiliation(s)
- Paraskevi Christofidou
- William Harvey Research Institute, Barts & The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- QMUL Centre for Epigenetics, Queen Mary University of London, London, UK
| | - Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- QMUL Centre for Epigenetics, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Munns S, Brown A, Buckberry S. Type-2 diabetes epigenetic biomarkers: present status and future directions for global and Indigenous health. Front Mol Biosci 2025; 12:1502640. [PMID: 40356723 PMCID: PMC12066322 DOI: 10.3389/fmolb.2025.1502640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/03/2025] [Indexed: 05/15/2025] Open
Abstract
Type-2 diabetes is a systemic condition with rising global prevalence, disproportionately affecting Indigenous communities worldwide. Recent advances in epigenomics methods, particularly in DNA methylation detection, have enabled the discovery of associations between epigenetic changes and Type-2 diabetes. In this review, we summarise DNA methylation profiling methods, and discuss how these technologies can facilitate the discovery of epigenomic biomarkers for Type-2 diabetes. We critically evaluate previous DNA methylation biomarker studies, particularly those using microarray platforms, and advocate for a shift towards sequencing-based approaches to improve genome-wide coverage. Furthermore, we emphasise the need for biomarker studies that include genetically diverse populations, especially Indigenous communities who are significantly impacted by Type-2 diabetes. We discuss research approaches and ethical considerations that can better facilitate Type-2 diabetes biomarker development to ensure that future genomics-based precision medicine efforts deliver equitable health outcomes. We propose that by addressing these gaps, future research can better capture the genetic and environmental complexities of Type-2 diabetes among populations at disproportionate levels of risk, ultimately leading to more effective diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Sarah Munns
- The Kids Research Institute Australia, Perth, WA, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, Australia
| | - Alex Brown
- The Kids Research Institute Australia, Perth, WA, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, Australia
| | - Sam Buckberry
- The Kids Research Institute Australia, Perth, WA, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
3
|
Hung RKY, Costeira R, Chen J, Schlosser P, Grundner-Culemann F, Booth JW, Sharpe CC, Bramham K, Sun YV, Marconi VC, Teumer A, Winkler CA, Post FA, Bell JT. Epigenetic associations with kidney disease in individuals of African ancestry with APOL1 high-risk genotypes and HIV. Nephrol Dial Transplant 2025; 40:997-1006. [PMID: 39448372 PMCID: PMC12035534 DOI: 10.1093/ndt/gfae237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Apolipoprotein L1 (APOL1) high-risk variants are major determinants of chronic kidney disease (CKD) in people of African ancestry. Previous studies have identified epigenetic changes in relation to kidney function and CKD, but not in individuals with APOL1 high-risk genotypes. We conducted an epigenome-wide analysis of CKD and estimated glomerular filtration rate (eGFR) in in people of African ancestry and APOL1 high-risk genotypes with HIV. METHODS DNA methylation profiles from peripheral blood mononuclear cells of 119 individuals with APOL1 high-risk genotypes (mean age 48 years, 49% female, median CD4 count 515 cells/mm3, 90% HIV-1 RNA <200 copies/mL, 23% with CKD) were obtained by Illumina MethylationEPIC BeadChip. Differential methylation analysis of CKD considered technical and biological covariates. We also assessed associations with eGFR. Replication was pursued in three independent multi-ancestry cohorts with and without HIV. RESULTS DNA methylation levels at 14 regions were associated with CKD. The strongest signals were located in SCARB1, DNAJC5B and C4orf50. Seven of the 14 signals also associated with eGFR, and most showed evidence for a genetic basis. Four signals (in SCARB1, FRMD4A, CSRNP1 and RAB38) replicated in other cohorts, and 11 previously reported epigenetic signals for kidney function or CKD replicated in our cohort. We found no significant DNA methylation signals in, or near, the APOL1 promoter region. CONCLUSIONS We report several novel as well as previously reported epigenetic associations with CKD and eGFR in individuals with HIV having APOL1 high-risk genotypes. Further investigation of pathways linking DNA methylation to APOL1 nephropathies is warranted.
Collapse
Affiliation(s)
- Rachel K Y Hung
- Department of HIV and Sexual Health, King's College Hospital, London, UK
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Ricardo Costeira
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Junyu Chen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Franziska Grundner-Culemann
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - John W Booth
- Department of Renal Medicine, Bart's Health NHS Foundation Trust, London, UK
| | - Claire C Sharpe
- Department of Renal Medicine, King's College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Kate Bramham
- Department of Renal Medicine, King's College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
| | - Vincent C Marconi
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- School of Medicine, Emory University, Atlanta, GA, USA
| | - Alexander Teumer
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Cheryl A Winkler
- Basic Reseach Program, Frederick National Laboratory for Cancer Research and the Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Frank A Post
- Department of HIV and Sexual Health, King's College Hospital, London, UK
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Jordana T Bell
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| |
Collapse
|
4
|
Hum M, Lee ASG. DNA methylation in breast cancer: early detection and biomarker discovery through current and emerging approaches. J Transl Med 2025; 23:465. [PMID: 40269936 PMCID: PMC12020129 DOI: 10.1186/s12967-025-06495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/13/2025] [Indexed: 04/25/2025] Open
Abstract
Breast cancer remains one of the most common cancers in women worldwide. Early detection is critical for improving patient outcomes, yet current screening methods have limitations. Therefore, there is a pressing need for more sensitive and specific approaches to detect breast cancer in its earliest stages. Liquid biopsy has emerged as a promising non-invasive method for early cancer detection and management. DNA methylation, an epigenetic alteration that often precedes genetic changes, has been observed in precancerous or early cancer stages, making it a valuable biomarker. This review explores the role of DNA methylation in breast cancer and its potential for developing blood-based tests. We discuss advancements in DNA methylation detection methods, recent discoveries of potential DNA methylation biomarkers from both single-omics and multi-omics integration studies, and the role of machine learning in enhancing diagnostic accuracy. Challenges and future directions are also addressed. Although challenges remain, advances in multi-omics integration and machine learning continue to enhance the clinical potential of methylation-based biomarkers. Ongoing research is crucial to further refine these approaches and improve early detection and patient outcomes.
Collapse
Affiliation(s)
- Melissa Hum
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Republic of Singapore
| | - Ann S G Lee
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Republic of Singapore.
- SingHealth Duke-NUS Oncology Academic Clinical Programme (ONCO ACP), Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore, 117593, Singapore.
| |
Collapse
|
5
|
Rahman ML, Portengen L, Blechter B, Breeze CE, Wong JY, Hu W, Downward GS, Zhang Y, Cardenas A, Ning B, Li J, Yang K, Hosgood HD, Silverman DT, Rothman N, Huang Y, Vermeulen R, Lan Q. Epigenome-wide association study of household air pollution exposure in an area with high lung cancer incidence. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.03.25325041. [PMID: 40236422 PMCID: PMC11998846 DOI: 10.1101/2025.04.03.25325041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Background Lung cancer incidence among never-smoking women in Xuanwei, China, ranks among the highest worldwide and is largely attributed to household air pollution (HAP) from smoky (bituminous) coal combustion, with early-life exposures possibly playing a critical role. We conducted an epigenome-wide DNA methylation (DNAm) analysis across multiple exposure windows to elucidate molecular mechanisms. Methods Leukocyte DNAm was measured in 106 never-smoking women (23 with repeated measurements). Fuel use was obtained through questionnaires, and extensive personal and environmental monitoring was conducted. Validated exposure models estimated 43 HAP constituents, primarily polycyclic aromatic hydrocarbons (PAHs), across childhood, current, and cumulative exposure windows. Hierarchical clustering derived exposure clusters. We used generalized estimating equations to identify CpG sites associated with HAP exposure and PAH clusters, including 5-methylchrysene, a methylated PAH previously linked to lung cancer. Results We identified several differentially methylated CpG sites, predominantly hypomethylated with HAP exposure. Although some DNAm signatures overlapping with smoking (cg05575921; AHRR) were observed, most changes were distinct. A life-course assessment indicated persistent epigenetic variations across childhood and cumulative exposures, suggesting that early-life exposures may have lasting effects at certain sites (SLC43A2). Within the PAH clusters, 5-methylchrysene appears to be a significant contributor to DNAm variations. Top CpG sites were linked to immune regulation, cell growth and proliferation, and molecular mechanisms of cancer, including lung cancer. Conclusions Our findings provide novel insights into HAP-induced DNAm changes and their potential health effects. Future studies with larger sample sizes, and diverse coal use settings are needed to validate and extend these findings.
Collapse
Affiliation(s)
- Mohammad L Rahman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Charles E. Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Jason Y.Y. Wong
- Laboratory of Genomic Instability and Cardiopulmonary Outcomes, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - George S. Downward
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Yongliang Zhang
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, California, USA
| | - Bou Ning
- Xuanwei Center of Diseases Control, Xuanwei, Yunnan, China
| | - Jihua Li
- Qujing Center for Diseases Control and Prevention, Qujing, Yunnan, China
| | - Kaiyun Yang
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - H. Dean Hosgood
- Division of Epidemiology, Albert Einstein College of Medicine, New York, New York, USA
| | - Debra T. Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Yunchao Huang
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
6
|
Martínez‐López J, Ortiz‐Fernandez L, Estupiñán‐Moreno E, Kerick M, Andrés‐León E, Terron‐Camero LC, Carnero‐Montoro E, Barturen G, Beretta L, Almeida I, Alarcón‐Riquelme ME, Ballestar E, Acosta‐Herrera M, Martín J. A Strong Dysregulated Myeloid Component in the Epigenetic Landscape of Systemic Sclerosis: An Integrated DNA Methylome and Transcriptome Analysis. Arthritis Rheumatol 2025; 77:439-449. [PMID: 39468422 PMCID: PMC11936501 DOI: 10.1002/art.43044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024]
Abstract
OBJECTIVE Nongenetic factors influence systemic sclerosis (SSc) pathogenesis, underscoring epigenetics as a relevant contributor to the disease. We aimed to unravel DNA methylation abnormalities associated with SSc through an epigenome-wide association study. METHODS We analyzed DNA methylation data from whole-blood samples in 179 patients with SSc and 241 unaffected individuals to identify differentially methylated positions (DMPs) with a false discovery rate (FDR) <0.05. These results were further integrated with RNA sequencing data from the same patients to assess their functional consequence. Additionally, we examined the impact of DNA methylation changes on transcription factors and analyzed the relationship between alterations of the methylation and gene expression profile and serum proteins levels. RESULTS This analysis yielded 525 DMPs enriched in immune-related pathways, with leukocyte cell-cell adhesion being the most significant (FDR = 4.91 × 10-9), prioritizing integrins as they were exposed by integrating methylome and transcriptome data. Furthermore, through this integrative approach, we observed an enrichment of neutrophil-related pathways, highlighting this myeloid cell type as a relevant contributor in SSc pathogenesis. In addition, we uncovered novel profibrotic and proinflammatory mechanisms involved in the disease. Finally, the altered epigenetic and transcriptomic signature revealed an increased activity of CCAAT/enhancer-binding protein transcription factor family in SSc, which is crucial in the myeloid lineage development. CONCLUSION Our findings uncover the impaired epigenetic regulation of the disease and its impact on gene expression, identifying new molecules for potential clinical applications and improving our understanding of SSc pathogenesis.
Collapse
Affiliation(s)
- Javier Martínez‐López
- Institute of Parasitology and Biomedicine López‐Neyra, Consejo Superior de Investigaciones Científicas and Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria de GranadaGranadaSpain
| | - Lourdes Ortiz‐Fernandez
- Institute of Parasitology and Biomedicine López‐Neyra, Consejo Superior de Investigaciones CientíficasGranadaSpain
| | | | - Martin Kerick
- Institute of Parasitology and Biomedicine López‐Neyra, Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Eduardo Andrés‐León
- Institute of Parasitology and Biomedicine López‐Neyra, Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Laura C. Terron‐Camero
- Institute of Parasitology and Biomedicine López‐Neyra, Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Elena Carnero‐Montoro
- Centre for Genomics and Oncological Research, Pfizer, University of Granada/Andalusian Regional GovernmentGranadaSpain
| | - Guillermo Barturen
- Centre for Genomics and Oncological Research, Pfizer, University of Granada/Andalusian Regional GovernmentGranadaSpain
| | - Lorenzo Beretta
- Scleroderma Unit, Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di MilanoMilanItaly
| | - Isabel Almeida
- Centro Hospitalar Universitário do Porto and Instituto de Ciências Biomédicas Abel Salazar, Universidade do PortoPortoPortugal
| | - Marta E. Alarcón‐Riquelme
- Centre for Genomics and Oncological Research, Pfizer, University of Granada/Andalusian Regional GovernmentGranadaSpain
| | - Esteban Ballestar
- Josep Carreras Research Institute, Barcelona, Spain, and Health Science Center, East China Normal UniversityShanghaiChina
| | - Marialbert Acosta‐Herrera
- Institute of Parasitology and Biomedicine López‐Neyra, Consejo Superior de Investigaciones Científicas and Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria de GranadaGranadaSpain
| | - Javier Martín
- Institute of Parasitology and Biomedicine López‐Neyra, Consejo Superior de Investigaciones CientíficasGranadaSpain
| |
Collapse
|
7
|
Wu Z, Dai Z, Feng Z, Qiu Y, Zhu Z, Xu L. Genome-wide methylation association study in monozygotic twins discordant for curve severity of adolescent idiopathic scoliosis. Spine J 2025; 25:785-796. [PMID: 39515527 DOI: 10.1016/j.spinee.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/03/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND CONTEXT Emerging evidence suggests that abnormal DNA methylation patterns may play a role in the progression of adolescent idiopathic scoliosis (AIS). However, the mechanisms underlying the influence of DNA methylation on curve severity remain largely unknown. PURPOSE To characterize the DNA methylation profiles associated with the curve severity of AIS. STUDY DESIGN Retrospective study with prospectively collected clinical data and blood samples. METHODS A total of 7 AIS monozygotic twin pairs discordant for curve severity were included. Genome-wide methylation profile from blood samples were quantified by Illumina Infinium MethylationEPIC BeadChip (850K chip). Cell type composition of the samples was estimated by RefbaseEWAS method. Differentially methylated CpG sites were identified through comparison between patients with low and high Cobb angle. We also performed a gene-based collapsing analysis using mCSEA by aggregating the CpG sites based on promoter region. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed using clusterProfiler package. RESULTS Genome-wide DNA methylation analysis identified multiple differentially methylated positions across the genome. Gene-based collapsing analysis identified 212 differentially methylated genes (FDR adjusted p<.05), most of which (186/212) were hypermethylated in the group with high Cobb angle. Some of the identified genes were well-documented in AIS literature, such as TBX1, PAX3 and LBX1. Functional enrichment analysis revealed that the differentially methylated genes (DMGs) were involved in pattern specification process, skeletal development, muscle function, neurotransmission and several signaling pathways (cAMP, Wnt and prolactin). CONCLUSIONS The study represents the largest systematic epigenomic analyses of monozygotic twins discordant for curve severity and supports the important role of altered DNA methylation in AIS. CLINICAL SIGNIFICANCE The identified CpG sites provide insight into novel biomarkers predicting curve progression of AIS. Furthermore, the differentially methylated genes and enriched pathways may serve as interventional therapy target for AIS patients.
Collapse
Affiliation(s)
- Zhichong Wu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School; Nanjing, Jiangsu, China
| | - Zhicheng Dai
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School; Nanjing, Jiangsu, China
| | - Zhenhua Feng
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School; Nanjing, Jiangsu, China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School; Nanjing, Jiangsu, China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School; Nanjing, Jiangsu, China
| | - Leilei Xu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School; Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Li B, Ming H, Qin S, Nice EC, Dong J, Du Z, Huang C. Redox regulation: mechanisms, biology and therapeutic targets in diseases. Signal Transduct Target Ther 2025; 10:72. [PMID: 40050273 PMCID: PMC11885647 DOI: 10.1038/s41392-024-02095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 11/21/2024] [Indexed: 03/09/2025] Open
Abstract
Redox signaling acts as a critical mediator in the dynamic interactions between organisms and their external environment, profoundly influencing both the onset and progression of various diseases. Under physiological conditions, oxidative free radicals generated by the mitochondrial oxidative respiratory chain, endoplasmic reticulum, and NADPH oxidases can be effectively neutralized by NRF2-mediated antioxidant responses. These responses elevate the synthesis of superoxide dismutase (SOD), catalase, as well as key molecules like nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), thereby maintaining cellular redox homeostasis. Disruption of this finely tuned equilibrium is closely linked to the pathogenesis of a wide range of diseases. Recent advances have broadened our understanding of the molecular mechanisms underpinning this dysregulation, highlighting the pivotal roles of genomic instability, epigenetic modifications, protein degradation, and metabolic reprogramming. These findings provide a foundation for exploring redox regulation as a mechanistic basis for improving therapeutic strategies. While antioxidant-based therapies have shown early promise in conditions where oxidative stress plays a primary pathological role, their efficacy in diseases characterized by complex, multifactorial etiologies remains controversial. A deeper, context-specific understanding of redox signaling, particularly the roles of redox-sensitive proteins, is critical for designing targeted therapies aimed at re-establishing redox balance. Emerging small molecule inhibitors that target specific cysteine residues in redox-sensitive proteins have demonstrated promising preclinical outcomes, setting the stage for forthcoming clinical trials. In this review, we summarize our current understanding of the intricate relationship between oxidative stress and disease pathogenesis and also discuss how these insights can be leveraged to optimize therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Bowen Li
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Hui Ming
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Siyuan Qin
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jingsi Dong
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhongyan Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou, China.
| | - Canhua Huang
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China.
| |
Collapse
|
9
|
Chang WJ, Maduranga U, Gunasekara CJ, Yang A, Hirschtritt M, Rodriguez K, Coarfa C, Jun G, Hanis CL, Flanagan JM, Gorlov IP, Amos CI, Wiemels JL, Schaefer CA, Susser ES, Waterland RA. Human genomic regions of systemic interindividual epigenetic variation are implicated in neurodevelopmental and metabolic disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.10.25322021. [PMID: 39990551 PMCID: PMC11844598 DOI: 10.1101/2025.02.10.25322021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Epigenome-wide association studies (EWAS) profile DNA methylation across the human genome to identify associations with diseases and exposures. Most employ Illumina methylation arrays; this platform, however, under-samples interindividual epigenetic variation. The systemic and stable nature of epigenetic variation at correlated regions of systemic interindividual variation (CoRSIVs) should be advantageous to EWAS. Here, we analyze 2,203 published EWAS to determine whether Illumina probes within CoRSIVs are over-represented in the literature. Enrichment of CoRSIV-overlapping probes was observed for most classes of disease, particularly for neurodevelopmental disorders and type 2 diabetes, indicating an opportunity to improve the power of EWAS by over 200- and over 100-fold, respectively. EWAS targeting all known CoRSIVs should accelerate discovery of associations between individual epigenetic variation and risk of disease.
Collapse
|
10
|
Ritzmann F, Brand M, Bals R, Wegmann M, Beisswenger C. Role of Epigenetics in Chronic Lung Disease. Cells 2025; 14:251. [PMID: 39996724 PMCID: PMC11853132 DOI: 10.3390/cells14040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Epigenetics regulates gene expression and thus cellular processes that underlie the pathogenesis of chronic lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, and idiopathic pulmonary fibrosis (IPF). Environmental factors (e.g., air pollution, smoking, infections, poverty), but also conditions such as gastroesophageal reflux, induce epigenetic changes long before lung disease is diagnosed. Therefore, epigenetic signatures have the potential to serve as biomarkers that can be used to identify younger patients who are at risk for premature loss of lung function or diseases such as IPF. Epigenetic analyses also contribute to a better understanding of chronic lung disease. This can be used directly to improve therapies, as well as for the development of innovative drugs. Here, we highlight the role of epigenetics in the development and progression of chronic lung disease, with a focus on DNA methylation.
Collapse
Affiliation(s)
- Felix Ritzmann
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (M.B.); (R.B.)
| | - Michelle Brand
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (M.B.); (R.B.)
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany
| | - Robert Bals
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (M.B.); (R.B.)
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany
| | - Michael Wegmann
- Division of Lung Immunology, Priority Area Asthma and Allergy, Research Center Borstel—Leibniz Lung Center, 23845 Borstel, Germany;
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (M.B.); (R.B.)
| |
Collapse
|
11
|
Lai L, Juntilla DL, Del C Gomez-Alonso M, Grallert H, Thorand B, Farzeen A, Rathmann W, Winkelmann J, Prokisch H, Gieger C, Herder C, Peters A, Waldenberger M. Longitudinal association between DNA methylation and type 2 diabetes: findings from the KORA F4/FF4 study. Cardiovasc Diabetol 2025; 24:19. [PMID: 39827095 PMCID: PMC11748594 DOI: 10.1186/s12933-024-02558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) has been linked to changes in DNA methylation levels, which can, in turn, alter transcriptional activity. However, most studies for epigenome-wide associations between T2D and DNA methylation comes from cross-sectional design. Few large-scale investigations have explored these associations longitudinally over multiple time-points. METHODS In this longitudinal study, we examined data from the Cooperative Health Research in the Region of Augsburg (KORA) F4 and FF4 studies, conducted approximately seven years apart. Leucocyte DNA methylation was assessed using the Illumina EPIC and 450K arrays. Linear mixed-effects models were employed to identify significant associations between methylation sites and diabetes status, as well as with fasting plasma glucose (FPG), hemoglobin A1c (HbA1c), homoeostasis model assessment of beta cell function (HOMA-B), and homoeostasis model assessment of insulin resistance (HOMA-IR). Interaction effects between diabetes status and follow-up time were also examined. Additionally, we explored CpG sites associated with persistent prediabetes or T2D, as well as the progression from normal glucose tolerance (NGT) to prediabetes or T2D. Finally, we assessed the associations between the identified CpG sites and their corresponding gene expression levels. RESULTS A total of 3,501 observations from 2,556 participants, with methylation measured at least once across two visits, were included in the analyses. We identified 64 sites associated with T2D including 15 novel sites as well as known associations like those with the thioredoxin-interacting protein (TXNIP) and ATP-binding cassette sub-family G member 1 (ABCG1) genes. Of these, eight CpG sites exhibited different rates of annual methylation change between the NGT and T2D groups, and seven CpG sites were linked to the progression from NGT to prediabetes or T2D, including those annotated to mannosidase alpha class 2a member 2 (MAN2A2) and carnitine palmitoyl transferase 1 A (CPT1A). Longitudinal analysis revealed significant associations between methylation and FPG at 128 sites, HbA1c at 41 sites, and HOMA-IR at 57 sites. Additionally, we identified 104 CpG-transcript pairs in whole blood, comprising 40 unique CpG sites and 96 unique gene transcripts. CONCLUSIONS Our study identified novel differentially methylated loci linked to T2D as well as to changes in diabetes status through a longitudinal approach. We report CpG sites with different rates of annual methylation change and demonstrate that DNA methylation associated with T2D is linked to following transcriptional differences. These findings provide new insights into the molecular mechanisms of diabetes development.
Collapse
Affiliation(s)
- Liye Lai
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Pettenkofer School of Public Health, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany.
| | - Dave Laurence Juntilla
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Pettenkofer School of Public Health, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
| | - Monica Del C Gomez-Alonso
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Harald Grallert
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Pettenkofer School of Public Health, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Aiman Farzeen
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wolfgang Rathmann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University Munich, Munich, Germany
- Cluster for Systems Neurology (SyNergy), Munich, Germany
- Chair of Neurogenetics, Technische Universität München, Munich, Germany
| | - Holger Prokisch
- Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University Munich, Munich, Germany
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Christian Herder
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Pettenkofer School of Public Health, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
12
|
Tang X, Guo R, Mo Z, Fu W, Qian X. Causality-driven candidate identification for reliable DNA methylation biomarker discovery. Nat Commun 2025; 16:680. [PMID: 39814752 PMCID: PMC11735613 DOI: 10.1038/s41467-025-56054-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
Despite vast data support in DNA methylation (DNAm) biomarker discovery to facilitate health-care research, this field faces huge resource barriers due to preliminary unreliable candidates and the consequent compensations using expensive experiments. The underlying challenges lie in the confounding factors, especially measurement noise and individual characteristics. To achieve reliable identification of a candidate pool for DNAm biomarker discovery, we propose a Causality-driven Deep Regularization framework to reinforce correlations that are suggestive of causality with disease. It integrates causal thinking, deep learning, and biological priors to handle non-causal confounding factors, through a contrastive scheme and a spatial-relation regularization that reduces interferences from individual characteristics and noises, respectively. The comprehensive reliability of the proposed method was verified by simulations and applications involving various human diseases, sample origins, and sequencing technologies, highlighting its universal biomedical significance. Overall, this study offers a causal-deep-learning-based perspective with a compatible tool to identify reliable DNAm biomarker candidates, promoting resource-efficient biomarker discovery.
Collapse
Affiliation(s)
- Xinlu Tang
- The Medical Image and Health Informatics Lab, the School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Guo
- The Medical Image and Health Informatics Lab, the School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhanfeng Mo
- College of Computing and Data Science, Nanyang Technological University, Singapore, Singapore
| | - Wenli Fu
- The Medical Image and Health Informatics Lab, the School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohua Qian
- The Medical Image and Health Informatics Lab, the School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
13
|
Smith HM, Ng HK, Moodie JE, Gadd DA, McCartney DL, Bernabeu E, Campbell A, Redmond P, Taylor A, Page D, Corley J, Harris SE, Tay D, Deary IJ, Evans KL, Robinson MR, Chambers JC, Loh M, Cox SR, Marioni RE, Hillary RF. DNA methylation-based predictors of metabolic traits in Scottish and Singaporean cohorts. Am J Hum Genet 2025; 112:106-115. [PMID: 39706196 PMCID: PMC11739919 DOI: 10.1016/j.ajhg.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
Exploring the molecular correlates of metabolic health measures may identify their shared and unique biological processes and pathways. Molecular proxies of these traits may also provide a more objective approach to their measurement. Here, DNA methylation (DNAm) data were used in epigenome-wide association studies (EWASs) and for training epigenetic scores (EpiScores) of six metabolic traits: body mass index (BMI), body fat percentage, waist-hip ratio, and blood-based measures of glucose, high-density lipoprotein cholesterol, and total cholesterol in >17,000 volunteers from the Generation Scotland (GS) cohort. We observed a maximum of 12,033 significant findings (p < 3.6 × 10-8) for BMI in a marginal linear regression EWAS. By contrast, a joint and conditional Bayesian penalized regression approach yielded 27 high-confidence associations with BMI. EpiScores trained in GS performed well in both Scottish and Singaporean test cohorts (Lothian Birth Cohort 1936 [LBC1936] and Health for Life in Singapore [HELIOS]). The EpiScores for BMI and total cholesterol performed best in HELIOS, explaining 20.8% and 7.1% of the variance in the measured traits, respectively. The corresponding results in LBC1936 were 14.4% and 3.2%, respectively. Differences were observed in HELIOS for body fat, where the EpiScore explained ∼9% of the variance in Chinese and Malay -subgroups but ∼3% in the Indian subgroup. The EpiScores also correlated with cognitive function in LBC1936 (standardized βrange: 0.08-0.12, false discovery rate p [pFDR] < 0.05). Accounting for the correlation structure across the methylome can vastly affect the number of lead findings in EWASs. The EpiScores of metabolic traits are broadly applicable across populations and can reflect differences in cognition.
Collapse
Affiliation(s)
- Hannah M Smith
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Hong Kiat Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Joanna E Moodie
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Danni A Gadd
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Elena Bernabeu
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Paul Redmond
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Adele Taylor
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Danielle Page
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Janie Corley
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Darwin Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ian J Deary
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Matthew R Robinson
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Marie Loh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK; Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
14
|
Cosin-Tomas M, Hoang T, Qi C, Monasso GS, Langdon R, Kebede Merid S, Calas L, de Prado-Bert P, Richmond R, Jaddoe VV, Duijts L, Wright J, Annesi-Maesano I, Grazuleviciene R, Karachaliou M, Koppelman GH, Melén E, Gruzieva O, Vrijheid M, Yousefi P, Felix JF, London SJ, Bustamante M. Association of exposure to second-hand smoke during childhood with blood DNA methylation. ENVIRONMENT INTERNATIONAL 2025; 195:109204. [PMID: 39693780 DOI: 10.1016/j.envint.2024.109204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/11/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
INTRODUCTION By recent estimates, 40% of children worldwide are exposed to second-hand smoke (SHS), which has been associated with adverse health outcomes. While numerous studies have linked maternal smoking during pregnancy (MSDP) to widespread differences in child blood DNA methylation (DNAm), research specifically examining postnatal SHS exposure remains sparse. To address this gap, we conducted epigenome-wide meta-analyses to identify associations of postnatal SHS and child blood DNAm. METHODS Six cohorts from the Pregnancy And Childhood Epigenetics (PACE) Consortium (total N = 2,695), with SHS data and child blood DNAm (aged 7-9 years) measured with the Illumina 450K array were included in the meta-analysis. Linear regression models adjusted for covariates were fitted to examine the association between the number of household smokers in postnatal life (0, 1, 2+) and child blood DNAm. Sensitivity models without adjusting for MSDP and restricted to mothers who did not smoke during pregnancy were evaluated. RESULTS Our analysis revealed significant associations (False Discovery Rate < 0.05) between household postnatal SHS exposure and DNAm at 11 CpGs in exposed children. Nine CpGs were mapped to genes (MYO1G, FAM184B, CTDSPL2, LTBP3, PDE10A, and FIBCD1), while 2 CpGs were located in open sea regions. Notably, all except 2 CpGs (mapped to FIBCD1 and CTDSPL2) have previously been linked to either personal smoking habits or in utero exposure to smoking. The models restricted to non-smoking mothers provided similar results. Importantly, several of these CpGs and their associated genes are implicated in conditions exacerbated by or directly linked to SHS. CONCLUSIONS Our findings highlight the potential biological effects of SHS on blood DNAm. These findings support further research on epigenetic factors mediating deleterious effects of SHS on child health and call for public health policies aimed at reducing exposure, particularly in environments where children are present.
Collapse
Affiliation(s)
- Marta Cosin-Tomas
- ISGlobal, Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain; Centro de investigación biomédica en red en epidemiología y salud pública (CIBERESP), Madrid, Spain.
| | - Thanh Hoang
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA; Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Cancer and Hematology Center, Texas Children's Hospital, Houston, TX, USA
| | - Cancan Qi
- Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands; Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Microbiome Medicine Center, Department of Laboratory Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, China
| | - Giulietta S Monasso
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ryan Langdon
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK; Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Simon Kebede Merid
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Lucinda Calas
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004, Paris, France
| | - Paula de Prado-Bert
- ISGlobal, Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain; Centro de investigación biomédica en red en epidemiología y salud pública (CIBERESP), Madrid, Spain
| | - Rebecca Richmond
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK; Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Vincent Vw Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Neonatal and Pediatric Intensive Care, division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Isabella Annesi-Maesano
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004, Paris, France
| | | | - Marianna Karachaliou
- ISGlobal, Barcelona, Catalonia, Spain; Clinic of preventive and Social Medicine, Medical School, University of Crete, Iraklio, Greece
| | - Gerard H Koppelman
- Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands; Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children's Hospital, Stockholm, Sweden
| | - Olena Gruzieva
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martine Vrijheid
- ISGlobal, Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain; Centro de investigación biomédica en red en epidemiología y salud pública (CIBERESP), Madrid, Spain
| | - Paul Yousefi
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK; Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK; NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Stephanie J London
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Mariona Bustamante
- ISGlobal, Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain; Centro de investigación biomédica en red en epidemiología y salud pública (CIBERESP), Madrid, Spain
| |
Collapse
|
15
|
Bao Y, Wang X, Zeng B, Shi Y, Huang Y, Huang Y, Shang S, Shan L, Ma L. Research Progress of Liquid Biopsy Based on DNA Methylation in Tumor Diagnosis and Treatment. Biomolecules 2024; 14:1634. [PMID: 39766341 PMCID: PMC11727523 DOI: 10.3390/biom14121634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/29/2024] [Accepted: 12/16/2024] [Indexed: 01/15/2025] Open
Abstract
Liquid biopsy has been gradually applied to the clinical diagnosis and treatment of tumors because of its non-invasive and real-time reflection of the tumor status, as well as the convenience of sample collection, which allows the detection of primary or metastatic malignant tumors and reflects the heterogeneity of the tumors. DNA methylation, which is a type of epigenetic modification, is essential in the progression of tumors. This review introduces the common DNA methylation analysis methods and discusses their advantages and disadvantages, focusing on the new progress of DNA methylation-based liquid biopsy in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Yunxia Bao
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xianzhao Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Bingjie Zeng
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yichun Shi
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yiman Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yiwen Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Shuang Shang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Liang Shan
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Lifang Ma
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
16
|
Opsasnick LA, Zhao W, Ratliff SM, Du J, Faul JD, Schmitz LL, Zhou X, Needham BL, Smith JA. Epigenome-wide mediation analysis of the relationship between psychosocial stress and cardiometabolic risk factors in the Health and Retirement Study (HRS). Clin Epigenetics 2024; 16:180. [PMID: 39695878 DOI: 10.1186/s13148-024-01799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Exposure to psychosocial stress is linked to a variety of negative health outcomes, including cardiovascular disease and its cardiometabolic risk factors. DNA methylation has been associated with both psychosocial stress and cardiometabolic disease; however, little is known about the mediating role of DNA methylation on the association between stress and cardiometabolic risk. Thus, using the high-dimensional mediation testing method, we conducted an epigenome-wide mediation analysis of the relationship between psychosocial stress and ten cardiometabolic risk factors in a multi-racial/ethnic population of older adults (n = 2668) from the Health and Retirement Study (mean age = 70.4 years). RESULTS A total of 50, 46, 7, and 12 CpG sites across the epigenome mediated the total effects of stress on body mass index, waist circumference, high-density lipoprotein cholesterol, and C-reactive protein, respectively. When reducing the dimensionality of the CpG mediators to their top 10 uncorrelated principal components (PC), the cumulative effect of the PCs explained between 35.8 and 46.3% of these associations. CONCLUSIONS A subset of the mediating CpG sites were associated with the expression of genes enriched in pathways related to cytokine binding and receptor activity, as well as neuron development. Findings from this study help to elucidate the underlying mechanisms through which DNA methylation partially mediates the relationship between psychosocial stress and cardiometabolic risk factors.
Collapse
Affiliation(s)
- Lauren A Opsasnick
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA.
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Jiacong Du
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Lauren L Schmitz
- Robert M. La Follette School of Public Affairs, University of Wisconsin-Madison, Madison, WI, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Belinda L Needham
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Aslan ES, White K, Meral G, Akcay ZN, Altundag A, Gur S, Dokur M, Baktir MA, Karcioglu Batur L. An Epigenetic Locus Associated with Loss of Smell in COVID-19. Diagnostics (Basel) 2024; 14:2823. [PMID: 39767184 PMCID: PMC11675069 DOI: 10.3390/diagnostics14242823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/AIM Loss of smell, also known as anosmia, is a prevalent and often prolonged symptom following infection with SARS-CoV-2. While many patients regain olfactory function within weeks, a significant portion experience persistent anosmia lasting over a year post-infection. The underlying mechanisms responsible for this sensory deficit remain largely uncharacterized. Previous studies, including genome-wide association studies (GWAS), have identified genetic variants near the UGT2A1 and UGT2A2 genes that are linked to anosmia in COVID-19 patients. However, the role of epigenetic changes in the development and persistence of smell loss has not been well explored. In this study, we aimed to investigate epigenetic alterations in the form of DNA methylation in the UGT1A1 gene, which is a locus associated with olfactory dysfunction in COVID-19 patients. METHODS We analysed DNA methylation patterns in blood samples from two carefully matched cohorts of 20 COVID-19 patients each, which are differentiated by their olfactory function-those with normal smell (normosmia) and those suffering from smell loss (anosmia). The cohorts were matched for age and sex to minimize potential confounding factors. RESULTS Using quantitative analysis, we found significantly lower levels of DNA methylation in the UGT1A1 locus in the anosmia group compared to the normosmia group, with a 14% decrease in median methylation values in patients with smell loss (p < 0.0001). These findings highlight potential epigenomic alterations in the UGT1A1 gene that may contribute to the pathogenesis of anosmia following COVID-19 infection. Our results suggest that the methylation status at this locus could serve as a biomarker for olfactory dysfunction in affected individuals. CONCLUSION This study is among the first to describe epigenetic changes associated with smell loss in COVID-19, providing a foundation for future research into targeted interventions and potential therapeutic strategies aimed at reversing persistent anosmia. Further investigations involving larger cohorts and additional loci may help elucidate the complex interaction between genetic, epigenetic, and environmental factors influencing long-term sensory impairment post-COVID-19.
Collapse
Affiliation(s)
- Elif Sibel Aslan
- Department of Molecular Biology and Genetics, Biruni University, Merkezefendi, 75 Sk No:1-13 M.G., 34015 Istanbul, Turkey
- Biruni University Research Center (B@MER), Biruni University, 34015 Istanbul, Turkey
| | - Kenneth White
- School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| | - Gulsen Meral
- President’s Office, Department of Pediatrics, Nutrigenetics and Epigenetics Association, 34000 Istanbul, Turkey;
- Epigenetics Coaching, 262a Fulham Road, Suite 1, First Floor, Chelsea, London SW10 9EL, UK
| | - Zeyneb Nur Akcay
- Department of Molecular Biology and Genetics, Biruni University, Merkezefendi, 75 Sk No:1-13 M.G., 34015 Istanbul, Turkey
- Biruni University Research Center (B@MER), Biruni University, 34015 Istanbul, Turkey
| | - Aytug Altundag
- Department of Otorhinolaryngology, Biruni University, Merkezefendi, 75 Sk No:1-13 M.G., 34015 Istanbul, Turkey;
| | - Savas Gur
- Independent Researcher, 17000 Çanakkale, Turkey;
| | - Mehmet Dokur
- Department of Emergency Medicine, Faculty of Medicine, Bilecik Seyh Edebali University, 11230 Bilecik, Turkey;
| | - Mehmet Akif Baktir
- Department of Physiology, School of Medicine, Erciyes University, 38030 Kayseri, Turkey
| | - Lutfiye Karcioglu Batur
- Department of Molecular Biology and Genetics, Biruni University, Merkezefendi, 75 Sk No:1-13 M.G., 34015 Istanbul, Turkey
- Biruni University Research Center (B@MER), Biruni University, 34015 Istanbul, Turkey
| |
Collapse
|
18
|
Opsasnick LA, Zhao W, Schmitz LL, Ratliff SM, Faul JD, Zhou X, Needham BL, Smith JA. Epigenome-wide association study of long-term psychosocial stress in older adults. Epigenetics 2024; 19:2323907. [PMID: 38431869 PMCID: PMC10913704 DOI: 10.1080/15592294.2024.2323907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Long-term psychosocial stress is strongly associated with negative physical and mental health outcomes, as well as adverse health behaviours; however, little is known about the role that stress plays on the epigenome. One proposed mechanism by which stress affects DNA methylation is through health behaviours. We conducted an epigenome-wide association study (EWAS) of cumulative psychosocial stress (n = 2,689) from the Health and Retirement Study (mean age = 70.4 years), assessing DNA methylation (Illumina Infinium HumanMethylationEPIC Beadchip) at 789,656 CpG sites. For identified CpG sites, we conducted a formal mediation analysis to examine whether smoking, alcohol use, physical activity, and body mass index (BMI) mediate the relationship between stress and DNA methylation. Nine CpG sites were associated with psychosocial stress (all p < 9E-07; FDR q < 0.10). Additionally, health behaviours and/or BMI mediated 9.4% to 21.8% of the relationship between stress and methylation at eight of the nine CpGs. Several of the identified CpGs were in or near genes associated with cardiometabolic traits, psychosocial disorders, inflammation, and smoking. These findings support our hypothesis that psychosocial stress is associated with DNA methylation across the epigenome. Furthermore, specific health behaviours mediate only a modest percentage of this relationship, providing evidence that other mechanisms may link stress and DNA methylation.
Collapse
Affiliation(s)
- Lauren A. Opsasnick
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Lauren L. Schmitz
- Robert M. La Follette School of Public Affairs, University of Wisconsin-Madison, Madison, WI, USA
| | - Scott M. Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Belinda L. Needham
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Ziemann M, Abeysooriya M, Bora A, Lamon S, Kasu MS, Norris MW, Wong YT, Craig JM. Direction-aware functional class scoring enrichment analysis of infinium DNA methylation data. Epigenetics 2024; 19:2375022. [PMID: 38967555 PMCID: PMC11229754 DOI: 10.1080/15592294.2024.2375022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
Infinium Methylation BeadChip arrays remain one of the most popular platforms for epigenome-wide association studies, but tools for downstream pathway analysis have their limitations. Functional class scoring (FCS) is a group of pathway enrichment techniques that involve the ranking of genes and evaluation of their collective regulation in biological systems, but the implementations described for Infinium methylation array data do not retain direction information, which is important for mechanistic understanding of genomic regulation. Here, we evaluate several candidate FCS methods that retain directional information. According to simulation results, the best-performing method involves the mean aggregation of probe limma t-statistics by gene followed by a rank-ANOVA enrichment test using the mitch package. This method, which we call 'LAM,' outperformed an existing over-representation analysis method in simulations, and showed higher sensitivity and robustness in an analysis of real lung tumour-normal paired datasets. Using matched RNA-seq data, we examine the relationship of methylation differences at promoters and gene bodies with RNA expression at the level of pathways in lung cancer. To demonstrate the utility of our approach, we apply it to three other contexts where public data were available. First, we examine the differential pathway methylation associated with chronological age. Second, we investigate pathway methylation differences in infants conceived with in vitro fertilization. Lastly, we analyse differential pathway methylation in 19 disease states, identifying hundreds of novel associations. These results show LAM is a powerful method for the detection of differential pathway methylation complementing existing methods. A reproducible vignette is provided to illustrate how to implement this method.
Collapse
Affiliation(s)
- Mark Ziemann
- Bioinformatics Working Group, Burnet Institute, Melbourne, Australia
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - Mandhri Abeysooriya
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, Australia
| | - Anusuiya Bora
- Bioinformatics Working Group, Burnet Institute, Melbourne, Australia
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - Séverine Lamon
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, Australia
| | - Mary Sravya Kasu
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - Mitchell W. Norris
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - Yen Ting Wong
- School of Medicine, Deakin University, Geelong, Australia
- Murdoch Children’s Research Institute, Melbourne, Australia
| | - Jeffrey M. Craig
- School of Medicine, Deakin University, Geelong, Australia
- Murdoch Children’s Research Institute, Melbourne, Australia
| |
Collapse
|
20
|
Josefson JL, Kuang A, Allard C, Bianco ME, Lowe W, Scholtens DM, Bouchard L, Hivert MF. Newborn adiposity is associated with cord blood DNA methylation at IGF1R and KLF7. Obesity (Silver Spring) 2024; 32:1923-1933. [PMID: 39165088 PMCID: PMC11421971 DOI: 10.1002/oby.24109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 08/22/2024]
Abstract
OBJECTIVE This study aimed to identify whether cord blood DNA methylation at specific loci is associated with neonatal adiposity, a key risk factor for childhood obesity. METHODS An epigenome-wide association study was conducted using the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study as a discovery sample. Linear regression models adjusted for maternal and offspring covariates and cell counts were used to analyze associations between neonatal adiposity as measured by sum of three skinfold thicknesses and cord blood DNA methylation. Assays were performed with Illumina EPIC arrays (791,359 CpG sites after quality control). Replication was performed in an independent cohort, Genetics of Glucose regulation in Gestation and Growth (Gen3G). RESULTS In 2740 HAPO samples, significant associations were identified at 89 CpG sites after accounting for multiple testing (Bonferroni-adjusted p < 0.05). Replication analyses conducted in 139 Gen3G participants confirmed associations for seven CpG sites. These included IGF1R, which encodes a transmembrane receptor involved in cell growth and survival that binds insulin-like growth factor I and insulin, and KLF7, which encodes a regulator of cell proliferation and inhibitor of adipogenesis; both are key regulators of growth during fetal life. CONCLUSIONS These findings support epigenetic mechanisms in the developmental origins of neonatal adiposity and as potential biomarkers of metabolic disease risk.
Collapse
Affiliation(s)
- Jami L Josefson
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Division of Endocrinology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Alan Kuang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Catherine Allard
- Centre de Recherche du Centre hospitalier universitaire de Sherbrooke (CHUS), Sherbrooke, Québec, Canada
| | - Monica E Bianco
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Division of Endocrinology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - William Lowe
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Denise M Scholtens
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Luigi Bouchard
- Centre de Recherche du Centre hospitalier universitaire de Sherbrooke (CHUS), Sherbrooke, Québec, Canada
| | - Marie-France Hivert
- Centre de Recherche du Centre hospitalier universitaire de Sherbrooke (CHUS), Sherbrooke, Québec, Canada
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School; Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Zeng H, Li W, Xia M, Ge J, Ma H, Chen L, Pan B, Lin H, Wang S, Gao X. Longitudinal association of peripheral blood DNA methylation with liver fat content: distinguishing between predictors and biomarkers. Lipids Health Dis 2024; 23:309. [PMID: 39334355 PMCID: PMC11429307 DOI: 10.1186/s12944-024-02304-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Alterations in DNA methylation (DNAm) have been observed in patients with fatty liver, but whether they are cause or consequence remains unknown. The study aimed to investigate longitudinal association of epigenome-wide DNAm with liver fat content (LFC) in Chinese participants, and explore their temporal relationships. METHODS Data were obtained from 2 waves over a four-year time period of the Shanghai Changfeng Study (discovery, n = 407 and replication, n = 126). LFC and peripheral blood DNAm were repeatedly measured using quantitative hepatic ultrasonography and the 850 K Illumina EPIC BeadChip, respectively. Longitudinal and cross-sectional epigenome-wide association studies (EWASs) were conducted with linear mixed model and linear regression model, respectively. Meta-analysis was performed using METAL. Cross-lagged panel analysis (CLPA) was carried out to infer temporal relationships between the significant CpGs and LFC. RESULTS Longitudinal EWAS identified cg11024682 (SREBF1), cg06500161 (ABCG1), cg16740586 (ABCG1), cg15659943 (ABCA1) and cg00163198 (SNX19) significantly associated with LFC with P < 1e-7. Another 6 of the 22 previously reported CpGs were replicated in the present longitudinal EWAS. CLPA showed longitudinal effects of cg11024682 (SREBF1) (β = 0.14 [0.06, 0.23]), cg16740586 (ABCG1) (β = 0.17 [0.08, 0.25]), cg06500161 (ABCG1) (β = 0.12 [0.03, 0.20]), cg17901584 (DHCR24) (β = -0.10 [-0.18, -0.02]), cg00574958 (CPT1A) (β = -0.09 [-0.17, -0.01]), cg08309687 (LINC00649) (β = -0.11 [-0.19, -0.03]), and cg27243685 (ABCG1) (β = 0.09 [0.01, 0.18]) on subsequent LFC. The effects were attenuated when further adjusting for body mass index. High levels of LFC led to alterations in DNAm of cg15659943 (ABCA1) (β = 0.13 [0.04, 0.21]), cg07162647 (β = -0.11 [-0.19, -0.03]), cg06500161 (ABCG1) (β = 0.10 [0.02, 0.18]), and cg27243685 (ABCG1) (β = 0.10 [0.02, 0.18]). CONCLUSIONS Blood DNAm at SREBF1, ABCG1, DHCR24, CPT1A, and LINC00649 may be predictors of subsequent LFC change. The effects of DNAm at SREBF1 and ABCG1 on LFC were partially influenced by obesity. The findings have potential implications in understanding disease pathogenesis and highlight the potential of DNAm for early detection or intervention of fatty liver.
Collapse
Affiliation(s)
- Hailuan Zeng
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, NO. 180 Fenglin Road, Shanghai, 200032, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Wenran Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, NO. 180 Fenglin Road, Shanghai, 200032, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Jieyu Ge
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hui Ma
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingyan Chen
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huandong Lin
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, NO. 180 Fenglin Road, Shanghai, 200032, China.
- Fudan Institute for Metabolic Diseases, Shanghai, China.
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Taizhou Institute of Health Sciences, Fudan University, Taizhou, Jiangsu, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, NO. 180 Fenglin Road, Shanghai, 200032, China.
- Fudan Institute for Metabolic Diseases, Shanghai, China.
- Human Phenome Institute, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Long P, Si J, Zhu Z, Jiang Y, Wang Y, Jiang Q, Li W, Xu X, You Y, Qu M, Wang H, Mo T, Liu K, Jiang J, Wang Q, Yu C, Guo Y, Millwood IY, Walters RG, He X, Yuan Y, Wang H, Zhang X, He M, Guo H, Chen Z, Li L, Lv J, Wang C, Wu T. Genome-wide DNA methylation profiling in blood reveals epigenetic signature of incident acute coronary syndrome. Nat Commun 2024; 15:7431. [PMID: 39198424 PMCID: PMC11358540 DOI: 10.1038/s41467-024-51751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
DNA methylation (DNAm) has been implicated in acute coronary syndrome (ACS), but the causality remains unclear in cross-sectional studies. Here, we conduct a prospective epigenome-wide association study of incident ACS in two Chinese cohorts (discovery: 751 nested case-control pairs; replication: 476 nested case-control pairs). We identified and validated 26 differentially methylated positions (DMPs, false discovery rate [FDR] <0.05), including three mapped to known cardiovascular disease genes (PRKCZ, PRDM16, EHBP1L1) and four with causal evidence from Mendelian randomization (PRKCZ, TRIM27, EMC2, EHBP1L1). Two hypomethylated DMPs were negatively correlated with the expression in blood of their mapped genes (PIGG and EHBP1L1), which were further found to overexpress in leukocytes and/or atheroma plaques. Finally, our DMPs could substantially improve the prediction of ACS over traditional risk factors and polygenic scores. These findings demonstrate the importance of DNAm in the pathogenesis of ACS and highlight DNAm as potential predictive biomarkers and treatment targets.
Collapse
Affiliation(s)
- Pinpin Long
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiahui Si
- National Institute of Health Data Science at Peking University, Peking University, Beijing, China
| | - Ziwei Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yufei Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qin Jiang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wending Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuedan Xu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yutong You
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Minghan Qu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huihui Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingting Mo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kang Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Jiang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiuhong Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Yu Guo
- Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Iona Y Millwood
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Robin G Walters
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China.
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China.
| | - Chaolong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Tangchun Wu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
23
|
Aitken KJ, Schröder A, Haddad A, Sidler M, Penna F, Fernandez N, Ahmed T, Marino V, Bechbache M, Jiang JX, Tolg C, Bägli DJ. Epigenetic insights to pediatric uropathology: Celebrating the fundamental biology vision of Tony Khoury. J Pediatr Urol 2024; 20 Suppl 1:S43-S57. [PMID: 38944627 DOI: 10.1016/j.jpurol.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024]
Abstract
INTRODUCTION Many pediatric urology conditions affect putatively normal tissues or appear too commonly to be based solely on specific DNA mutations. Understanding epigenetic mechanisms in pediatric urology, therefore, has many implications that can impact cell and tissue responses to settings, such as environmental and hormonal influences on urethral development, uropathogenic infections, obstructive stimuli, all of which originate externally or extracellularly. Indeed, the cell's response to external stimuli is often mediated epigenetically. In this commentary, we highlight work on the critical role that epigenetic machinery, such as DNA methyltransferases (DNMTs), Enhancer of Zeste Polycomb Repressive Complex 2 Subunit (EZH2), and others play in regulating gene expression and cellular functions in three urological contexts. DESIGN Animal and cellular constructs were used to model clinical pediatric uropathology. The hypertrophy, trabeculation, and fibrosis of the chronically obstructed bladder was explored using smooth muscle cell models employing disorganised vs. normal extracellular matrix (ECM), as well as a new animal model of chronic obstructive bladder disease (COBD) which retains its pathologic features even after bladder de-obstruction. Cell models from human and murine hypospadias or genital tubercles (GT) were used to illustrate developmental responses and epigenetic dependency of key developmental genes. Finally, using bladder urothelial and organoid culture systems, we examined activity of epigenetic machinery in response to non uropathogenic vs. uropathogenic E.coli (UPEC). DNMT and EZH2 expression and function were interrogated in these model systems. RESULTS Disordered ECM exerted a principal mitogenic and epigenetic role for on bladder smooth muscle both in vitro and in CODB in vivo. Key genes, e.g., BDNF and KCNB2 were under epigenetic regulation in actively evolving obstruction and COBD, though each condition showed distinct epigenetic responses. In models of hypospadias, estrogen strongly dysregulated WNT and Hox expression, which was normalized by epigenetic inhibition. Finally, DNA methylation machinery in the urothelium showed specific activation when challenged by uropathogenic E.coli. Similarly, UPEC induces hypermethylation and downregulation of the growth suppressor p16INK4A. Moreover, host cells exposed to UPEC produced secreted factors inducing epigenetic responses transmissible from one affected cell to another without ongoing bacterial presence. DISCUSSION Microenvironmental influences altered epigenetic activity in the three described urologic contexts. Considering that many obstructed bladders continue to display abnormal architecture and dysfunction despite relief of obstruction similar to after resection of posterior valves or BPH, the epigenetic mechanisms described highlight novel approaches for understanding the underlying smooth muscle myopathy of this crucial clinical problem. Similarly, there is evidence for an epigenetic basis of xenoestrogen on development of hypospadias, and UTI-induced pan-urothelial alteration of epigenetic marks and propensity for subsequent (recurrent) UTI. The impact of mechanical, hormonal, infectious triggers on genitourinary epigenetic machinery activity invite novel avenues for targeting epigenetic modifications associated with these non-cancer diseases in urology. This includes the use of deactivated CRISPR-based technologies for precise epigenome targeting and editing. Overall, we underscore the importance of understanding epigenetic regulation in pediatric urology for the development of innovative therapeutic and management strategies.
Collapse
Affiliation(s)
- K J Aitken
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; DIYbio Toronto, 1677 St. Clair West, Toronto, Ontario, Canada.
| | - Annette Schröder
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Urology and Pediatric Urology of the University Medical Center Mainz, Mainz, Rheinland-Pfalz, Germany
| | - Ahmed Haddad
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Martin Sidler
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Frank Penna
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicolas Fernandez
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tabina Ahmed
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Human Biology Programme, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Marino
- DIYbio Toronto, 1677 St. Clair West, Toronto, Ontario, Canada
| | - Matthew Bechbache
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada
| | - Jia-Xin Jiang
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Human Biology Programme, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Cornelia Tolg
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada
| | - Darius J Bägli
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Physiology, Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Mak JKL, Skovgaard AC, Nygaard M, Kananen L, Reynolds CA, Wang Y, Kuja‐Halkola R, Karlsson IK, Pedersen NL, Hägg S, Soerensen M, Jylhävä J. Epigenome-wide analysis of frailty: Results from two European twin cohorts. Aging Cell 2024; 23:e14135. [PMID: 38414347 PMCID: PMC11166364 DOI: 10.1111/acel.14135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/11/2024] [Accepted: 02/17/2024] [Indexed: 02/29/2024] Open
Abstract
Epigenetics plays an important role in the aging process, but it is unclear whether epigenetic factors also influence frailty, an age-related state of physiological decline. In this study, we performed a meta-analysis of epigenome-wide association studies in four samples drawn from the Swedish Adoption/Twin Study of Aging (SATSA) and the Longitudinal Study of Aging Danish Twins (LSADT) to explore the association between DNA methylation and frailty. Frailty was defined using the frailty index (FI), and DNA methylation levels were measured in whole blood using Illumina's Infinium HumanMethylation450K and MethylationEPIC arrays. In the meta-analysis consisting of a total of 829 participants, we identified 589 CpG sites that were statistically significantly associated with either the continuous or categorical FI (false discovery rate <0.05). Many of these CpGs have previously been associated with age and age-related diseases. The identified sites were also largely directionally consistent in a longitudinal analysis using mixed-effects models in SATSA, where the participants were followed up to a maximum of 20 years. Moreover, we identified three differentially methylated regions within the MGRN1, MIR596, and TAPBP genes that have been linked to neuronal aging, tumor growth, and immune functions. Furthermore, our meta-analysis results replicated 34 of the 77 previously reported frailty-associated CpGs at p < 0.05. In conclusion, our findings demonstrate robust associations between frailty and DNA methylation levels in 589 novel CpGs, previously unidentified for frailty, and strengthen the role of neuronal/brain pathways in frailty.
Collapse
Affiliation(s)
- Jonathan K. L. Mak
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Asmus Cosmos Skovgaard
- The Danish Twin Registry and Epidemiology, Biostatistics and Biodemography, Department of Public HealthUniversity of Southern DenmarkOdense MDenmark
| | - Marianne Nygaard
- The Danish Twin Registry and Epidemiology, Biostatistics and Biodemography, Department of Public HealthUniversity of Southern DenmarkOdense MDenmark
| | - Laura Kananen
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
- Faculty of Social Sciences (Health Sciences) and Gerontology Research Center (GEREC)University of TampereTampereFinland
| | - Chandra A. Reynolds
- Institute for Behavioral Genetics, University of ColoradoBoulderColoradoUSA
- Department of PsychologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Yunzhang Wang
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
- Department of Clinical Sciences, Danderyd HospitalKarolinska InstitutetStockholmSweden
| | - Ralf Kuja‐Halkola
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Ida K. Karlsson
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Nancy L. Pedersen
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Sara Hägg
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Mette Soerensen
- The Danish Twin Registry and Epidemiology, Biostatistics and Biodemography, Department of Public HealthUniversity of Southern DenmarkOdense MDenmark
- Department of Clinical GeneticsOdense University HospitalOdense CDenmark
| | - Juulia Jylhävä
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
- Faculty of Social Sciences (Health Sciences) and Gerontology Research Center (GEREC)University of TampereTampereFinland
| |
Collapse
|
25
|
Hillary RF, Ng HK, McCartney DL, Elliott HR, Walker RM, Campbell A, Huang F, Direk K, Welsh P, Sattar N, Corley J, Hayward C, McIntosh AM, Sudlow C, Evans KL, Cox SR, Chambers JC, Loh M, Relton CL, Marioni RE, Yousefi PD, Suderman M. Blood-based epigenome-wide analyses of chronic low-grade inflammation across diverse population cohorts. CELL GENOMICS 2024; 4:100544. [PMID: 38692281 PMCID: PMC11099341 DOI: 10.1016/j.xgen.2024.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/09/2024] [Accepted: 04/03/2024] [Indexed: 05/03/2024]
Abstract
Chronic inflammation is a hallmark of age-related disease states. The effectiveness of inflammatory proteins including C-reactive protein (CRP) in assessing long-term inflammation is hindered by their phasic nature. DNA methylation (DNAm) signatures of CRP may act as more reliable markers of chronic inflammation. We show that inter-individual differences in DNAm capture 50% of the variance in circulating CRP (N = 17,936, Generation Scotland). We develop a series of DNAm predictors of CRP using state-of-the-art algorithms. An elastic-net-regression-based predictor outperformed competing methods and explained 18% of phenotypic variance in the Lothian Birth Cohort of 1936 (LBC1936) cohort, doubling that of existing DNAm predictors. DNAm predictors performed comparably in four additional test cohorts (Avon Longitudinal Study of Parents and Children, Health for Life in Singapore, Southall and Brent Revisited, and LBC1921), including for individuals of diverse genetic ancestry and different age groups. The best-performing predictor surpassed assay-measured CRP and a genetic score in its associations with 26 health outcomes. Our findings forge new avenues for assessing chronic low-grade inflammation in diverse populations.
Collapse
Affiliation(s)
- Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Hong Kiat Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore 308232, Singapore
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Hannah R Elliott
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK; School of Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Felicia Huang
- MRC Unit for Lifelong Health and Ageing, University College London, London WC1E 7HB, UK
| | - Kenan Direk
- Imperial Clinical Trials Unit, School of Public Health, Imperial College London, London SW7 2AZ, UK
| | - Paul Welsh
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
| | - Naveed Sattar
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
| | - Janie Corley
- Lothian Birth Cohort Studies, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Caroline Hayward
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK; Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Andrew M McIntosh
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK; Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK
| | - Cathie Sudlow
- Centre for Clinical Brain Sciences, Edinburgh Imaging and UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; British Heart Foundation Data Science Centre, Health Data Research UK, London NW1 2BE, UK; Health Data Research UK, London NW1 2BE, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Simon R Cox
- Lothian Birth Cohort Studies, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore 308232, Singapore; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - Marie Loh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore 308232, Singapore; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London W2 1PG, UK; National Skin Centre, Singapore 308205, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK.
| | - Paul D Yousefi
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK.
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK.
| |
Collapse
|
26
|
Yang T, Li C, Wei Q, Pang D, Cheng Y, Huang J, Lin J, Xiao Y, Jiang Q, Wang S, Shang H. Genome-wide DNA methylation analysis related to ALS patient progression and survival. J Neurol 2024; 271:2672-2683. [PMID: 38372747 DOI: 10.1007/s00415-024-12222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Epigenetics contributes to the pathogenesis of amyotrophic lateral sclerosis (ALS). We aimed to characterize the DNA methylation profiles associated with clinical heterogeneity in disease progression and survival among patients. METHODS We included a cohort of 41 patients with sporadic ALS, with a median follow-up of 86.9 months, and 27 rigorously matched healthy controls. Blood-based genome-wide DNA methylation analysis was conducted. RESULTS A total of 948 progression rate-associated differentially methylated positions, 298 progression rate-associated differentially methylated regions (R-DMRs), 590 survival time-associated DMPs, and 197 survival time-associated DMRs (S-DMRs) were identified, using complementary grouping strategies. Enrichment analysis of differentially methylated genes highlighted the involvement of synapses and axons in ALS progression and survival. Clinical analysis revealed a positive correlation between the average methylation levels of the R-DMR in PRDM8 and disease progression rate (r = 0.479, p = 0.002). Conversely, there was an inverse correlation between the average methylation levels of the R-DMR in ANKRD33 and disease progression rate (r = - 0.476, p = 0.002). In addition, patients with higher methylation levels within the S-DMR of ZNF696 experienced longer survival (p = 0.016), while those with elevated methylation levels in the S-DMR of RAI1 had shorter survival (p = 0.006). CONCLUSION DNA methylation holds promise as a potential biomarker for tracking disease progression and predicting survival outcome and also offers targets for precision medicine.
Collapse
Affiliation(s)
- Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Dejiang Pang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Yangfan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Jingxuan Huang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Qirui Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Shichan Wang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
27
|
Bell CG. Epigenomic insights into common human disease pathology. Cell Mol Life Sci 2024; 81:178. [PMID: 38602535 PMCID: PMC11008083 DOI: 10.1007/s00018-024-05206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The epigenome-the chemical modifications and chromatin-related packaging of the genome-enables the same genetic template to be activated or repressed in different cellular settings. This multi-layered mechanism facilitates cell-type specific function by setting the local sequence and 3D interactive activity level. Gene transcription is further modulated through the interplay with transcription factors and co-regulators. The human body requires this epigenomic apparatus to be precisely installed throughout development and then adequately maintained during the lifespan. The causal role of the epigenome in human pathology, beyond imprinting disorders and specific tumour suppressor genes, was further brought into the spotlight by large-scale sequencing projects identifying that mutations in epigenomic machinery genes could be critical drivers in both cancer and developmental disorders. Abrogation of this cellular mechanism is providing new molecular insights into pathogenesis. However, deciphering the full breadth and implications of these epigenomic changes remains challenging. Knowledge is accruing regarding disease mechanisms and clinical biomarkers, through pathogenically relevant and surrogate tissue analyses, respectively. Advances include consortia generated cell-type specific reference epigenomes, high-throughput DNA methylome association studies, as well as insights into ageing-related diseases from biological 'clocks' constructed by machine learning algorithms. Also, 3rd-generation sequencing is beginning to disentangle the complexity of genetic and DNA modification haplotypes. Cell-free DNA methylation as a cancer biomarker has clear clinical utility and further potential to assess organ damage across many disorders. Finally, molecular understanding of disease aetiology brings with it the opportunity for exact therapeutic alteration of the epigenome through CRISPR-activation or inhibition.
Collapse
Affiliation(s)
- Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
28
|
Huang BZ, Binder AM, Quon B, Patel YM, Lum-Jones A, Tiirikainen M, Murphy SE, Loo L, Maunakea AK, Haiman CA, Wilkens LR, Koh WP, Cai Q, Aldrich MC, Siegmund KD, Hecht SS, Yuan JM, Blot WJ, Stram DO, Le Marchand L, Park SL. Epigenome-wide association study of total nicotine equivalents in multiethnic current smokers from three prospective cohorts. Am J Hum Genet 2024; 111:456-472. [PMID: 38367619 PMCID: PMC10940014 DOI: 10.1016/j.ajhg.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/19/2024] Open
Abstract
The impact of tobacco exposure on health varies by race and ethnicity and is closely tied to internal nicotine dose, a marker of carcinogen uptake. DNA methylation is strongly responsive to smoking status and may mediate health effects, but study of associations with internal dose is limited. We performed a blood leukocyte epigenome-wide association study (EWAS) of urinary total nicotine equivalents (TNEs; a measure of nicotine uptake) and DNA methylation measured using the MethylationEPIC v1.0 BeadChip (EPIC) in six racial and ethnic groups across three cohort studies. In the Multiethnic Cohort Study (discovery, n = 1994), TNEs were associated with differential methylation at 408 CpG sites across >250 genomic regions (p < 9 × 10-8). The top significant sites were annotated to AHRR, F2RL3, RARA, GPR15, PRSS23, and 2q37.1, all of which had decreasing methylation with increasing TNEs. We identified 45 novel CpG sites, of which 42 were unique to the EPIC array and eight annotated to genes not previously linked with smoking-related DNA methylation. The most significant signal in a novel gene was cg03748458 in MIR383;SGCZ. Fifty-one of the 408 discovery sites were validated in the Singapore Chinese Health Study (n = 340) and the Southern Community Cohort Study (n = 394) (Bonferroni corrected p < 1.23 × 10-4). Significant heterogeneity by race and ethnicity was detected for CpG sites in MYO1G and CYTH1. Furthermore, TNEs significantly mediated the association between cigarettes per day and DNA methylation at 15 sites (average 22.5%-44.3% proportion mediated). Our multiethnic study highlights the transethnic and ethnic-specific methylation associations with internal nicotine dose, a strong predictor of smoking-related morbidities.
Collapse
Affiliation(s)
- Brian Z Huang
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA.
| | - Alexandra M Binder
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA; Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Brandon Quon
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Yesha M Patel
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Annette Lum-Jones
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Maarit Tiirikainen
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Sharon E Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Lenora Loo
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Alika K Maunakea
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Christopher A Haiman
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Lynne R Wilkens
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melinda C Aldrich
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kimberly D Siegmund
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA; Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - William J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel O Stram
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Loïc Le Marchand
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Sungshim L Park
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA.
| |
Collapse
|
29
|
Derbala D, Garnier A, Bonnet E, Deleuze JF, Tost J. Whole-Genome Bisulfite Sequencing Protocol for the Analysis of Genome-Wide DNA Methylation and Hydroxymethylation Patterns at Single-Nucleotide Resolution. Methods Mol Biol 2024; 2842:353-382. [PMID: 39012605 DOI: 10.1007/978-1-0716-4051-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The analysis of genome-wide epigenomic alterations including DNA methylation and hydroxymethylation has become a subject of intensive research for many biological and clinical questions. DNA methylation analysis bears the particular promise to supplement or replace biochemical and imaging-based tests for the next generation of personalized medicine. Whole-genome bisulfite sequencing (WGBS) using next-generation sequencing technologies is currently considered the gold standard for a comprehensive and quantitative analysis of DNA methylation throughout the genome. However, bisulfite conversion does not allow distinguishing between cytosine methylation and hydroxymethylation requiring an additional chemical or enzymatic step to identify hydroxymethylated cytosines. Here, we provide a detailed protocol based on a commercial kit for the preparation of sequencing libraries for the comprehensive whole-genome analysis of DNA methylation and/or hydroxymethylation. The protocol is based on the construction of sequencing libraries from limited amounts of input DNA by ligation of methylated adaptors to the fragmented DNA prior to bisulfite conversion. For analyses requiring a quantitative distinction between 5-methylcytosine and 5-hydroxymethylcytosines levels, an oxidation step is included in the same workflow to perform oxidative bisulfite sequencing (OxBs-Seq). In this case, two sequencing libraries will be generated and sequenced: a classic methylome following bisulfite conversion and analyzing modified cytosines (not distinguishing between methylated and hydroxymethylated cytosines) and a methylome analyzing only methylated cytosines, respectively. Hydroxymethylation levels are deduced from the differences between the two reactions. We also provide a step-by-step description of the data analysis using publicly available bioinformatic tools. The described protocol has been successfully applied to different human and plant samples and yields robust and reproducible results.
Collapse
Affiliation(s)
- David Derbala
- Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Université Paris -Saclay, Evry, France
| | - Abel Garnier
- Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Université Paris -Saclay, Evry, France
| | - Eric Bonnet
- Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Université Paris -Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Université Paris -Saclay, Evry, France
| | - Jörg Tost
- Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Université Paris -Saclay, Evry, France.
| |
Collapse
|
30
|
Xiao D, Fang L, Liu Z, He Y, Ying J, Qin H, Lu A, Shi M, Li T, Zhang B, Guan J, Wang C, Abu-Amer Y, Shen J. DNA methylation-mediated Rbpjk suppression protects against fracture nonunion caused by systemic inflammation. J Clin Invest 2023; 134:e168558. [PMID: 38051594 PMCID: PMC10849763 DOI: 10.1172/jci168558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
Challenging skeletal repairs are frequently seen in patients experiencing systemic inflammation. To tackle the complexity and heterogeneity of the skeletal repair process, we performed single-cell RNA sequencing and revealed that progenitor cells were one of the major lineages responsive to elevated inflammation and this response adversely affected progenitor differentiation by upregulation of Rbpjk in fracture nonunion. We then validated the interplay between inflammation (via constitutive activation of Ikk2, Ikk2ca) and Rbpjk specifically in progenitors by using genetic animal models. Focusing on epigenetic regulation, we identified Rbpjk as a direct target of Dnmt3b. Mechanistically, inflammation decreased Dnmt3b expression in progenitor cells, consequently leading to Rbpjk upregulation via hypomethylation within its promoter region. We also showed that Dnmt3b loss-of-function mice phenotypically recapitulated the fracture repair defects observed in Ikk2ca-transgenic mice, whereas Dnmt3b-transgenic mice alleviated fracture repair defects induced by Ikk2ca. Moreover, Rbpjk ablation restored fracture repair in both Ikk2ca mice and Dnmt3b loss-of-function mice. Altogether, this work elucidates a common mechanism involving a NF-κB/Dnmt3b/Rbpjk axis within the context of inflamed bone regeneration. Building on this mechanistic insight, we applied local treatment with epigenetically modified progenitor cells in a previously established mouse model of inflammation-mediated fracture nonunion and showed a functional restoration of bone regeneration under inflammatory conditions through an increase in progenitor differentiation potential.
Collapse
Affiliation(s)
- Ding Xiao
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liang Fang
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Zhongting Liu
- Department of Mechanical Engineering & Materials Sciences, School of Engineering and
| | - Yonghua He
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Jun Ying
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Haocheng Qin
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Aiwu Lu
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Meng Shi
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Tiandao Li
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Jianjun Guan
- Department of Mechanical Engineering & Materials Sciences, School of Engineering and
| | - Cuicui Wang
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- Shriners Hospital for Children, St. Louis, Missouri, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| |
Collapse
|