1
|
Bursali F, Touray M. The complexities of blood-feeding patterns in mosquitoes and sandflies and the burden of disease: A minireview. Vet Med Sci 2024; 10:e1580. [PMID: 39171609 PMCID: PMC11339650 DOI: 10.1002/vms3.1580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Mosquitoes and sandflies exhibit a wide range of blood feeding patterns, targeting a wide range of vertebrate species, including birds, mammals, reptiles, and amphibians, for proteins vital for egg development. This broad host range increases the opportunity for them to acquire pathogens of numerous debilitating-and-fatal diseases from various animal reservoirs, playing a significant role in disease crossover between animals and humans, also known as zoonotic transmission. This review focuses on the intricate blood-feeding habits of these dipteran vectors, their sensory systems and the complex dance between host and pathogen during disease transmission. We delve into the influence of blood sources on pathogen spread by examining the insect immune response and its intricate interplay with pathogens. The remarkable sense of smell guiding them towards food sources and hosts is explored, highlighting the interplay of multiple sensory cues in their navigation. Finally, we examine the challenges in mosquito control strategies and explore innovations in this field, emphasizing the need for sustainable solutions to combat this global health threat. By understanding the biology and behaviour of these insects, we can develop more effective strategies to protect ourselves and mitigate the burden of vector-borne diseases.
Collapse
Affiliation(s)
- Fatma Bursali
- Biology Department, Faculty of ScienceAydin Adnan Menderes UniversityAydinTürkiye
| | - Mustapha Touray
- Biology Department, Faculty of ScienceAydin Adnan Menderes UniversityAydinTürkiye
| |
Collapse
|
2
|
Ali S, Ahmad AS, Ashraf K, Khan JA, Imran Rashid M. Rearing of Rhipicephalus annulatus ticks on rabbits for the biological transmission of Anaplasma marginale. Vet World 2024; 17:903-910. [PMID: 38798298 PMCID: PMC11111724 DOI: 10.14202/vetworld.2024.903-910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/04/2024] [Indexed: 05/29/2024] Open
Abstract
Background and Aim Anaplasma marginale is an obligate intraerythrocytic rickettsial parasite that infects cattle in tropical and subtropical regions. There is no evidence that A. marginale inoculation can be used to culture Rhipicephalus annulatus in rabbits. This study aimed to determine the molting of R. annulatus larvae, nymphs, and adults on rabbits as well as nymphs and adults of R. annulatus on calves with or without A. marginale. Transstadial, horizontal, and transovarial transmissions of A. marginale in R. annulatus reared on rabbits and calves were evaluated. Materials and Methods Engorged female ticks were collected from field samples of A. marginale-infected and non-infected cattle. We divided the eight rabbits into two groups: A and B. Group A rabbits were infected with A. marginale through parenteral inoculation, whereas Group B rabbits were kept as a control. The "clean rabbits" in Group B were observed for tick rearing without A. marginale. Polymerase chain reaction was used to screen A. marginale in rabbits and stages of tick. The complete life cycle of R. annulatus with or without A. marginale was observed on rabbits. Results A 6.5-day longer life cycle was observed in ticks harboring A. marginale than in ticks without A. marginale. To observe transstadial transmission, transstadial, horizontal, and transovarial transmissions of A. marginale in R. annulatus ticks were experimentally observed in one clean calf fed separately with infected nymphs and female adult ticks. Conclusion We experimentally observed transovarian, transstadial, and transovarial transmission of A. marginale in R. annulatus ticks as a biological vector reared on calves and rabbits. We used rabbits as a model animal for rearing R. annulatus ticks and culture of A. marginale.
Collapse
Affiliation(s)
- Sikandar Ali
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Abdullah Saghir Ahmad
- Department of Parasitology, Faculty of Veterinary Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Kamran Ashraf
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Jawaria Ali Khan
- Department of Clinical Medicine and Surgery, Faculty of Veterinary Science, The University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Imran Rashid
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
3
|
Sánchez Uzcátegui YDV, dos Santos EJM, Matos ER, Silveira FT, Vasconcelos dos Santos T, Póvoa MM. Artificial blood-feeding of phlebotomines (Diptera: Psychodidae: Phlebotominae): is it time to repurpose biological membranes in light of ethical concerns? Parasit Vectors 2022; 15:399. [PMID: 36316748 PMCID: PMC9624050 DOI: 10.1186/s13071-022-05511-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The aims of the present study were to evaluate and compare the efficacy of blood-feeding in phlebotomines through industrially processed membranes from the small intestine of pigs (used for the production of commercial sausages) and the skin of euthanized chicks. METHODS Laboratory-bred Lutzomyia longipalpis and different field-caught phlebotomine species were subjected to the artificial feeding systems under similar conditions. Paired tests were performed using the control (skin from euthanized chicks) and test membranes (pig small intestine). The feeding rates were compared by paired t-test, and Pearson correlation was used to examine the relationship between the thickness of the membranes and feeding rate. RESULTS The feeding rate was greater with the test membrane than with the control membrane for L. longipalpis (t-test, t = -3.3860, P = 0.0054) but not for the most frequent field-caught species, Nyssomyia antunesi (t-test, t = 0.7746, P = 0.4535). The average thicknesses of the control and test membranes were 184 ± 83 µm and 34 ± 12 µm, respectively (Mann-Whitney U-test, U = 0.00, Z = 2.8823, P = 0.0039); however, there was no correlation between feeding rate and membrane thickness. A moderate positive correlation was observed between the number of phlebotomines that fed and the total number of phlebotomines in the cage for each type of membrane and for each species. CONCLUSIONS The test membrane is a viable alternative for the artificial blood-feeding of phlebotomines, and is thus a potential substitute for the skin of animals that are euthanized for this purpose. Feeding rate was independent of membrane thickness.
Collapse
Affiliation(s)
- Yetsenia del Valle Sánchez Uzcátegui
- grid.271300.70000 0001 2171 5249Programa de Pós Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil ,grid.419134.a0000 0004 0620 4442Seção de Parasitologia, Instituto Evandro Chagas, Ananindeua, Brazil ,grid.267525.10000 0004 1937 0853Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Eduardo José Melo dos Santos
- grid.271300.70000 0001 2171 5249Genetics of Complex Diseases Laboratory, Universidade Federal do Pará, Belém, Brazil
| | - Edilson Rodrigues Matos
- grid.440587.a0000 0001 2186 5976Laboratório de Pesquisa Carlos Azevedo, Universidade Federal Rural da Amazônia, Belém, Brazil
| | - Fernando Tobias Silveira
- grid.419134.a0000 0004 0620 4442Seção de Parasitologia, Instituto Evandro Chagas, Ananindeua, Brazil
| | - Thiago Vasconcelos dos Santos
- grid.271300.70000 0001 2171 5249Programa de Pós Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil ,grid.419134.a0000 0004 0620 4442Seção de Parasitologia, Instituto Evandro Chagas, Ananindeua, Brazil
| | - Marinete Marins Póvoa
- grid.271300.70000 0001 2171 5249Programa de Pós Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil ,grid.419134.a0000 0004 0620 4442Seção de Parasitologia, Instituto Evandro Chagas, Ananindeua, Brazil
| |
Collapse
|
4
|
Trimèche M, Boussoffara T, Chelbi I, Cherni S, Zhioua S, Msallem N, Labidi I, Zhioua E. Effects of multiple feedings on sensitized rabbits on the fitness of Phlebotomus papatasi (Diptera: Psychodidae). Acta Trop 2022; 228:106303. [PMID: 35021103 DOI: 10.1016/j.actatropica.2022.106303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/18/2021] [Accepted: 01/03/2022] [Indexed: 11/01/2022]
Abstract
In the present study, we evaluated the effects of antibodies anti-sandfly saliva on the fecundity of Phlebotomus papatasi, vector of zoonotic cutaneous leishmaniasis in the Old World. Rabbits were repeatedly exposed to sandfly bites. Immune sera showed increased levels of anti-sandfly saliva antibody compared to the pre-exposition period. The analysis of biological parameters revealed no decline on the feeding success of females P. papatasi fed on rabbits repeatedly exposed to sandfly bites. Our results showed that anti-sandfly saliva antibodies of rabbits are not detrimental to the fitness of females P. papatasi. Thus, rabbits did not acquire resistance to sandflies following repeated exposures, and that contribute in maintaining a high density of P. papatasi. To control sandfly infestations and Leishmania transmission, more studies are needed for a better understanding of the mechanisms governing the resistance of hosts to bites of sandflies.
Collapse
|
5
|
Jalali H, Nikookar SH, Hosseini-Vasoukolaei N, Jahanifard E, Enayati AA, Motevalli-Haghi F, Yazdani-Charati J. Ecology of sand flies (Diptera: Psychodidae, Phlebotominae) in Jajarm County, an area with high risk of cutaneous leishmaniasis, in North Khorasan, Iran. BMC ZOOL 2022; 7:14. [PMID: 37170333 PMCID: PMC10127098 DOI: 10.1186/s40850-022-00113-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/24/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractThe present study was conducted to investigate the ecological aspects of sand flies in southwestern North Khorasan, in which cutaneous leishmaniasis caused by Leishmania major has been reported with the highest annual incidence in Iran. Sampling was carried out in four localities including: Khorasha (natural), Ghamiteh (natural), Jorbat (semi urban) and Brick kilns (urban), twice a month using 105 sticky paper traps from indoors and outdoors dwellings during May-December 2017. Specimens were removed from sticky papers, washed in acetone, preserved in 80% ethanol, mounted on microscopic slides by Puri’s medium, and identified using valid morphological keys. Simpson (D), richness (S), Menhinick (DMg), Margalef (DMn), Shannon-Weiner (H′), evenness (J’) were calculated for species diversity. The synanthropic index was determined for the first time in the area. Totally 517 specimens were collected, 47% in outdoors and 30.4% in human indoor dwellings and 22.6% in animal. Eight species of sand flies including 5 species of the genus Phlebotomus and 3 species of the genus Sergentomyia were identified. Phlebotomus papatasi and Sergentomyia sintoni were the most common and Eudominant species, active in all months, collected in the maximum number and percentage in September and August, respectively, and showed the highest abundance in outdoors. The synanthropic index ranged from 6.25 to 38.9 in the study area. The Shannon-Wiener index was estimated to be up to 1.4 and 1.37 in Khorasha and November, respectively, which showed the highest diversity due to maximal richness and evenness compared to other areas. High abundance of Ph. papatasi, as the main vector of cutaneous leishmaniasis, can enhance the potential risk of emerging CL in new areas, the data can be equally important when vector control measures are considered.
Collapse
|
6
|
Adly E, Shehata MG, El-Demerdash E, Alfarraj S, Ali Alharbi S, Soliman DE. Impact of anti-sandfly saliva antibodies on biological aspects of Phlebotomus papatasi (Diptera: Psychodidae), vector of cutaneous leishmaniasis. Saudi J Biol Sci 2021; 28:2695-2700. [PMID: 34025155 PMCID: PMC8117046 DOI: 10.1016/j.sjbs.2021.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 10/26/2022] Open
Abstract
Sandflies are the main vectors of Leishmania parasites in tropical and subtropical areas. The immunization of vertebrate hosts with vector components through repeated bites may offer an alternative method for sandfly control. Aliquots of female Phlebotomus papatasi (Scopoli) (Diptera: Psychodidae) were weekly blood fed on 12 individual hamsters throughout 18 successive weeks. Significant biological and biochemical changes resulting from antibodies developed by immunized host sera against repeated biting were observed in sandfly females. Blood feeding and fertility rates of females significantly gradually declined to the end of the study period. No appreciable difference was observed in mortality rates among flies repeatedly fed on individual hamsters throughout weeks 9 and 18, compared to flies fed on naïve hamsters. Total salivary gland proteins of female sandflies were compared to proteins in sera of sensitized hamsters. SDS-page revealed bands common to both flies and hosts, indicating the development of anti-saliva antibodies in hamster sera. The importance of anti-sandfly saliva antibodies as a potential tool for vector control leading to the interruption of leishmaniasis is discussed.
Collapse
Affiliation(s)
- Eslam Adly
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Magdi G. Shehata
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Abbassia 11566, Cairo, Egypt
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany & Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Doaa E. Soliman
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
7
|
Dombrovski M, Kuhar R, Mitchell A, Shelton H, Condron B. Cooperative foraging during larval stage affects fitness in Drosophila. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:743-755. [PMID: 32623493 PMCID: PMC7392940 DOI: 10.1007/s00359-020-01434-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/18/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
Cooperative behavior can confer advantages to animals. This is especially true for cooperative foraging which provides fitness benefits through more efficient acquisition and consumption of food. While examples of group foraging have been widely described, the principles governing formation of such aggregations and rules that determine group membership remain poorly understood. Here, we take advantage of an experimental model system featuring cooperative foraging behavior in Drosophila. Under crowded conditions, fly larvae form coordinated digging groups (clusters), where individuals are linked together by sensory cues and group membership requires prior experience. However, fitness benefits of Drosophila larval clustering remain unknown. We demonstrate that animals raised in crowded conditions on food partially processed by other larvae experience a developmental delay presumably due to the decreased nutritional value of the substrate. Intriguingly, same conditions promote the formation of cooperative foraging clusters which further extends larval stage compared to non-clustering animals. Remarkably, this developmental retardation also results in a relative increase in wing size, serving an indicator of adult fitness. Thus, we find that the clustering-induced developmental delay is accompanied by fitness benefits. Therefore, cooperative foraging, while delaying development, may have evolved to give Drosophila larvae benefits when presented with competition for limited food resources.
Collapse
Affiliation(s)
- Mark Dombrovski
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Rives Kuhar
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
| | - Alexandra Mitchell
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
| | - Hunter Shelton
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
| | - Barry Condron
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA.
| |
Collapse
|
8
|
Spitzova T, Sumova P, Volfova V, Polanska N, Poctova L, Volf P. Interactions between host biogenic amines and sand fly salivary yellow-related proteins. Parasit Vectors 2020; 13:237. [PMID: 32381071 PMCID: PMC7206685 DOI: 10.1186/s13071-020-04105-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/27/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND During blood feeding, sand flies inoculate salivary proteins that interact with the host haemostatic system. The blocking of biogenic amines such as serotonin and histamine helps to limit vasodilatation and clot formation, and thus enables the insect to finish the blood-feeding process. In sand flies, an amine-binding ability is known only for the yellow-related proteins of Phlebotomus and Lutzomyia vectors, but not yet for members of the genus Sergentomyia. METHODS The ability of Phlebotomus argentipes and Sergentomyia schwetzi recombinant yellow-related salivary proteins to bind histamine and serotonin was measured by microscale thermophoresis. Both sand fly species were also fed through a chicken-skin membrane on blood mixed with histamine or serotonin in order to check the effects of biogenic amines on sand fly fitness. Additionally, fecundity and mortality were compared in two groups of P. argentipes females fed on repeatedly-bitten and naive hamsters, respectively. RESULTS The P. argentipes recombinant yellow-related protein PagSP04 showed high binding affinity to serotonin and low affinity to histamine. No binding activity was detected for two yellow-related proteins of S. schwetzi. Elevated concentrations of serotonin significantly reduced the amount of eggs laid by P. argentipes when compared to the control. The fecundity of S. schwetzi and the mortality of both sand fly species were not impaired after the experimental membrane feeding. Additionally, there were no differences in oviposition or mortality between P. argentipes females fed on immunized or naive hamsters. CONCLUSIONS Our results suggest that in natural conditions sand flies are able to cope with biogenic amines or anti-saliva antibodies without any influence on their fitness. The serotonin binding by salivary yellow-related proteins may play an important role in Phlebotomus species feeding on mammalian hosts, but not in S. schwetzi, which is adapted to reptiles.
Collapse
Affiliation(s)
- Tatiana Spitzova
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, 128 44, Prague 2, Czech Republic.
| | - Petra Sumova
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, 128 44, Prague 2, Czech Republic
| | - Vera Volfova
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, 128 44, Prague 2, Czech Republic
| | - Nikola Polanska
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, 128 44, Prague 2, Czech Republic
| | - Luisa Poctova
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, 128 44, Prague 2, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, 128 44, Prague 2, Czech Republic
| |
Collapse
|
9
|
Denlinger DS, Li AY, Durham SL, Lawyer PG, Anderson JL, Bernhardt SA. Comparison of In Vivo and In Vitro Methods for Blood Feeding of Phlebotomus papatasi (Diptera: Psychodidae) in the Laboratory. JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:1112-1116. [PMID: 27297215 PMCID: PMC7289326 DOI: 10.1093/jme/tjw074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/23/2016] [Indexed: 06/06/2023]
Abstract
Phlebotomus papatasi Scopoli is a medically important insect that has been successfully colonized in the laboratory, and blood feeding is critical for colony propagation. There has been much interest in developing established protocols for in vitro blood-feeding systems. The objective of this study was to determine if a Parafilm membrane and a hog's gut membrane could be successfully used with in vitro feeding systems. We evaluated percentages of P. papatasi females that blood fed on different blood-feeding systems (a mouse, a Hemotek feeder, or a glass feeder) used with either a Parafilm or a hog's gut membrane, with cohorts of 250 and 500 P. papatasi females, and with or without external exhalations. For all feeding system combinations, female P. papatasi blood fed in higher percentages when in cohorts of 500 individuals and in the presence of exhalations. Higher percentages of P. papatasi fed on a mouse, but this study also demonstrates that P. papatasi will readily feed with in vitro feeding systems using a Parafilm membrane or a hog's gut membrane. This study suggests that female P. papatasi may use an invitation effect to blood feed and are attracted to blood sources via chemical olfaction cues, both of which have been characterized in other blood-feeding arthropods. Our study demonstrates that a Parafilm membrane or a hog's gut membrane, in conjunction with the Hemotek or glass feeder system, is potentially a viable alternative to live rodents to blood feed a colony of P. papatasi.
Collapse
Affiliation(s)
- David S Denlinger
- Department of Biology, Utah State University, Logan, UT 84322 (, , )
| | - Andrew Y Li
- USDA, ARS, Knipling-Bushland U.S. Livestock Insect Research Laboratory, Kerrville, TX 78028
- Current address: USDA, ARS, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD 20705
| | | | - Phillip G Lawyer
- Laboratory of Parasitic Diseases, Intracellular Parasite Biology Section, National Institutes of Health, Bethesda, MD 20892
| | - Joseph L Anderson
- Department of Biology, Utah State University, Logan, UT 84322 (, , )
| | - Scott A Bernhardt
- Department of Biology, Utah State University, Logan, UT 84322 (, , )
| |
Collapse
|
10
|
Factors affecting larval tick feeding success: host, density and time. Parasit Vectors 2015; 8:340. [PMID: 26104393 PMCID: PMC4488054 DOI: 10.1186/s13071-015-0955-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/12/2015] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Ectoparasites rely on blood-feeding to sustain activity, support development and produce offspring. Blood-feeding is also a route for transmission of diverse vector-borne pathogens. The likelihood of successfully feeding is thus an important aspect of ectoparasite population dynamics and pathogen transmission. Factors that affect blood-feeding include ectoparasite density, host defenses, and ages of the host and ectoparasite. How these factors interact to affect feeding success is not well understood. METHODS We monitored blood-feeding success of larval Rocky Mountain wood ticks (RMWTs; Dermacentor andersoni) on deer mice (Peromyscus maniculatus) in several experiments to determine how tick density, host defense, and ages of mice and ticks interact to influence feeding success. In the first experiment, tick-naive deer mice were infested with one of several densities of RMWT larvae, while a second cohort of mice were infested with 50 larvae each. Two weeks after ticks dropped off, mice in the first cohort were re-exposed to 50 larvae each and mice in the second cohort were re-exposed to varying densities of larvae. In the second experiment mice of different ages (45-374 days old) were exposed to 50 larvae each. Two weeks later mice were re-exposed to 50 larvae each. We combined data from these and several similar experiments to test the generality of the patterns we observed. Lastly, we tested whether tick feeding success was consistent on individual mice that were challenged on four occasions. RESULTS Mice acquired resistance such that feeding success declined dramatically from the first to the second infestation. Feeding success also declined with tick density and tick age. Mice, however, became more permissive with age. The sizes of these effects were similar and additive. Surprisingly, over successive infestations the relative resistance among mice changed among hosts within a cohort. CONCLUSIONS We predict that larval blood-feeding success, and thus development to the nymph stage, will change due to variation in tick age and density, as well as the age and history of the host. Incorporating these biotic factors into modeling of tick population dynamics may improve predictions of tick-borne pathogen transmission.
Collapse
|
11
|
Vigoder FDM, Ritchie MG, Gibson G, Peixoto AA. Acoustic communication in insect disease vectors. Mem Inst Oswaldo Cruz 2014; 108 Suppl 1:26-33. [PMID: 24473800 PMCID: PMC4109177 DOI: 10.1590/0074-0276130390] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/30/2013] [Indexed: 11/21/2022] Open
Abstract
Acoustic signalling has been extensively studied in insect species, which has led to a better understanding of sexual communication, sexual selection and modes of speciation. The significance of acoustic signals for a blood-sucking insect was first reported in the XIX century by Christopher Johnston, studying the hearing organs of mosquitoes, but has received relatively little attention in other disease vectors until recently. Acoustic signals are often associated with mating behaviour and sexual selection and changes in signalling can lead to rapid evolutionary divergence and may ultimately contribute to the process of speciation. Songs can also have implications for the success of novel methods of disease control such as determining the mating competitiveness of modified insects used for mass-release control programs. Species-specific sound "signatures" may help identify incipient species within species complexes that may be of epidemiological significance, e.g. of higher vectorial capacity, thereby enabling the application of more focussed control measures to optimise the reduction of pathogen transmission. Although the study of acoustic communication in insect vectors has been relatively limited, this review of research demonstrates their value as models for understanding both the functional and evolutionary significance of acoustic communication in insects.
Collapse
Affiliation(s)
- Felipe de Mello Vigoder
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz-Fiocruz, Brasil, Rio de JaneiroRJ, Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Michael Gordon Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, Scotland, Fife, Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, Scotland, UK
| | - Gabriella Gibson
- Natural Resources Institute, University of Greenwich,, UK, Chatham MaritimeKent, Natural Resources Institute, University of Greenwich, Medway Campus, Chatham Maritime, Kent, UK
| | - Alexandre Afranio Peixoto
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz-Fiocruz, Brasil, Rio de JaneiroRJ, Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
12
|
Charlwood JD, Tomás EVE, Kelly-Hope L, Briët OJT. Evidence of an 'invitation' effect in feeding sylvatic Stegomyia albopicta from Cambodia. Parasit Vectors 2014; 7:324. [PMID: 25015104 PMCID: PMC4230241 DOI: 10.1186/1756-3305-7-324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/29/2014] [Indexed: 11/28/2022] Open
Abstract
Background Orientation of haematophagous insects towards a potential host is largely mediated by kairomones that, in some groups or species may include chemicals produced during feeding by the insects themselves, the so called ‘invitation’ effect. Methods The ‘invitation’ effect in blood-feeding diurnally active Stegomyia albopicta was investigated over 33 days in secondary forest in Mondolkiri Province, Cambodia. Two human volunteers sitting inside a shelter collected mosquitoes and noted where and when they landed. A 10% emanator of a synthetic pyrethroid with high vapour action was in use on alternate days. Results Overall, 2726 mosquitoes were collected, 1654 of which had the landing site recorded. The heads of the volunteers were the locations with the highest density of landings per surface area whilst the knees and elbows accounted for most of the landings received on the arms and legs. Landings recorded within three minutes of each other on a collector were about 2.5 times more likely to be on the same body part than on a random body part, weighted for landing site preference. This preference did not vary with collector or pyrethroid. Conclusions The ‘invitation’ effect may be due to a semio-chemical produced early in the feeding process. Incorporation of such a chemical into traps designed to control this important vector of dengue and chikungunya viruses might potentially improve their attractiveness.
Collapse
Affiliation(s)
- J Derek Charlwood
- Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | | | | | | |
Collapse
|
13
|
Chagas AC, Oliveira F, Debrabant A, Valenzuela JG, Ribeiro JMC, Calvo E. Lundep, a sand fly salivary endonuclease increases Leishmania parasite survival in neutrophils and inhibits XIIa contact activation in human plasma. PLoS Pathog 2014; 10:e1003923. [PMID: 24516388 PMCID: PMC3916414 DOI: 10.1371/journal.ppat.1003923] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/19/2013] [Indexed: 01/08/2023] Open
Abstract
Neutrophils are the host's first line of defense against infections, and their extracellular traps (NET) were recently shown to kill Leishmania parasites. Here we report a NET-destroying molecule (Lundep) from the salivary glands of Lutzomyia longipalpis. Previous analysis of the sialotranscriptome of Lu. longipalpis showed the potential presence of an endonuclease. Indeed, not only was the cloned cDNA (Lundep) shown to encode a highly active ss- and dsDNAse, but also the same activity was demonstrated to be secreted by salivary glands of female Lu. longipalpis. Lundep hydrolyzes both ss- and dsDNA with little sequence specificity with a calculated DNase activity of 300000 Kunitz units per mg of protein. Disruption of PMA (phorbol 12 myristate 13 acetate)- or parasite-induced NETs by treatment with recombinant Lundep or salivary gland homogenates increases parasite survival in neutrophils. Furthermore, co-injection of recombinant Lundep with metacyclic promastigotes significantly exacerbates Leishmania infection in mice when compared with PBS alone or inactive (mutagenized) Lundep. We hypothesize that Lundep helps the parasite to establish an infection by allowing it to escape from the leishmanicidal activity of NETs early after inoculation. Lundep may also assist blood meal intake by lowering the local viscosity caused by the release of host DNA and as an anticoagulant by inhibiting the intrinsic pathway of coagulation. Salivary components from disease vectors help the arthropod to acquire blood. Here we show that an arthropod vector salivary enzyme affects the innate immune system of the host—mainly the destruction of neutrophil traps—allowing the Leishmania parasite to evade the host immune response and to cause an infection. This work highlights the relevance of vector salivary components in parasite transmission and further suggests the inclusion of these proteins as components for an anti-Leishmania vaccine. Importantly, because salivary proteins are always present at the site of natural transmission, this work further encourages the testing of vaccine candidates using the natural route of transmission—the bites of an arthropod vector—instead of current practices based solely on needle injection of parasites.
Collapse
Affiliation(s)
- Andrezza C. Chagas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Fabiano Oliveira
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Alain Debrabant
- Laboratory of Emerging Pathogens, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Jesus G. Valenzuela
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - José M. C. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
14
|
Abstract
Phlebotomines are the sole or principal vectors of Leishmania, Bartonella bacilliformis, and some arboviruses. The coevolution of sand flies with Leishmania species of mammals and lizards is considered in relation to the landscape epidemiology of leishmaniasis, a neglected tropical disease. Evolutionary hypotheses are unresolved, so a practical phlebotomine classification is proposed to aid biomedical information retrieval. The vectors of Leishmania are tabulated and new criteria for their incrimination are given. Research on fly-parasite-host interactions, fly saliva, and behavioral ecology is reviewed in relation to parasite manipulation of blood feeding, vaccine targets, and pheromones for lures. Much basic research is based on few transmission cycles, so generalizations should be made with caution. Integrated research and control programs have begun, but improved control of leishmaniasis and nuisance-biting requires greater emphasis on population genetics and transmission modeling. Most leishmaniasis transmission is zoonotic, affecting the poor and tourists in rural and natural areas, and therefore control should be compatible with environmental conservation.
Collapse
Affiliation(s)
- Paul D Ready
- Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom.
| |
Collapse
|
15
|
Rogers ME. The role of leishmania proteophosphoglycans in sand fly transmission and infection of the Mammalian host. Front Microbiol 2012; 3:223. [PMID: 22754550 PMCID: PMC3384971 DOI: 10.3389/fmicb.2012.00223] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/31/2012] [Indexed: 11/17/2022] Open
Abstract
Leishmania are transmitted by the bite of their sand fly vector and this has a significant influence on the virulence of the resulting infection. From our studies into the interaction between parasite, vector, and host we have uncovered an important missing ingredient during Leishmania transmission. Leishmania actively adapt their sand fly hosts into efficient vectors by secreting Promastigote Secretory Gel (PSG), a proteophosphoglycan (PPG)-rich, mucin-like gel which accumulates in sand fly gut and mouthparts. This has the effect of blocking the fly, such that during bloodfeeding both parasites and gel are co-transmitted in an act of regurgitation. We are discovering that this has further implications for the mammalian infection, again, in favor of the parasite. Experimentally, PSG exacerbates cutaneous and visceral leishmaniasis and can promote the chronicity of Leishmania infection, even in mouse strains normally capable of controlling leishmaniasis. The underlying mechanism of PSG's action is a major focus of our ongoing work. This review aims to synthesize what is known about the role and action of PSG and its constituent proteophosphoglycans, for parasite colonization of the sand fly, transmission, and mammalian infection. Lastly, we discuss potential exploitation of this important vector-transmitted product and future avenues of research.
Collapse
Affiliation(s)
- Matthew E. Rogers
- Faculty of Infectious Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical MedicineLondon, UK
| |
Collapse
|
16
|
Chelbi I, Zhioua E, Hamilton JGC. Behavioral evidence for the presence of a sex pheromone in male Phlebotomus papatasi scopoli (Diptera: Psychodidae). JOURNAL OF MEDICAL ENTOMOLOGY 2011; 48:518-525. [PMID: 21661311 DOI: 10.1603/me10132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Phlebotomus papatasi (Diptera: Psychodidae) is the Old World sand fly vector of zoonotic cutaneous leishmaniasis caused by Leishmania major (Trypanosomatidae: Kinetoplastida), a debilitating and disfiguring protist parasitic disease prevalent throughout southern Mediterranean countries, the Middle East, as well as southern and eastern European countries, where it is regarded as a serious public health problem. Little is known of the mating ecology of P. papatasi, and, in particular, the role (if any) of pheromones is not known. In this laboratory- and field-based study, we have shown that a male-produced sex pheromone exists in P. papatasi. Young female P. papatasi are attracted to the headspace volatiles of small groups of males, males and females together, but not females alone. Males were not attracted to males, females, or mixed groups of males and females in the laboratory. Larger groups of males or males and females together were repellent in the laboratory study. Field experiments showed that Centers for Disease Control (CDC) light traps baited with small groups of males and females together were attractive to females, but not males. CDC traps baited with large groups of males and females together caught significantly fewer females and males than the control traps; however, the proportion of females caught compared with males overall was much higher than with CDC traps baited with small numbers of males and females. These results suggest that females may be attracted in preference to males to the vicinity of the baited traps and are highly sensitive to the concentration of male pheromone. It also suggests that P. papatasi mating behavior is fundamentally different from that of Lutzomyia longipalpis, where large mating aggregations of males and females occur.
Collapse
Affiliation(s)
- I Chelbi
- Keele University, Center for Applied Entomology and Parasitology, Staffordshire, United Kingdom
| | | | | |
Collapse
|