1
|
Herreros-Cabello A, Del Moral-Salmoral J, Morato E, Marina A, Barrocal B, Fresno M, Gironès N. Quantitative Proteomic Analysis of Macrophages Infected with Trypanosoma cruzi Reveals Different Responses Dependent on the SLAMF1 Receptor and the Parasite Strain. Int J Mol Sci 2024; 25:7493. [PMID: 39000601 PMCID: PMC11242706 DOI: 10.3390/ijms25137493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Chagas disease is caused by the intracellular protozoan parasite Trypanosoma cruzi. This disease affects mainly rural areas in Central and South America, where the insect vector is endemic. However, this disease has become a world health problem since migration has spread it to other continents. It is a complex disease with many reservoirs and vectors and high genetic variability. One of the host proteins involved in the pathogenesis is SLAMF1. This immune receptor acts during the infection of macrophages controlling parasite replication and thus affecting survival in mice but in a parasite strain-dependent manner. Therefore, we studied the role of SLAMF1 by quantitative proteomics in a macrophage in vitro infection and the different responses between Y and VFRA strains of Trypanosoma cruzi. We detected different significant up- or downregulated proteins involved in immune regulation processes, which are SLAMF1 and/or strain-dependent. Furthermore, independently of SLAMF1, this parasite induces different responses in macrophages to counteract the infection and kill the parasite, such as type I and II IFN responses, NLRP3 inflammasome activation, IL-18 production, TLR7 and TLR9 activation specifically with the Y strain, and IL-11 signaling specifically with the VFRA strain. These results have opened new research fields to elucidate the concrete role of SLAMF1 and discover new potential therapeutic approaches for Chagas disease.
Collapse
Affiliation(s)
- Alfonso Herreros-Cabello
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
| | - Javier Del Moral-Salmoral
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
| | - Esperanza Morato
- Unidad de Proteómica, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | - Anabel Marina
- Unidad de Proteómica, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
- Unidad de Técnicas Bioanalíticas (BAT), Instituto de Investigación de Ciencias de la Alimentación (CIAL), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
| | - Beatriz Barrocal
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
| | - Manuel Fresno
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, Universidad Autónoma de Madrid (IUBM-UAM), 28049 Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, 28006 Madrid, Spain
| | - Núria Gironès
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, Universidad Autónoma de Madrid (IUBM-UAM), 28049 Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, 28006 Madrid, Spain
| |
Collapse
|
2
|
Candia-Puma MA, Machaca-Luque LY, Roque-Pumahuanca BM, Galdino AS, Giunchetti RC, Coelho EAF, Chávez-Fumagalli MA. Accuracy of Diagnostic Tests for the Detection of Chagas Disease: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2022; 12:2752. [PMID: 36359595 PMCID: PMC9689806 DOI: 10.3390/diagnostics12112752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/02/2023] Open
Abstract
The present systematic review and meta-analysis about the accuracy of diagnostic tests aim to describe the findings of literature over the last thirty years for the diagnosis of Chagas disease (CD). This work aimed to determine the accuracy of diagnostic techniques for CD in the disease's acute and chronic phases. The PubMed database was searched for studies published between 1990 and 2021 on CD diagnostics. Fifty-six published studies that met the criteria were analyzed and included in the meta-analysis, evaluating diagnostic accuracy through sensitivity and specificity. For Enzyme-Linked Immunosorbent Assay (ELISA), Fluorescent Antibody Technique (IFAT), Hemagglutination Test (HmT), Polymerase Chain Reaction (PCR), and Real-Time Polymerase Chain Reaction (qPCR) diagnosis methods, the sensitivity had a median of 99.0%, 78.0%, 75.0%, 76.0%, and 94.0%, respectively; while specificity presented a median of 99.0%, 99.0%, 99.0%, 98.0%, and 98.0%, respectively. This meta-analysis showed that ELISA and qPCR techniques had a higher performance compared to other methods of diagnosing CD in the chronic and acute phases, respectively. It was concluded utilizing the Area Under the Curve restricted to the false positive rates (AUCFPR), that the ELISA diagnostic test presents the highest performance in diagnosing acute and chronic CD, compared to serological and molecular tests. Future studies focusing on new CD diagnostics approaches should be targeted.
Collapse
Affiliation(s)
- Mayron Antonio Candia-Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Laura Yesenia Machaca-Luque
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Brychs Milagros Roque-Pumahuanca
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Alexsandro Sobreira Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador 40015-970, BA, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde, Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
| |
Collapse
|
3
|
de Arias AR, Monroy C, Guhl F, Sosa-Estani S, Santos WS, Abad-Franch F. Chagas disease control-surveillance in the Americas: the multinational initiatives and the practical impossibility of interrupting vector-borne Trypanosoma cruzi transmission. Mem Inst Oswaldo Cruz 2022; 117:e210130. [PMID: 35830010 PMCID: PMC9261920 DOI: 10.1590/0074-02760210130] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/21/2022] Open
Abstract
Chagas disease (CD) still imposes a heavy burden on most Latin American countries. Vector-borne and mother-to-child transmission cause several thousand new infections per year, and at least 5 million people carry Trypanosoma cruzi. Access to diagnosis and medical care, however, is far from universal. Starting in the 1990s, CD-endemic countries and the Pan American Health Organization-World Health Organization (PAHO-WHO) launched a series of multinational initiatives for CD control-surveillance. An overview of the initiatives’ aims, achievements, and challenges reveals some key common themes that we discuss here in the context of the WHO 2030 goals for CD. Transmission of T. cruzi via blood transfusion and organ transplantation is effectively under control. T. cruzi, however, is a zoonotic pathogen with 100+ vector species widely spread across the Americas; interrupting vector-borne transmission seems therefore unfeasible. Stronger surveillance systems are, and will continue to be, needed to monitor and control CD. Prevention of vertical transmission demands boosting current efforts to screen pregnant and childbearing-aged women. Finally, integral patient care is a critical unmet need in most countries. The decades-long experience of the initiatives, in sum, hints at the practical impossibility of interrupting vector-borne T. cruzi transmission in the Americas. The concept of disease control seems to provide a more realistic description of what can in effect be achieved by 2030.
Collapse
Affiliation(s)
| | - Carlota Monroy
- Universidad de San Carlos, Laboratorio de Entomología y Parasitología Aplicadas, Ciudad de Guatemala, Guatemala
| | - Felipe Guhl
- Universidad de los Andes, Facultad de Ciencias, Centro de Investigaciones en Microbiología y Parasitología Tropical, Bogotá, Colombia
| | - Sergio Sosa-Estani
- Drugs for Neglected Diseases initiative Latin America, Rio de Janeiro, RJ, Brasil.,Centro de Investigaciones en Epidemiología y Salud Pública, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Walter Souza Santos
- Ministério da Saúde, Secretaria de Vigilância em Saúde, Instituto Evandro Chagas, Laboratório de Epidemiologia das Leishmanioses, Ananindeua, PA, Brasil
| | - Fernando Abad-Franch
- Universidade de Brasília, Faculdade de Medicina, Núcleo de Medicina Tropical, Brasília, DF, Brasil
| |
Collapse
|
4
|
Miranda-Arboleda AF, Zaidel EJ, Marcus R, Pinazo MJ, Echeverría LE, Saldarriaga C, Sosa Liprandi Á, Baranchuk A. Roadblocks in Chagas disease care in endemic and nonendemic countries: Argentina, Colombia, Spain, and the United States. The NET-Heart project. PLoS Negl Trop Dis 2021; 15:e0009954. [PMID: 34968402 PMCID: PMC8717966 DOI: 10.1371/journal.pntd.0009954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Chagas disease (CD) is endemic in Latin America; however, its spread to nontropical areas has raised global interest in this condition. Barriers in access to early diagnosis and treatment of both acute and chronic infection and their complications have led to an increasing disease burden outside of Latin America. Our goal was to identify those barriers and to perform an additional analysis of them based on the Inter American Society of Cardiology (SIAC) and the World Heart Federation (WHF) Chagas Roadmap, at a country level in Argentina, Colombia, Spain, and the United States, which serve as representatives of endemic and nonendemic countries. Methodology and principal findings This is a nonsystematic review of articles published in indexed journals from 1955 to 2021 and of gray literature (local health organizations guidelines, local policies, blogs, and media). We classified barriers to access care as (i) existing difficulties limiting healthcare access; (ii) lack of awareness about CD and its complications; (iii) poor transmission control (vectorial and nonvectorial); (iv) scarce availability of antitrypanosomal drugs; and (v) cultural beliefs and stigma. Region-specific barriers may limit the implementation of roadmaps and require the application of tailored strategies to improve access to appropriate care. Conclusions Multiple barriers negatively impact the prognosis of CD. Identification of these roadblocks both nationally and globally is important to guide development of appropriate policies and public health programs to reduce the global burden of this disease. Chagas disease (CD) has been described as an epidemic in Latin America, but its geographical influence is global. One of the biggest challenges in providing care for patients with CD is to improve access to early diagnosis and treatment in order to avoid chronic cardiovascular and gastrointestinal complications. However, different roadblocks interfere with the optimal care of these patients, which facilitates disease progression. While some barriers to care are global in scope, there are additionally national and even local obstacles for patients with CD. Appropriate delineation of these barriers will allow for the development of targeted interventions to improve the outlook for CD patients in both endemic and nonendemic countries alike.
Collapse
Affiliation(s)
- Andrés F. Miranda-Arboleda
- Cardiology Department, Pablo Tobón Uribe Hospital, Medellín, Colombia
- Division of Cardiology, Kingston Health Science Centre, Queen’s University, Kingston, Ontario, Canada
| | - Ezequiel José Zaidel
- Cardiology Department, Sanatorio Güemes, and School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| | - Rachel Marcus
- LASOCHA, Washington, DC, United States of America
- Medstar Union Memorial Hospital, Baltimore, Maryland, United States of America
| | | | | | - Clara Saldarriaga
- Cardiology Service, Clínica CardioVID, Universidad de Antioquia, Medellín, Colombia
| | - Álvaro Sosa Liprandi
- Cardiology Department, Sanatorio Güemes, and School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Adrián Baranchuk
- Division of Cardiology, Kingston Health Science Centre, Queen’s University, Kingston, Ontario, Canada
| | | |
Collapse
|
5
|
The Chagas disease study landscape: A systematic review of clinical and observational antiparasitic treatment studies to assess the potential for establishing an individual participant-level data platform. PLoS Negl Trop Dis 2021; 15:e0009697. [PMID: 34398888 PMCID: PMC8428795 DOI: 10.1371/journal.pntd.0009697] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/09/2021] [Accepted: 08/01/2021] [Indexed: 11/19/2022] Open
Abstract
Background Chagas disease (CD), caused by the parasite Trypanosoma cruzi, affects ~6–7 million people worldwide. Significant limitations still exist in our understanding of CD. Harnessing individual participant data (IPD) from studies could support more in-depth analyses to address the many outstanding research questions. This systematic review aims to describe the characteristics and treatment practices of clinical studies in CD and assess the breadth and availability of research data for the potential establishment of a data-sharing platform. Methodology/Principal findings This review includes prospective CD clinical studies published after 1997 with patients receiving a trypanocidal treatment. The following electronic databases and clinical trial registry platforms were searched: Cochrane Library, PubMed, Embase, LILACS, Scielo, Clintrials.gov, and WHO ICTRP. Of the 11,966 unique citations screened, 109 (0.9%) studies (31 observational and 78 interventional) representing 23,116 patients were included. Diagnosis for patient enrolment required 1 positive test result in 5 (4.6%) studies (2 used molecular method, 1 used molecular and serology, 2 used serology and parasitological methods), 2 in 60 (55.0%), 3 in 14 (12.8%) and 4 or more in 4 (3.7%) studies. A description of treatment regimen was available for 19,199 (83.1%) patients, of whom 14,605 (76.1%) received an active treatment and 4,594 (23.9%) were assigned to a placebo/no-treatment. Of the 14,605 patients who received an active treatment, benznidazole was administered in 12,467 (85.4%), nifurtimox in 825 (5.6%), itraconazole in 284 (1.9%), allopurinol in 251 (1.7%) and other drugs in 286 (1.9%). Assessment of efficacy varied largely and was based primarily on biological outcome; parasitological efficacy relied on serology in 67/85 (78.8%) studies, molecular methods in 52/85 (61.2%), parasitological in 34/85 (40.0%), microscopy in 3/85 (3.5%) and immunohistochemistry in 1/85 (1.2%). The median time at which parasitological assessment was carried out was 79 days [interquartile range (IQR): 30–180] for the first assessment, 180 days [IQR: 60–500] for second, and 270 days [IQR: 18–545] for the third assessment. Conclusions/Significance This review demonstrates the heterogeneity of clinical practice in CD treatment and in the conduct of clinical studies. The sheer volume of potential IPD identified demonstrates the potential for development of an IPD platform for CD and that such efforts would enable in-depth analyses to optimise the limited pharmacopoeia of CD and inform prospective data collection. Chagas disease, also known as American trypanosomiasis, is a neglected tropical disease transmitted by triatomine insects, first identified in 1909. Chagas disease affects approximately 6–7 million people globally and is highly prevalent in Latin America where most cases are reported. However, there is increasing evidence that Chagas disease is now an important public health issue outside the “classical” endemic countries due to population migration. Our understanding of Chagas disease, including its pathologies and factors relating to progression, remains to date limited, and is also challenged by lack of diagnosis and highly effective treatment. This systematic review aims to describe studies with Chagas patients receiving antiparasitic treatment. Databases were searched for relevant studies published after 1997, and the results of these searches were screened. Although a large volume of studies was identified in the review, heterogeneity was observed in study design, diagnostic methods, outcome assessment, and treatment regimens. While this aspect will be a limitation in pooling individual patient data, the volume of data available should allow sufficient comparison to form the basis of guidelines for future studies. The results of this review demonstrate that development of a Chagas disease data platform for clinical research would enable optimisation of existing data to strengthen evidence for the treatment and diagnosis of Chagas disease.
Collapse
|
6
|
Serological Approaches for Trypanosoma cruzi Strain Typing. Trends Parasitol 2021; 37:214-225. [PMID: 33436314 DOI: 10.1016/j.pt.2020.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/23/2022]
Abstract
Trypanosoma cruzi, the protozoan agent of Chagas' disease, displays a complex population structure made up of multiple strains showing a diverse ecoepidemiological distribution. Parasite genetic variability may be associated with disease outcome, hence stressing the need to develop methods for T. cruzi typing in vivo. Serological typing methods that exploit the presence of host antibodies raised against polymorphic parasite antigens emerge as an appealing approach to address this issue. These techniques are robust, simple, cost-effective, and are not curtailed by methodological/biological limitations intrinsic to available genotyping methods. Here, we critically assess the progress towards T. cruzi serotyping and discuss the opportunity provided by high-throughput immunomics to improve this field.
Collapse
|