1
|
Dagley JL, DiCosty U, Fricks C, Mansour A, McCall S, McCall JW, Taylor MJ, Turner JD. Current status of immunodeficient mouse models as substitutes to reduce cat and dog use in heartworm preclinical research. F1000Res 2024; 13:484. [PMID: 39036651 PMCID: PMC11259772 DOI: 10.12688/f1000research.149854.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 07/23/2024] Open
Abstract
Chemoprophylactic prevention of veterinary heartworm disease in companion animals, caused by the vector-borne nematode parasite Dirofilaria immitis, is a multi-billion-dollar global market. Experimental use of cats and dogs in preclinical heartworm drug testing is increasing due to evolving drug-resistance to frontline macrocyclic lactones and renewed investment in alternative preventative drug research. We and others recently published data demonstrating proof-of-concept of utilising lymphopenic severe-combined immunodeficient (SCID) or Recombination Activating Gene (RAG)2 deficient mice with additional knockout of the IL-2/7 receptor gamma chain (γc) as alternative preventative drug screening research models of dirofilariasis. Here we summarise the current knowledge of candidate immunodeficient mouse models tested, including a comparison of susceptibility using different background strains of mice, different D. immitis isolates, following use of anti-inflammatory treatments to further suppress residual innate immunity, and efficacies achieved against different reference anthelmintics. We supplement this precis with new data on treatment response to the veterinary anthelmintic, oxfendazole, and initial evaluation of D. immitis susceptibility in CB.17 SCID and C57BL/6 RAG2 -/-γc -/- mice. We conclude that in addition to NSG and NXG mice, RAG2 -/-γc -/- mice on either a BALB/c or C57BL/6 background offer an alternative screening model option, widening access to academic and commercial laboratories wishing to pursue initial rapid in vivo drug screening whilst avoiding potentially unnecessary cat or dog testing.
Collapse
Affiliation(s)
- Jessica L Dagley
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, Merseyside, UK
| | | | | | | | | | - John W McCall
- TRS Labs, Inc., Athens, GA, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Mark J Taylor
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, Merseyside, UK
| | - Joseph D Turner
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, Merseyside, UK
| |
Collapse
|
2
|
Risch F, Kazakov A, Specht S, Pfarr K, Fischer PU, Hoerauf A, Hübner MP. The long and winding road towards new treatments against lymphatic filariasis and onchocerciasis. Trends Parasitol 2024; 40:829-845. [PMID: 39122645 DOI: 10.1016/j.pt.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
Although lymphatic filariasis and onchocerciasis have been targeted for global elimination, these helminth infections are still a major public health problem across the tropics and subtropics. Despite decades of research, treatment options remain limited and drugs that completely clear the infections, and can be used on a large scale, are still unavailable. In the present review we discuss the strengths and weaknesses of currently available treatments and new ones in development. Novel candidates (corallopyronin A, DNDi-6166, emodepside, and oxfendazole) are currently moving through (pre)clinical development, while the development of two candidates (AWZ1066S and ABBV-4083/flubentylosin) was recently halted. The preclinical R&D pipeline for filarial infections continues to be limited, and recent setbacks highlight the importance of continuous drug discovery and testing.
Collapse
Affiliation(s)
- Frederic Risch
- Institute for Medical Microbiology, Immunology, and Parasitology, University Hospital Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Alexander Kazakov
- Institute for Medical Microbiology, Immunology, and Parasitology, University Hospital Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Sabine Specht
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Kenneth Pfarr
- Institute for Medical Microbiology, Immunology, and Parasitology, University Hospital Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Peter U Fischer
- Division of Infectious Diseases, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology, and Parasitology, University Hospital Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology, and Parasitology, University Hospital Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
3
|
Hegde S, Marriott AE, Pionnier N, Steven A, Bulman C, Gunderson E, Vogel I, Koschel M, Ehrens A, Lustigman S, Voronin D, Tricoche N, Hoerauf A, Hübner MP, Sakanari J, Aljayyoussi G, Gusovsky F, Dagley J, Hong DW, O'Neill P, Ward SA, Taylor MJ, Turner JD. Combinations of the azaquinazoline anti- Wolbachia agent, AWZ1066S, with benzimidazole anthelmintics synergise to mediate sub-seven-day sterilising and curative efficacies in experimental models of filariasis. Front Microbiol 2024; 15:1346068. [PMID: 38362501 PMCID: PMC10867176 DOI: 10.3389/fmicb.2024.1346068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024] Open
Abstract
Lymphatic filariasis and onchocerciasis are two major neglected tropical diseases that are responsible for causing severe disability in 50 million people worldwide, whilst veterinary filariasis (heartworm) is a potentially lethal parasitic infection of companion animals. There is an urgent need for safe, short-course curative (macrofilaricidal) drugs to eliminate these debilitating parasite infections. We investigated combination treatments of the novel anti-Wolbachia azaquinazoline small molecule, AWZ1066S, with benzimidazole drugs (albendazole or oxfendazole) in up to four different rodent filariasis infection models: Brugia malayi-CB.17 SCID mice, B. malayi-Mongolian gerbils, B. pahangi-Mongolian gerbils, and Litomosoides sigmodontis-Mongolian gerbils. Combination treatments synergised to elicit threshold (>90%) Wolbachia depletion from female worms in 5 days of treatment, using 2-fold lower dose-exposures of AWZ1066S than monotherapy. Short-course lowered dose AWZ1066S-albendazole combination treatments also delivered partial adulticidal activities and/or long-lasting inhibition of embryogenesis, resulting in complete transmission blockade in B. pahangi and L. sigmodontis gerbil models. We determined that short-course AWZ1066S-albendazole co-treatment significantly augmented the depletion of Wolbachia populations within both germline and hypodermal tissues of B. malayi female worms and in hypodermal tissues in male worms, indicating that anti-Wolbachia synergy is not limited to targeting female embryonic tissues. Our data provides pre-clinical proof-of-concept that sub-seven-day combinations of rapid-acting novel anti-Wolbachia agents with benzimidazole anthelmintics are a promising curative and transmission-blocking drug treatment strategy for filarial diseases of medical and veterinary importance.
Collapse
Affiliation(s)
- Shrilakshmi Hegde
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Amy E. Marriott
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Nicolas Pionnier
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Andrew Steven
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Christina Bulman
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, Unites States
| | - Emma Gunderson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, Unites States
| | - Ian Vogel
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, Unites States
| | - Marianne Koschel
- Department of Immunology and Parasitology, Institute for Medical Microbiology, University Hospital Bonn, Bonn, Germany
| | - Alexandra Ehrens
- Department of Immunology and Parasitology, Institute for Medical Microbiology, University Hospital Bonn, Bonn, Germany
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, Unites States
| | - Denis Voronin
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, Unites States
| | - Nancy Tricoche
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, Unites States
| | - Achim Hoerauf
- Department of Immunology and Parasitology, Institute for Medical Microbiology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Marc P. Hübner
- Department of Immunology and Parasitology, Institute for Medical Microbiology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Judy Sakanari
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, Unites States
| | - Ghaith Aljayyoussi
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Jessica Dagley
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - David W. Hong
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Paul O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Steven A. Ward
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Mark J. Taylor
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Joseph D. Turner
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
4
|
Gokool S, Townson S, Freeman A, Siemienski-Kleyn J, Zubrzycki J, Tagboto S, Hübner MP, Scandale I. Onchocerciasis Drug Discovery: In Vitro Evaluation of FDA-Approved Drugs against Onchocerca gutturosa in Gambia. Pharmaceutics 2024; 16:210. [PMID: 38399264 PMCID: PMC10891533 DOI: 10.3390/pharmaceutics16020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Onchocerciasis treatment and control relies mainly on the use of ivermectin which has high activity against the microfilarial stage of Onchocerca volvulus but limited activity against the long-lived, tissue dwelling adult nematodes. As this neglected tropical disease has now been targeted for elimination, there is an urgent need for new drugs to combat these parasites, ideally with macrofilaricidal activity. In this study, we have examined the anti-Onchocerca activity of a range of existing FDA-approved drugs with a view to repurposing, which can lead to rapid and relatively inexpensive development. From the Pharmakon-1600 library, 106 drugs were selected and tested against O. gutturosa adult male parasites using a concentration of 1.25 × 10-5 M in an in vitro 5-day standard assay to assess motility and viability (using MTT/formazan colorimetry). The findings revealed that 44 drugs produced marginal/moderate activity (50-99% motility and/or MTT reductions) including cefuroxime sodium, methenamine, primaquine phosphate and rivastigmine tartrate, while 23 drugs produced good activity (100% motility reductions and significant MTT reductions), including atovaquone, isradipine, losartan, rifaximin, cefaclor and pyrantel pamoate. Although this study represents only a first step, some of the identified hits indicate there are potential anti-Onchocerca drug candidates worthy of further investigation.
Collapse
Affiliation(s)
- Suzanne Gokool
- Tropical Parasitic Diseases Unit, Northwick Park Institute for Medical Research, Watford Road, Harrow, London HA1 3UJ, UK; (S.G.); (S.T.)
| | - Simon Townson
- Tropical Parasitic Diseases Unit, Northwick Park Institute for Medical Research, Watford Road, Harrow, London HA1 3UJ, UK; (S.G.); (S.T.)
| | - Andrew Freeman
- Tropical Parasitic Diseases Unit, Northwick Park Institute for Medical Research, Watford Road, Harrow, London HA1 3UJ, UK; (S.G.); (S.T.)
| | - Jadzia Siemienski-Kleyn
- Tropical Parasitic Diseases Unit, Northwick Park Institute for Medical Research, Watford Road, Harrow, London HA1 3UJ, UK; (S.G.); (S.T.)
| | - Jakub Zubrzycki
- Tropical Parasitic Diseases Unit, Northwick Park Institute for Medical Research, Watford Road, Harrow, London HA1 3UJ, UK; (S.G.); (S.T.)
| | - Senyo Tagboto
- Tropical Parasitic Diseases Unit, Northwick Park Institute for Medical Research, Watford Road, Harrow, London HA1 3UJ, UK; (S.G.); (S.T.)
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany;
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative, 1202 Geneva, Switzerland;
| |
Collapse
|
5
|
Risch F, Scheunemann JF, Reichwald JJ, Lenz B, Ehrens A, Gal J, Fercoq F, Koschel M, Fendler M, Hoerauf A, Martin C, Hübner MP. The efficacy of the benzimidazoles oxfendazole and flubendazole against Litomosoides sigmodontis is dependent on the adaptive and innate immune system. Front Microbiol 2023; 14:1213143. [PMID: 37440891 PMCID: PMC10335397 DOI: 10.3389/fmicb.2023.1213143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Filarial nematodes can cause debilitating diseases such as lymphatic filariasis and onchocerciasis. Oxfendazole (OXF) is one promising macrofilaricidal candidate with improved oral availability compared to flubendazole (FBZ), and OXF is currently under preparation for phase 2 clinical trials in filariasis patients. This study aimed to investigate the immune system's role during treatment with OXF and FBZ and explore the potential to boost the treatment efficacy via stimulation of the immune system. Wild type (WT) BALB/c, eosinophil-deficient ΔdblGata1, IL-4r/IL-5-/-, antibody-deficient μMT and B-, T-, NK-cell and ILC-deficient Rag2/IL-2rγ-/- mice were infected with the rodent filaria Litomosoides sigmodontis and treated with an optimal and suboptimal regimen of OXF and FBZ for up to 5 days. In the second part, WT mice were treated for 2-3 days with a combination of OXF and IL-4, IL-5, or IL-33. Treatment of WT mice reduced the adult worm burden by up to 94% (OXF) and 100% (FBZ) compared to vehicle controls. In contrast, treatment efficacy was lower in all immunodeficient strains with a reduction of up to 90% (OXF) and 75% (FBZ) for ΔdblGata1, 50 and 92% for IL-4r/IL-5-/-, 64 and 78% for μMT or 0% for Rag2/IL-2rγ-/- mice. The effect of OXF on microfilariae and embryogenesis displayed a similar pattern, while FBZ's ability to prevent microfilaremia was independent of the host's immune status. Furthermore, flow cytometric analysis revealed strain-and treatment-specific immunological changes. The efficacy of a shortened 3-day treatment of OXF (-33% adult worms vs. vehicle) could be boosted to a 91% worm burden reduction via combination with IL-5, but not IL-4 or IL-33. Our results suggest that various components of the immune system support the filaricidal effect of benzimidazoles in vivo and present an opportunity to boost treatment efficacy.
Collapse
Affiliation(s)
- Frederic Risch
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Johanna F. Scheunemann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Julia J. Reichwald
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Benjamin Lenz
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Joséphine Gal
- Unité Molécules de Communication et Adaptation des Microorganismes, Sorbonne Université, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Frédéric Fercoq
- Unité Molécules de Communication et Adaptation des Microorganismes, Sorbonne Université, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Marianne Koschel
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Martina Fendler
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Coralie Martin
- Unité Molécules de Communication et Adaptation des Microorganismes, Sorbonne Université, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
6
|
Karunakaran I, Ritter M, Pfarr K, Klarmann-Schulz U, Debrah AY, Debrah LB, Katawa G, Wanji S, Specht S, Adjobimey T, Hübner MP, Hoerauf A. Filariasis research - from basic research to drug development and novel diagnostics, over a decade of research at the Institute for Medical Microbiology, Immunology and Parasitology, Bonn, Germany. FRONTIERS IN TROPICAL DISEASES 2023; 4:1126173. [PMID: 38655130 PMCID: PMC7615856 DOI: 10.3389/fitd.2023.1126173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Filariae are vector borne parasitic nematodes, endemic in tropical and subtropical regions causing avoidable infections ranging from asymptomatic to stigmatizing and disfiguring disease. The filarial species that are the major focus of our institution's research are Onchocerca volvulus causing onchocerciasis (river blindness), Wuchereria bancrofti and Brugia spp. causing lymphatic filariasis (elephantiasis), Loa loa causing loiasis (African eye worm), and Mansonella spp causing mansonellosis. This paper aims to showcase the contribution of our institution and our collaborating partners to filarial research and covers decades of long research spanning basic research using the Litomosoides sigmodontis animal model to development of drugs and novel diagnostics. Research with the L. sigmodontis model has been extensively useful in elucidating protective immune responses against filariae as well as in identifying the mechanisms of filarial immunomodulation during metabolic, autoimmune and infectious diseases. The institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany has also been actively involved in translational research in contributing to the identification of new drug targets and pre-clinical drug research with successful and ongoing partnership with sub-Saharan Africa, mainly Ghana (the Kumasi Centre for Collaborative Research (KCCR)), Cameroon (University of Buea (UB)) and Togo (Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA)), Asia and industry partners. Further, in the direction of developing novel diagnostics that are sensitive, time, and labour saving, we have developed sensitive qPCRs as well as LAMP assays and are currently working on artificial intelligence based histology analysis for onchocerciasis. The article also highlights our ongoing research and the need for novel animal models and new drug targets.
Collapse
Affiliation(s)
- Indulekha Karunakaran
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Kenneth Pfarr
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Ute Klarmann-Schulz
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Alexander Yaw Debrah
- Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Center for Collaborative Research (KCCR), Kumasi, Ghana
| | - Linda Batsa Debrah
- Kumasi Center for Collaborative Research (KCCR), Kumasi, Ghana
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Gnatoulma Katawa
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Université de Lomé, Lomé, Togo
| | - Samuel Wanji
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Sabine Specht
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Tomabu Adjobimey
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
7
|
Pfarr KM, Krome AK, Al-Obaidi I, Batchelor H, Vaillant M, Hoerauf A, Opoku NO, Kuesel AC. The pipeline for drugs for control and elimination of neglected tropical diseases: 1. Anti-infective drugs for regulatory registration. Parasit Vectors 2023; 16:82. [PMID: 36859332 PMCID: PMC9979492 DOI: 10.1186/s13071-022-05581-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/05/2022] [Indexed: 03/03/2023] Open
Abstract
The World Health Organization 'Ending the neglect to attain the Sustainable Development Goals: A road map for neglected tropical diseases 2021-2030' outlines the targets for control and elimination of neglected tropical diseases (NTDs). New drugs are needed to achieve some of them. We are providing an overview of the pipeline for new anti-infective drugs for regulatory registration and steps to effective use for NTD control and elimination. Considering drugs approved for an NTD by at least one stringent regulatory authority: fexinidazole, included in WHO guidelines for Trypanosoma brucei gambiense African trypanosomiasis, is in development for Chagas disease. Moxidectin, registered in 2018 for treatment of individuals ≥ 12 years old with onchocerciasis, is undergoing studies to extend the indication to 4-11-year-old children and obtain additional data to inform WHO and endemic countries' decisions on moxidectin inclusion in guidelines and policies. Moxidectin is also being evaluated for other NTDs. Considering drugs in at least Phase 2 clinical development, a submission is being prepared for registration of acoziborole as an oral treatment for first and second stage T.b. gambiense African trypanosomiasis. Bedaquiline, registered for tuberculosis, is being evaluated for multibacillary leprosy. Phase 2 studies of emodepside and flubentylosin in O. volvulus-infected individuals are ongoing; studies for Trichuris trichuria and hookworm are planned. A trial of fosravuconazole in Madurella mycetomatis-infected patients is ongoing. JNJ-64281802 is undergoing Phase 2 trials for reducing dengue viral load. Studies are ongoing or planned to evaluate oxantel pamoate for onchocerciasis and soil-transmitted helminths, including Trichuris, and oxfendazole for onchocerciasis, Fasciola hepatica, Taenia solium cysticercosis, Echinococcus granulosus and soil-transmitted helminths, including Trichuris. Additional steps from first registration to effective use for NTD control and elimination include country registrations, possibly additional studies to inform WHO guidelines and country policies, and implementation research to address barriers to effective use of new drugs. Relative to the number of people suffering from NTDs, the pipeline is small. Close collaboration and exchange of experience among all stakeholders developing drugs for NTDs may increase the probability that the current pipeline will translate into new drugs effectively implemented in affected countries.
Collapse
Affiliation(s)
- Kenneth M. Pfarr
- grid.15090.3d0000 0000 8786 803XInstitute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany ,grid.452463.2German Center for Infection Research, Partner Site Bonn-Cologne, Bonn, Germany
| | - Anna K. Krome
- grid.10388.320000 0001 2240 3300Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Bonn, Germany
| | - Issraa Al-Obaidi
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Hannah Batchelor
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Michel Vaillant
- grid.451012.30000 0004 0621 531XCompetence Center for Methodology and Statistics, Luxembourg Institute of Health, Strassen, Grand Duchy of Luxembourg
| | - Achim Hoerauf
- grid.15090.3d0000 0000 8786 803XInstitute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany ,grid.452463.2German Center for Infection Research, Partner Site Bonn-Cologne, Bonn, Germany
| | - Nicholas O. Opoku
- grid.449729.50000 0004 7707 5975Department of Epidemiology and Biostatistics School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana
| | - Annette C. Kuesel
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (WHO/TDR), World Health Organization, Geneva, Switzerland
| |
Collapse
|
8
|
Specht S, Keiser J. Helminth infections: Enabling the World Health Organization Road Map. Int J Parasitol 2022:S0020-7519(22)00180-1. [PMID: 36549443 DOI: 10.1016/j.ijpara.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/19/2022] [Accepted: 10/25/2022] [Indexed: 12/24/2022]
Abstract
Helminthiases are considered among the most persistent public health problems. Control and/or elimination remains a global health challenge and the World Health Organization Road Map highlights critical gaps and actions required to reach the 2030 targets, among them the need for new and more effective treatment options. Stronger collaborations across different fields are required to reach these goals. The helminth elimination platform is one example of how knowledge of two different disease areas can be aligned to fuse expertise and break disease silos.
Collapse
Affiliation(s)
- Sabine Specht
- Drugs for Neglected Diseases Initiative, 15 Camille-Vidart, 1202 Geneva, Switzerland.
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, P.O. Box, 4002, Basel, Switzerland; University of Basel, P.O. Box, 4003, Basel, Switzerland
| |
Collapse
|
9
|
Ehrens A, Hoerauf A, Hübner MP. Eosinophils in filarial infections: Inducers of protection or pathology? Front Immunol 2022; 13:983812. [PMID: 36389745 PMCID: PMC9659639 DOI: 10.3389/fimmu.2022.983812] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/05/2022] [Indexed: 05/29/2024] Open
Abstract
Filariae are parasitic roundworms, which can cause debilitating diseases such as lymphatic filariasis and onchocerciasis. Lymphatic filariasis, also known as elephantiasis, and onchocerciasis, commonly referred to as river blindness, can lead to stigmatizing pathologies and present a socio-economic burden for affected people and their endemic countries. Filariae typically induce a type 2 immune response, which is characterized by cytokines, i.e., IL-4, IL-5 and IL-13 as well as type 2 immune cells including alternatively activated macrophages, innate lymphoid cells and Th2 cells. However, the hallmark characteristic of filarial infections is a profound eosinophilia. Eosinophils are innate immune cells and pivotal in controlling helminth infections in general and filarial infections in particular. By modulating the function of other leukocytes, eosinophils support and drive type 2 immune responses. Moreover, as primary effector cells, eosinophils can directly attack filariae through the release of granules containing toxic cationic proteins with or without extracellular DNA traps. At the same time, eosinophils can be a driving force for filarial pathology as observed during tropical pulmonary eosinophilia in lymphatic filariasis, in dermatitis in onchocerciasis patients as well as adverse events after treatment of onchocerciasis patients with diethylcarbamazine. This review summarizes the latest findings of the importance of eosinophil effector functions including the role of eosinophil-derived proteins in controlling filarial infections and their impact on filarial pathology analyzing both human and experimental animal studies.
Collapse
Affiliation(s)
- Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
10
|
Ehrens A, Schiefer A, Krome AK, Becker T, Rox K, Neufeld H, Aden T, Wagner KG, Müller R, Grosse M, Stadler M, König GM, Kehraus S, Alt S, Hesterkamp T, Hübner MP, Pfarr K, Hoerauf A. Pharmacology and early ADMET data of corallopyronin A, a natural product with macrofilaricidal anti-wolbachial activity in filarial nematodes. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.983107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Corallopyronin A (CorA), a natural product antibiotic of Corallococcus coralloides, inhibits the bacterial DNA-dependent RNA polymerase. It is active against the essential Wolbachia endobacteria of filarial nematodes, preventing development, causing sterility and killing adult worms. CorA is being developed to treat the neglected tropical diseases onchocerciasis and lymphatic filariasis caused by Wolbachia-containing filariae. For this, we have completed standard Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) studies. In Caco-2 assays, CorA had good adsorption values, predicting good transport from the intestines, but may be subject to active efflux. In fed-state simulated human intestinal fluid (pH 5.0), CorA half-life was >139 minutes, equivalent to the stability in buffer (pH 7.4). CorA plasma-stability was >240 minutes, with plasma protein binding >98% in human, mouse, rat, dog, mini-pig and monkey plasma. Clearance in human and dog liver microsomes was low (35.2 and 42 µl/min/mg, respectively). CorA was mainly metabolized via phase I reactions, i.e., oxidation, and to a minimal extent via phase II reactions. In contrast to rifampicin, CorA does not induce CYP3A4 resulting in a lower drug-drug-interaction potential. Apart from inhibition of CYP2C9, no impact of CorA on enzymes of the CYP450 system was detected. Off-target profiling resulted in three hits (inhibition/activation) for the A3 and PPARγ receptors and COX1 enzyme; thus, potential drug-drug interactions could occur with antidiabetic medications, COX2 inhibitors, angiotensin AT1 receptor antagonists, vitamin K-antagonists, and antidepressants. In vivo pharmacokinetic studies in Mongolian gerbils and rats demonstrated excellent intraperitoneal and oral bioavailability (100%) with fast absorption and high distribution in plasma. No significant hERG inhibition was detected and no phototoxicity was seen. CorA did not induce gene mutations in bacteria (Ames test) nor chromosomal damage in human lymphocytes (micronucleus test). Thus, CorA possesses an acceptable in vitro early ADMET profile; supported by previous in vivo experiments in mice, rats and Mongolian gerbils in which all animals tolerated CorA daily administration for 7-28 days. The non-GLP package will guide selection and planning of regulatory-conform GLP models prior to a first-into-human study.
Collapse
|
11
|
Hawryluk N, Robinson D, Shen Y, Kyne G, Bedore M, Menon S, Canan S, von Geldern T, Townson S, Gokool S, Ehrens A, Koschel M, Lhermitte-Vallarino N, Martin C, Hoerauf A, Hernandez G, Dalvie D, Specht S, Hübner MP, Scandale I. Discovery of Substituted Di(pyridin-2-yl)-1,2,4-thiadiazol-5-amines as Novel Macrofilaricidal Compounds for the Treatment of Human Filarial Infections. J Med Chem 2022; 65:11388-11403. [PMID: 35972896 PMCID: PMC9421654 DOI: 10.1021/acs.jmedchem.2c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Filarial diseases, including lymphatic filariasis and onchocerciasis, are considered among the most devastating of all tropical diseases, affecting about 145 million people worldwide. Efforts to control and eliminate onchocerciasis are impeded by a lack of effective treatments that target the adult filarial stage. Herein, we describe the discovery of a series of substituted di(pyridin-2-yl)-1,2,4-thiadiazol-5-amines as novel macrofilaricides for the treatment of human filarial infections.
Collapse
Affiliation(s)
- Natalie Hawryluk
- Bristol Myers Squibb, San Diego, California 92121, United States
| | - Dale Robinson
- Bristol Myers Squibb, San Diego, California 92121, United States
| | - Yixing Shen
- Bristol Myers Squibb, San Diego, California 92121, United States
| | - Graham Kyne
- Zoetis, Kalamazoo, Michigan 49001, United States
| | | | - Sanjay Menon
- Zoetis, Kalamazoo, Michigan 49001, United States
| | - Stacie Canan
- Bristol Myers Squibb, San Diego, California 92121, United States
| | | | - Simon Townson
- Northwick Park Institute for Medical Research, London HA1 3UJ, UK
| | - Suzanne Gokool
- Northwick Park Institute for Medical Research, London HA1 3UJ, UK
| | - Alexandra Ehrens
- Institute for Medical Microbiology, Immunology & Parasitology, University Hospital Bonn, 53127 Bonn, Germany.,German Center for Infection Research (DZIF), partner site Bonn-Cologne, 53127 Bonn, Germany
| | - Marianne Koschel
- Institute for Medical Microbiology, Immunology & Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Nathaly Lhermitte-Vallarino
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d'Histoire Naturelle, Paris 75005, France
| | - Coralie Martin
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d'Histoire Naturelle, Paris 75005, France
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology & Parasitology, University Hospital Bonn, 53127 Bonn, Germany.,German Center for Infection Research (DZIF), partner site Bonn-Cologne, 53127 Bonn, Germany
| | | | - Deepak Dalvie
- Bristol Myers Squibb, San Diego, California 92121, United States
| | - Sabine Specht
- Institute for Medical Microbiology, Immunology & Parasitology, University Hospital Bonn, 53127 Bonn, Germany.,Drugs for Neglected Diseases Initiative, Geneva 1204, Switzerland
| | - Marc Peter Hübner
- Institute for Medical Microbiology, Immunology & Parasitology, University Hospital Bonn, 53127 Bonn, Germany.,German Center for Infection Research (DZIF), partner site Bonn-Cologne, 53127 Bonn, Germany
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative, Geneva 1204, Switzerland
| |
Collapse
|
12
|
Hawryluk N, Zhiru L, Carlow C, Gokool S, Townson S, Kreiss T, Chojnowski A, Prorok M, Siekierka J, Ehrens A, Koschel M, Lhermitte-Vallarino N, Martin C, Hoerauf A, Hernandez G, Canan S, Khetani V, Zeldis J, Specht S, Hübner MP, Scandale I. Filarial nematode phenotypic screening cascade to identify compounds with anti-parasitic activity for drug discovery optimization. Int J Parasitol Drugs Drug Resist 2022; 19:89-97. [PMID: 35834918 PMCID: PMC9278491 DOI: 10.1016/j.ijpddr.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022]
Abstract
Filarial diseases, including lymphatic filariasis and onchocerciasis, are considered among the most devastating of all tropical diseases, affecting over 86 million people worldwide. To control and more rapidly eliminate onchocerciasis requires treatments that target the adult stage of the parasite. Drug discovery efforts are challenged by the lack of preclinical animal models using the human-pathogenic filariae, requiring the use of surrogate parasites for Onchocerca volvulus for both ex vivo and in vivo evaluation. Herein, we describe a platform utilizing phenotypic ex vivo assays consisting of the free-living nematode Caenorhabditis elegans, microfilariae and adult filariae of the bovine filariae Onchocerca lienalis and Onchocerca gutturosa, respectively, as well as microfilariae and adult filariae of the feline filariae Brugia pahangi, the rodent filariae Litomosoides sigmodontis and the human-pathogenic filariae Brugia malayi to assess activity across various surrogate parasites. Utilization of those surrogate nematodes for phenotypic ex vivo assays in order to assess activity across various parasites led to the successful establishment of a screening cascade and identification of multiple compounds with potential macrofilaricidal activity and desirable physicochemical, MW = 200-400 and low lipophilicity, logP <4, and pharmacokinetic properties, rat and human liver S9 stability of ≥70% remaining at 60 min, and AUC exposures above 3 μM h. This platform demonstrated the successful establishment of a screening cascade which resulted in the discovery of potential novel macrofilaricidal compounds for futher drug discovery lead optimization efforts. This screening cascade identified two distinct chemical series wherein one compound produced a significant 68% reduction of adult Litomosoides sigmodontis in the mouse model. Successful demonstration of efficacy prompted lead optimization medicinal chemistry efforts for this novel series.
Collapse
Affiliation(s)
| | - Li Zhiru
- New England Biolabs, Ipswich, MA, USA
| | | | - Suzanne Gokool
- Northwick Park Institute for Medical Research, London, UK
| | - Simon Townson
- Northwick Park Institute for Medical Research, London, UK
| | - Tamara Kreiss
- Sokol Institute of Pharmaceutical Life Sciences, Montclair State University, Montclair, NJ, USA
| | - Agnieszka Chojnowski
- Sokol Institute of Pharmaceutical Life Sciences, Montclair State University, Montclair, NJ, USA
| | - Monika Prorok
- Sokol Institute of Pharmaceutical Life Sciences, Montclair State University, Montclair, NJ, USA
| | - John Siekierka
- Sokol Institute of Pharmaceutical Life Sciences, Montclair State University, Montclair, NJ, USA
| | - Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Marianne Koschel
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | | | - Coralie Martin
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d'Histoire naturelle, Paris, France
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | | | | | | | | | - Sabine Specht
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany; Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| |
Collapse
|
13
|
Marriott AE, Furlong Silva J, Pionnier N, Sjoberg H, Archer J, Steven A, Kempf D, Taylor MJ, Turner JD. A mouse infection model and long-term lymphatic endothelium co-culture system to evaluate drugs against adult Brugia malayi. PLoS Negl Trop Dis 2022; 16:e0010474. [PMID: 35671324 PMCID: PMC9205518 DOI: 10.1371/journal.pntd.0010474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/17/2022] [Accepted: 05/07/2022] [Indexed: 11/18/2022] Open
Abstract
The development of new drugs targeting adult-stage lymphatic filarial nematodes is hindered by the lack of a robust long-term in vitro culture model. Testing potential direct-acting and anti-Wolbachia therapeutic candidates against adult lymphatic filariae in vitro requires their propagation via chronic infection of gerbils. We evaluated Brugia malayi parasite burden data from male Mongolian gerbils compared with two immune-deficient mouse strains highly susceptible to B. malayi: CB.17 Severe-Combined Immmuno-Deficient (SCID) and interleukin-4 receptor alpha, interleukin-5 double knockout (IL-4Rα-/-IL-5-/-) mice. Adult worms generated in IL-4Rα-/-IL-5-/- mice were tested with different feeder cells (human embryonic kidney cells, human adult dermal lymphatic endothelial cells and human THP-1 monocyte differentiated macrophages) and comparative cell-free conditions to optimise and validate a long-term in vitro culture system. Cultured parasites were compared against those isolated from mice using motility scoring, metabolic viability assay (MTT), ex vivo microfilariae release assay and Wolbachia content by qPCR. A selected culture system was validated as a drug screen using reference anti-Wolbachia (doxycycline, ABBV-4083 / flubentylosin) or direct-acting compounds (flubendazole, suramin). BALB/c IL-4Rα-/-IL-5-/- or CB.17 SCID mice were superior to Mongolian gerbils in generating adult worms and supporting in vivo persistence for periods of up to 52 weeks. Adult females retrieved from BALB/c IL-4Rα-/-IL-5-/- mice could be cultured for up to 21 days in the presence of a lymphatic endothelial cell co-culture system with comparable motility, metabolic activity and Wolbachia titres to those maintained in vivo. Drug studies confirmed significant Wolbachia depletions or direct macrofilaricidal activities could be discerned when female B. malayi were cultured for 14 days. We therefore demonstrate a novel methodology to generate adult B. malayi in vivo and accurately evaluate drug efficacy ex vivo which may be adopted for drug screening with the dual benefit of reducing overall animal use and improving anti-filarial drug development.
Collapse
Affiliation(s)
- Amy E. Marriott
- Centre for Drugs and Diagnostics & Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Julio Furlong Silva
- Centre for Drugs and Diagnostics & Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Nicolas Pionnier
- Centre for Drugs and Diagnostics & Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Hanna Sjoberg
- Centre for Drugs and Diagnostics & Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - John Archer
- Centre for Drugs and Diagnostics & Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Andrew Steven
- Centre for Drugs and Diagnostics & Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Dale Kempf
- Pharmaceutical R&D, AbbVie, North Chicago, Illinois, United States of America
| | - Mark J. Taylor
- Centre for Drugs and Diagnostics & Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Joseph D. Turner
- Centre for Drugs and Diagnostics & Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Schlabe S, Korir P, Lämmer C, Landmann F, Dubben B, Koschel M, Albers A, Debrah LB, Debrah AY, Hübner MP, Pfarr K, Klarmann-Schulz U, Hoerauf A. A qPCR to quantify Wolbachia from few Onchocerca volvulus microfilariae as a surrogate for adult worm histology in clinical trials of antiwolbachial drugs. Parasitol Res 2022; 121:1199-1206. [PMID: 35006317 PMCID: PMC8986682 DOI: 10.1007/s00436-021-07411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022]
Abstract
The filarial nematode Onchocerca volvulus causes onchocerciasis (river blindness), a neglected tropical disease affecting 21 million people, mostly in Sub-Saharan Africa. Targeting the endosymbiont Wolbachia with antibiotics leads to permanent sterilization and killing of adult worms. The gold standard to assess Wolbachia depletion is the histological examination of adult worms in nodules beginning at 6 months post-treatment. However, nodules can only be used once, limiting the time points to monitor Wolbachia depletion. A diagnostic to longitudinally monitor Wolbachia depletion from microfilariae (MF) at more frequent intervals < 6 months post-treatment would accelerate clinical trials of antiwolbachials. We developed a TaqMan qPCR amplifying the single-copy gene wOvftsZ to quantify Wolbachia from as few as one MF that had migrated from skin biopsies and compared quantification using circular and linearized plasmids or synthetic dsDNA (gBlock®). qPCR for MF from the rodent nematode Litomosoides sigmodontis was used to support the reproducibility and validate the principle. The qPCR using as few as 2 MF from O. volvulus and L. sigmodontis reproducibly quantified Wolbachia. Use of a linearized plasmid standard or synthesized dsDNA resulted in numbers of Wolbachia/MF congruent with biologically plausible estimates in O. volvulus and L. sigmodontis MF. The qPCR assay yielded a median of 48.8 (range 1.5-280.5) Wolbachia/O. volvulus MF. The qPCR is a sensitive tool for quantifying Wolbachia in a few MF from skin biopsies and allows for establishing the qPCR as a surrogate parameter for monitoring Wolbachia depletion in adult worms of new antiwolbachial candidates.
Collapse
Affiliation(s)
- Stefan Schlabe
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Patricia Korir
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Christine Lämmer
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Frederic Landmann
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34293, Montpellier, France
| | - Bettina Dubben
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Marianne Koschel
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Anna Albers
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Linda Batsa Debrah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
- Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alexander Yaw Debrah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
- Faculty of Allied Health Sciences of Kwame, Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Marc P Hübner
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Kenneth Pfarr
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany.
| | - Ute Klarmann-Schulz
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
15
|
Ehrens A, Hoerauf A, Hübner MP. Current perspective of new anti-Wolbachial and direct-acting macrofilaricidal drugs as treatment strategies for human filariasis. GMS INFECTIOUS DISEASES 2022; 10:Doc02. [PMID: 35463816 PMCID: PMC9006451 DOI: 10.3205/id000079] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Filarial diseases like lymphatic filariasis and onchocerciasis belong to the Neglected Tropical Diseases and remain a public health problem in endemic countries. Lymphatic filariasis and onchocerciasis can lead to stigmatizing pathologies and present a socio-economic burden for affected people and their endemic countries. Current treatment recommendations by the WHO include mass drug administration with ivermectin for the treatment of onchocerciasis and a combination of ivermectin, albendazole and diethylcarbamazine (DEC) for the treatment of lymphatic filariasis in areas that are not co-endemic for onchocerciasis or loiasis. Limitations of these treatment strategies are due to potential severe adverse events in onchocerciasis and loiasis patients following DEC or ivermectin treatment, respectively, the lack of a macrofilaricidal efficacy of those drugs and the risk of drug resistance development. Thus, to achieve the elimination of transmission of onchocerciasis and the elimination of lymphatic filariasis as a public health problem by 2030, the WHO defined in its roadmap that new alternative treatment strategies with macrofilaricidal compounds are required. Within a collaboration of the non-profit organizations Drugs for Neglected Diseases initiative (DNDi), the Bill & Melinda Gates Foundation, and partners from academia and industry, several new promising macrofilaricidal drug candidates were identified, which will be discussed in this review.
Collapse
Affiliation(s)
- Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
16
|
Magnaval JF, Bouhsira E, Fillaux J. Therapy and Prevention for Human Toxocariasis. Microorganisms 2022; 10:microorganisms10020241. [PMID: 35208697 PMCID: PMC8875715 DOI: 10.3390/microorganisms10020241] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 01/08/2023] Open
Abstract
For the last four decades, knowledge about human toxocariasis with regard to its epidemiology, pathophysiology, clinical spectrum, and imaging or laboratory diagnosis has substantially progressed. Knowledge about specific therapy with anthelmintics has lagged behind. To date, only four drugs are registered for human use, and their efficacy has rarely been assessed in prospective controlled trials. It is likely that the repurposing of potent anthelmintics from veterinary medicine will improve this situation. Due to its wide availability and a lack of major side effects during short regimens, albendazole has become the drug of choice. However, its efficacy should be more precisely assessed. The role of anthelmintics in the treatment of neurological or ocular toxocariasis remains to be clarified. Prophylactic measures in humans or companion animals are efficient and represent first-line treatments for the control of this zoonosis. Unfortunately, their implementation in areas or countries where toxocariasis epidemiology is driven by poverty is quite difficult or unrealistic.
Collapse
Affiliation(s)
- Jean-François Magnaval
- Service de Parasitologie Médicale, Faculté de Médecine, Université de Toulouse, 37 Allées Jules-Guesde, 31000 Toulouse, France
- Correspondence:
| | - Emilie Bouhsira
- Service de Parasitologie, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, 31076 Toulouse, France;
| | - Judith Fillaux
- Service de Parasitologie-Mycologie, Hôpital Purpan, Centre Hospitalier Universitaire de Toulouse, 330 Avenue de Grande-Bretagne, 31059 Toulouse, France;
| |
Collapse
|
17
|
Wiszniewsky A, Layland LE, Arndts K, Wadephul LM, Tamadaho RSE, Borrero-Wolff D, Chunda VC, Kien CA, Hoerauf A, Wanji S, Ritter M. Adoptive Transfer of Immune Cells Into RAG2IL-2Rγ-Deficient Mice During Litomosoides sigmodontis Infection: A Novel Approach to Investigate Filarial-Specific Immune Responses. Front Immunol 2021; 12:777860. [PMID: 34868049 PMCID: PMC8636703 DOI: 10.3389/fimmu.2021.777860] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
Despite long-term mass drug administration programmes, approximately 220 million people are still infected with filariae in endemic regions. Several research studies have characterized host immune responses but a major obstacle for research on human filariae has been the inability to obtain adult worms which in turn has hindered analysis on infection kinetics and immune signalling. Although the Litomosoides sigmodontis filarial mouse model is well-established, the complex immunological mechanisms associated with filarial control and disease progression remain unclear and translation to human infections is difficult, especially since human filarial infections in rodents are limited. To overcome these obstacles, we performed adoptive immune cell transfer experiments into RAG2IL-2Rγ-deficient C57BL/6 mice. These mice lack T, B and natural killer cells and are susceptible to infection with the human filaria Loa loa. In this study, we revealed a long-term release of L. sigmodontis offspring (microfilariae) in RAG2IL-2Rγ-deficient C57BL/6 mice, which contrasts to C57BL/6 mice which normally eliminate the parasites before patency. We further showed that CD4+ T cells isolated from acute L. sigmodontis-infected C57BL/6 donor mice or mice that already cleared the infection were able to eliminate the parasite and prevent inflammation at the site of infection. In addition, the clearance of the parasites was associated with Th17 polarization of the CD4+ T cells. Consequently, adoptive transfer of immune cell subsets into RAG2IL-2Rγ-deficient C57BL/6 mice will provide an optimal platform to decipher characteristics of distinct immune cells that are crucial for the immunity against rodent and human filarial infections and moreover, might be useful for preclinical research, especially about the efficacy of macrofilaricidal drugs.
Collapse
Affiliation(s)
- Anna Wiszniewsky
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Laura E Layland
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Kathrin Arndts
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Lisa M Wadephul
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Ruth S E Tamadaho
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Dennis Borrero-Wolff
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Valerine C Chunda
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Chi Anizette Kien
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.,German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, Bonn, Germany
| | - Samuel Wanji
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| |
Collapse
|
18
|
Risch F, Ritter M, Hoerauf A, Hübner MP. Human filariasis-contributions of the Litomosoides sigmodontis and Acanthocheilonema viteae animal model. Parasitol Res 2021; 120:4125-4143. [PMID: 33547508 PMCID: PMC8599372 DOI: 10.1007/s00436-020-07026-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022]
Abstract
Filariae are vector-borne parasitic nematodes that are endemic worldwide, in tropical and subtropical regions. Important human filariae spp. include Onchocerca volvulus, Wuchereria bancrofti and Brugia spp., and Loa loa and Mansonella spp. causing onchocerciasis (river blindness), lymphatic filariasis (lymphedema and hydrocele), loiasis (eye worm), and mansonelliasis, respectively. It is estimated that over 1 billion individuals live in endemic regions where filarial diseases are a public health concern contributing to significant disability adjusted life years (DALYs). Thus, efforts to control and eliminate filarial diseases were already launched by the WHO in the 1970s, especially against lymphatic filariasis and onchocerciasis, and are mainly based on mass drug administration (MDA) of microfilaricidal drugs (ivermectin, diethylcarbamazine, albendazole) to filarial endemic areas accompanied with vector control strategies with the goal to reduce the transmission. With the United Nations Sustainable Development Goals (SDGs), it was decided to eliminate transmission of onchocerciasis and stop lymphatic filariasis as a public health problem by 2030. It was also requested that novel drugs and treatment strategies be developed. Mouse models provide an important platform for anti-filarial drug research in a preclinical setting. This review presents an overview about the Litomosoides sigmodontis and Acanthocheilonema viteae filarial mouse models and their role in immunological research as well as preclinical studies about novel anti-filarial drugs and treatment strategies.
Collapse
Affiliation(s)
- Frederic Risch
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany.
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
19
|
Wanji S, Chunda VC, Fombad FF, Jélil Njouendou A, Gandjui NVT, Ritter M, Enyong PA, Mackenzie C, Taylor MJ, Hoerauf A, Turner JD. Advances in preclinical platforms of Loa loa for filarial neglected tropical disease drug and diagnostics research. FRONTIERS IN TROPICAL DISEASES 2021; 2:778724. [PMID: 38654889 PMCID: PMC7615857 DOI: 10.3389/fitd.2021.778724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
The tropical disease, loiasis, caused by the filarial parasite, Loa, has gained prominence in global public health as a cause of excess mortality and a barrier to the elimination of the related prioritized neglected tropical diseases (NTDs), lymphatic filariasis and onchocerciasis, within Central Africa. There are no effective drug cures or vaccines available to treat loiasis safely. Here we review recent advances in loiasis preclinical platform technologies, including novel in vitro culturing systems, animal models and innovations in experimental infections of the L. loa vector, Chrysops, that have facilitated access to all L. loa filarial life-cycle stages. We detail applications of these new model systems in anti-filarial drug screening, diagnostic development, immunology, and pathophysiology research. Finally, we provide an overview of how loiasis preclinical platforms may be further utilized in translational medicine applications to support the development of much needed new interventions against filarial NTDs.
Collapse
Affiliation(s)
- Samuel Wanji
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Valerine Chawa Chunda
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Fanny Fri Fombad
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Abdel Jélil Njouendou
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, Buea, Cameroon
| | - Narcisse Victor T. Gandjui
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Peter A. Enyong
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Charles Mackenzie
- Neglected Tropical Diseases Support Center l The Task Force for Global Health, 325 Swanton Way, Decatur, Atlanta, Georgia, United States of America
| | - Mark J Taylor
- Centre for Drugs and Diagnostics Research and Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), Bonn-Cologne partner site, Bonn, Germany
| | - Joseph D Turner
- Centre for Drugs and Diagnostics Research and Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
20
|
Ngwewondo A, Scandale I, Specht S. Onchocerciasis drug development: from preclinical models to humans. Parasitol Res 2021; 120:3939-3964. [PMID: 34642800 PMCID: PMC8599318 DOI: 10.1007/s00436-021-07307-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022]
Abstract
Twenty diseases are recognized as neglected tropical diseases (NTDs) by World Health Assembly resolutions, including human filarial diseases. The end of NTDs is embedded within the Sustainable Development Goals for 2030, under target 3.3. Onchocerciasis afflicts approximately 20.9 million people worldwide with > 90% of those infected residing in Africa. Control programs have made tremendous efforts in the management of onchocerciasis by mass drug administration and aerial larviciding; however, disease elimination is not yet achieved. In the new WHO roadmap, it is recognized that new drugs or drug regimens that kill or permanently sterilize adult filarial worms would significantly improve elimination timelines and accelerate the achievement of the program goal of disease elimination. Drug development is, however, handicapped by high attrition rates, and many promising molecules fail in preclinical development or in subsequent toxicological, safety and efficacy testing; thus, research and development (R&D) costs are, in aggregate, very high. Drug discovery and development for NTDs is largely driven by unmet medical needs put forward by the global health community; the area is underfunded and since no high return on investment is possible, there is no dedicated drug development pipeline for human filariasis. Repurposing existing drugs is one approach to filling the drug development pipeline for human filariasis. The high cost and slow pace of discovery and development of new drugs has led to the repurposing of “old” drugs, as this is more cost-effective and allows development timelines to be shortened. However, even if a drug is marketed for a human or veterinary indication, the safety margin and dosing regimen will need to be re-evaluated to determine the risk in humans. Drug repurposing is a promising approach to enlarging the pool of active molecules in the drug development pipeline. Another consideration when providing new treatment options is the use of combinations, which is not addressed in this review. We here summarize recent advances in the late preclinical or early clinical stage in the search for a potent macrofilaricide, including drugs against the nematode and against its endosymbiont, Wolbachia pipientis.
Collapse
Affiliation(s)
- Adela Ngwewondo
- Centre of Medical Research, Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box13033, Yaoundé, Cameroon
- Drugs for Neglected Diseases Initiative, Chemin Camille-Vidart 15, 1202, Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative, Chemin Camille-Vidart 15, 1202, Geneva, Switzerland
| | - Sabine Specht
- Drugs for Neglected Diseases Initiative, Chemin Camille-Vidart 15, 1202, Geneva, Switzerland.
| |
Collapse
|
21
|
Population pharmacokinetic-pharmacodynamic model of oxfendazole in healthy adults in a multiple ascending dose and food effect study and target attainment analysis. Antimicrob Agents Chemother 2021; 66:e0143221. [PMID: 34606333 DOI: 10.1128/aac.01432-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxfendazole is a potent veterinary antiparasitic drug undergoing development for human use to treat multiple parasitic infections. Results from two recently completed Phase I clinical trials conducted in healthy adults showed that the pharmacokinetics of oxfendazole is nonlinear, affected by food, and, after the administration of repeated doses, appeared to mildly affect hemoglobin concentrations. To facilitate oxfendazole dose optimization for its use in patient populations, the relationship among oxfendazole dose, pharmacokinetics and hemoglobin concentration was quantitatively characterized using population pharmacokinetic-pharmacodynamic modeling. In fasting subjects, oxfendazole pharmacokinetics was well described by a one-compartment model with first-order absorption and elimination. The change in oxfendazole pharmacokinetics when administered following a fatty meal was captured by an absorption model with one transit compartment and increased bioavailability. The effect of oxfendazole exposure on hemoglobin concentration in healthy adults was characterized by a lifespan indirect response model in which oxfendazole has positive but minor inhibitory effect on red blood cell synthesis. Further simulation indicated that oxfendazole has a low risk of posing a safety concern regarding hemoglobin concentration, even at a high oxfendazole dose of 60 mg/kg once daily. The final model was further used to perform comprehensive target attainment simulations for whipworm infection and filariasis at various dose regimens and target attainment criteria. The results of our modeling work, when adopted appropriately, have the potential to greatly facilitate oxfendazole dose regimen optimization in patient populations with different types of parasitic infections.
Collapse
|
22
|
Krücken J, Holden-Dye L, Keiser J, Prichard RK, Townson S, Makepeace BL, Hübner MP, Hahnel SR, Scandale I, Harder A, Kulke D. Development of emodepside as a possible adulticidal treatment for human onchocerciasis-The fruit of a successful industrial-academic collaboration. PLoS Pathog 2021; 17:e1009682. [PMID: 34293063 PMCID: PMC8297762 DOI: 10.1371/journal.ppat.1009682] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Current mass drug administration (MDA) programs for the treatment of human river blindness (onchocerciasis) caused by the filarial worm Onchocerca volvulus rely on ivermectin, an anthelmintic originally developed for animal health. These treatments are primarily directed against migrating microfilariae and also suppress fecundity for several months, but fail to eliminate adult O. volvulus. Therefore, elimination programs need time frames of decades, well exceeding the life span of adult worms. The situation is worsened by decreased ivermectin efficacy after long-term therapy. To improve treatment options against onchocerciasis, a drug development candidate should ideally kill or irreversibly sterilize adult worms. Emodepside is a broad-spectrum anthelmintic used for the treatment of parasitic nematodes in cats and dogs (Profender and Procox). Our current knowledge of the pharmacology of emodepside is the result of more than 2 decades of intensive collaborative research between academia and the pharmaceutical industry. Emodepside has a novel mode of action with a broad spectrum of activity, including against extraintestinal nematode stages such as migrating larvae or macrofilariae. Therefore, emodepside is considered to be among the most promising candidates for evaluation as an adulticide treatment against onchocerciasis. Consequently, in 2014, Bayer and the Drugs for Neglected Diseases initiative (DNDi) started a collaboration to develop emodepside for the treatment of patients suffering from the disease. Macrofilaricidal activity has been demonstrated in various models, including Onchocerca ochengi in cattle, the parasite most closely related to O. volvulus. Emodepside has now successfully passed Phase I clinical trials, and a Phase II study is planned. This Bayer–DNDi partnership is an outstanding example of “One World Health,” in which experience gained in veterinary science and drug development is translated to human health and leads to improved tools to combat neglected tropical diseases (NTDs) and shorten development pathways and timelines in an otherwise neglected area. Onchocerca volvulus is the causative agent of human river blindness, and current elimination programs rely on the use of ivermectin to kill microfilariae. Since no adulticidal drug is available and adult worms have a life span of up to 15 years, elimination programs need to be sustained over several decades. Emodepside is an anthelmintic that is licensed as a dewormer for cats and dogs. Due to its ability to eliminate nematodes located in various extraintestinal host tissues, including migrating larvae and adult filarial worms, it is considered to be an excellent candidate for the treatment of onchocerciasis. Intense collaboration between academia and the pharmaceutical industry has led to a deep understanding of the novel mode of action of the drug and of its parasite target spectrum. Phase I clinical trials with emodepside have demonstrated its safety and adulticide activity against the closely related cattle parasite Onchocerca ochengi. Currently, Phase II clinical trials are planned to confirm that emodepside, developed initially to improve animal health, has also the potential to improve human health by tackling a very important neglected tropical disease (NTD).
Collapse
Affiliation(s)
- Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Lindy Holden-Dye
- School of Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Roger K. Prichard
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, Quebec, Canada
| | - Simon Townson
- The Griffin Institute, Northwick Park and St. Mark’s Hospital, Harrow, United Kingdom
| | - Benjamin L. Makepeace
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Steffen R. Hahnel
- Elanco Animal Health, Research & Exploratory Development, Monheim, Germany
| | - Ivan Scandale
- Drugs for Neglected Disease initiative, Geneva, Switzerland
| | | | - Daniel Kulke
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
23
|
Emodepside targets SLO-1 channels of Onchocerca ochengi and induces broad anthelmintic effects in a bovine model of onchocerciasis. PLoS Pathog 2021; 17:e1009601. [PMID: 34077488 PMCID: PMC8202924 DOI: 10.1371/journal.ppat.1009601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/14/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022] Open
Abstract
Onchocerciasis (river blindness), caused by the filarial worm Onchocerca volvulus, is a neglected tropical disease mostly affecting sub-Saharan Africa and is responsible for >1.3 million years lived with disability. Current control relies almost entirely on ivermectin, which suppresses symptoms caused by the first-stage larvae (microfilariae) but does not kill the long-lived adults. Here, we evaluated emodepside, a semi-synthetic cyclooctadepsipeptide registered for deworming applications in companion animals, for activity against adult filariae (i.e., as a macrofilaricide). We demonstrate the equivalence of emodepside activity on SLO-1 potassium channels in Onchocerca volvulus and Onchocerca ochengi, its sister species from cattle. Evaluation of emodepside in cattle as single or 7-day treatments at two doses (0.15 and 0.75 mg/kg) revealed rapid activity against microfilariae, prolonged suppression of female worm fecundity, and macrofilaricidal effects by 18 months post treatment. The drug was well tolerated, causing only transiently increased blood glucose. Female adult worms were mostly paralyzed; however, some retained metabolic activity even in the multiple high-dose group. These data support ongoing clinical development of emodepside to treat river blindness.
Collapse
|
24
|
Jawahar S, Tricoche N, Bulman CA, Sakanari J, Lustigman S. Drugs that target early stages of Onchocerca volvulus: A revisited means to facilitate the elimination goals for onchocerciasis. PLoS Negl Trop Dis 2021; 15:e0009064. [PMID: 33600426 PMCID: PMC7891776 DOI: 10.1371/journal.pntd.0009064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Several issues have been identified with the current programs for the elimination of onchocerciasis that target only transmission by using mass drug administration (MDA) of the drug ivermectin. Alternative and/or complementary treatment regimens as part of a more comprehensive strategy to eliminate onchocerciasis are needed. We posit that the addition of “prophylactic” drugs or therapeutic drugs that can be utilized in a prophylactic strategy to the toolbox of present microfilaricidal drugs and/or future macrofilaricidal treatment regimens will not only improve the chances of meeting the elimination goals but may hasten the time to elimination and also will support achieving a sustained elimination of onchocerciasis. These “prophylactic” drugs will target the infective third- (L3) and fourth-stage (L4) larvae of Onchocerca volvulus and consequently prevent the establishment of new infections not only in uninfected individuals but also in already infected individuals and thus reduce the overall adult worm burden and transmission. Importantly, an effective prophylactic treatment regimen can utilize drugs that are already part of the onchocerciasis elimination program (ivermectin), those being considered for MDA (moxidectin), and/or the potential macrofilaricidal drugs (oxfendazole and emodepside) currently under clinical development. Prophylaxis of onchocerciasis is not a new concept. We present new data showing that these drugs can inhibit L3 molting and/or inhibit motility of L4 at IC50 and IC90 that are covered by the concentration of these drugs in plasma based on the corresponding pharmacological profiles obtained in human clinical trials when these drugs were tested using various doses for the therapeutic treatments of various helminth infections.
Collapse
Affiliation(s)
- Shabnam Jawahar
- Molecular Parasitology, Lindsey F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Nancy Tricoche
- Molecular Parasitology, Lindsey F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Christina A Bulman
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Judy Sakanari
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Sara Lustigman
- Molecular Parasitology, Lindsey F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| |
Collapse
|
25
|
Tyagi R, Bulman CA, Cho-Ngwa F, Fischer C, Marcellino C, Arkin MR, McKerrow JH, McNamara CW, Mahoney M, Tricoche N, Jawahar S, Janetka JW, Lustigman S, Sakanari J, Mitreva M. An Integrated Approach to Identify New Anti-Filarial Leads to Treat River Blindness, a Neglected Tropical Disease. Pathogens 2021; 10:71. [PMID: 33466870 PMCID: PMC7830784 DOI: 10.3390/pathogens10010071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 11/17/2022] Open
Abstract
Filarial worms cause multiple debilitating diseases in millions of people worldwide, including river blindness. Currently available drugs reduce transmission by killing larvae (microfilariae), but there are no effective cures targeting the adult parasites (macrofilaricides) which survive and reproduce in the host for very long periods. To identify effective macrofilaricides, we carried out phenotypic screening of a library of 2121 approved drugs for clinical use against adult Brugia pahangi and prioritized the hits for further studies by integrating those results with a computational prioritization of drugs and associated targets. This resulted in the identification of 18 hits with anti-macrofilaricidal activity, of which two classes, azoles and aspartic protease inhibitors, were further expanded upon. Follow up screening against Onchocerca spp. (adult Onchocerca ochengi and pre-adult O. volvulus) confirmed activity for 13 drugs (the majority having IC50 < 10 μM), and a counter screen of a subset against L. loa microfilariae showed the potential to identify selective drugs that prevent adverse events when co-infected individuals are treated. Stage specific activity was also observed. Many of these drugs are amenable to structural optimization, and also have known canonical targets, making them promising candidates for further optimization that can lead to identifying and characterizing novel anti-macrofilarial drugs.
Collapse
Affiliation(s)
- Rahul Tyagi
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO 63110, USA;
| | - Christina A. Bulman
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (M.R.A.)
| | - Fidelis Cho-Ngwa
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea CM-00237, Cameroon;
| | - Chelsea Fischer
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (M.R.A.)
| | - Chris Marcellino
- Division of Neurocritical Care and Hospital Neurology, Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA;
| | - Michelle R. Arkin
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (M.R.A.)
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA;
| | - Case W. McNamara
- Calibr, a Division of The Scripps Research Institute, 11119 Torrey Pines Road, La Jolla, CA 92037, USA;
| | - Matthew Mahoney
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; (M.M.); (J.W.J.)
| | - Nancy Tricoche
- Lindsley F. Kimball Research Institute, New York City, NY 10065, USA; (N.T.); (S.J.); (S.L.)
| | - Shabnam Jawahar
- Lindsley F. Kimball Research Institute, New York City, NY 10065, USA; (N.T.); (S.J.); (S.L.)
| | - James W. Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; (M.M.); (J.W.J.)
| | - Sara Lustigman
- Lindsley F. Kimball Research Institute, New York City, NY 10065, USA; (N.T.); (S.J.); (S.L.)
| | - Judy Sakanari
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (M.R.A.)
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO 63110, USA;
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA
| |
Collapse
|
26
|
Chevignon G, Foray V, Pérez-Jiménez MM, Libro S, Chung M, Foster JM, Landmann F. Dual RNAseq analyses at soma and germline levels reveal evolutionary innovations in the elephantiasis-agent Brugia malayi, and adaptation of its Wolbachia endosymbionts. PLoS Negl Trop Dis 2021; 15:e0008935. [PMID: 33406151 PMCID: PMC7787461 DOI: 10.1371/journal.pntd.0008935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/31/2020] [Indexed: 12/23/2022] Open
Abstract
Brugia malayi is a human filarial nematode responsible for elephantiasis, a debilitating condition that is part of a broader spectrum of diseases called filariasis, including lymphatic filariasis and river blindness. Almost all filarial nematode species infecting humans live in mutualism with Wolbachia endosymbionts, present in somatic hypodermal tissues but also in the female germline which ensures their vertical transmission to the nematode progeny. These α-proteobacteria potentially provision their host with essential metabolites and protect the parasite against the vertebrate immune response. In the absence of Wolbachia wBm, B. malayi females become sterile, and the filarial nematode lifespan is greatly reduced. In order to better comprehend this symbiosis, we investigated the adaptation of wBm to the host nematode soma and germline, and we characterized these cellular environments to highlight their specificities. Dual RNAseq experiments were performed at the tissue-specific and ovarian developmental stage levels, reaching the resolution of the germline mitotic proliferation and meiotic differentiation stages. We found that most wBm genes, including putative effectors, are not differentially regulated between infected tissues. However, two wBm genes involved in stress responses are upregulated in the hypodermal chords compared to the germline, indicating that this somatic tissue represents a harsh environment to which wBm have adapted. A comparison of the B. malayi and C. elegans germline transcriptomes reveals a poor conservation of genes involved in the production of oocytes, with the filarial germline proliferative zone relying on a majority of genes absent from C. elegans. The first orthology map of the B. malayi genome presented here, together with tissue-specific expression enrichment analyses, indicate that the early steps of oogenesis are a developmental process involving genes specific to filarial nematodes, that likely result from evolutionary innovations supporting the filarial parasitic lifestyle.
Collapse
Affiliation(s)
- Germain Chevignon
- CRBM, University of Montpellier, CNRS, Montpellier, France
- Laboratoire de Génétique et Pathologie des Mollusques Marins, Ifremer, La Tremblade, France
| | - Vincent Foray
- CRBM, University of Montpellier, CNRS, Montpellier, France
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université de Tours, Tours, France
| | - Mercedes Maria Pérez-Jiménez
- CRBM, University of Montpellier, CNRS, Montpellier, France
- Centro Andaluz de Biología del Desarrollo (CABD)–Universidad Pablo de Olavide (UPO), Departamento de Biología Molecular e Ingeniería Bioquímica, UPO/CSIC/JA, Sevilla, Spain
| | - Silvia Libro
- Division of Protein Expression & Modification, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Matthew Chung
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jeremy M. Foster
- Division of Protein Expression & Modification, New England Biolabs, Ipswich, Massachusetts, United States of America
| | | |
Collapse
|