1
|
Sharma M, Liu K, Wei J, Ma Z, Qiu Y. Mechanistic Role of TRIM26 in Viral Infection and Host Defense. Genes (Basel) 2024; 15:1476. [PMID: 39596676 PMCID: PMC11594267 DOI: 10.3390/genes15111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Tripartite motif protein 26 (TRIM26) is an E3 ubiquitin ligase and a member of the TRIM family. Similar to other TRIM proteins, TRIM26 consists of three domains, collectively termed RBCC: a Really Interesting New Gene (RING) domain, one B-Box domain, and a C terminal domain consisting of a PRY/SPRY domain. The PRY/SPRY domain exhibits relatively higher conservation compared with the RING and B-Box domains, suggesting potentially similar roles across TRIM26 proteins from various species. TRIM26 either directly interacts with viral proteins or modulates immune responses to engage with a viral infection, serving as either a protective or detrimental host factor depending on the circumvent of the viral infection. The present review focuses on understanding the mechanisms of TRIM26 during viral infection and its potential future applications.
Collapse
Affiliation(s)
| | | | | | | | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China; (M.S.); (K.L.); (J.W.); (Z.M.)
| |
Collapse
|
2
|
Singh G, Singh K, Sinha RA, Singh A, Khushi, Kumar A. Japanese encephalitis virus infection causes reactive oxygen species-mediated skeletal muscle damage. Eur J Neurosci 2024; 60:4843-4860. [PMID: 39049535 DOI: 10.1111/ejn.16469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Skeletal muscle wasting is a clinically proven pathology associated with Japanese encephalitis virus (JEV) infection; however, underlying factors that govern skeletal muscle damage are yet to be explored. The current study aims to investigate the pathobiology of skeletal muscle damage using a mouse model of JEV infection. Our study reveals a significant increment in viral copy number in skeletal muscle post-JEV infection, which is associated with enhanced skeletal muscle cell death. Molecular and biochemical analysis confirms NOX2-dependent generation of reactive oxygen species, leading to autophagy flux inhibition and cell apoptosis. Along with this, an alteration in mitochondrial dynamics (change in fusion and fission process) and a decrease in the total number of mitochondria copies were found during JEV disease progression. The study represents the initial evidence of skeletal muscle damage caused by JEV and provides insights into potential avenues for therapeutic advancement.
Collapse
Affiliation(s)
- Gajendra Singh
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Kulwant Singh
- Stem Cell Research Center, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Anjali Singh
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Khushi
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Alok Kumar
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| |
Collapse
|
3
|
Schneider CA, Leung JM, Valenzuela-Leon PC, Golviznina NA, Toso EA, Bosnakovski D, Kyba M, Calvo E, Peterson KE. Skin muscle is the initial site of viral replication for arboviral bunyavirus infection. Nat Commun 2024; 15:1121. [PMID: 38321047 PMCID: PMC10847502 DOI: 10.1038/s41467-024-45304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
The first step in disease pathogenesis for arboviruses is the establishment of infection following vector transmission. For La Crosse virus (LACV), the leading cause of pediatric arboviral encephalitis in North America, and other orthobunyaviruses, the initial course of infection in the skin is not well understood. Using an intradermal (ID) model of LACV infection in mice, we find that the virus infects and replicates nearly exclusively within skin-associated muscle cells of the panniculus carnosus (PC) and not in epidermal or dermal cells like most other arbovirus families. LACV is widely myotropic, infecting distal muscle cells of the peritoneum and heart, with limited infection of draining lymph nodes. Surprisingly, muscle cells are resistant to virus-induced cell death, with long term low levels of virus release progressing through the Golgi apparatus. Thus, skin muscle may be a key cell type for the initial infection and spread of arboviral orthobunyaviruses.
Collapse
Affiliation(s)
- Christine A Schneider
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jacqueline M Leung
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Paola Carolina Valenzuela-Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | | | - Erik A Toso
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
| | - Darko Bosnakovski
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Karin E Peterson
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
4
|
Cowell E, Kris LP, Bracho-Granado G, Jaber H, Smith JR, Carr JM. Zika virus infection of retinal cells and the developing mouse eye induces host responses that contrasts to the brain and dengue virus infection. J Neurovirol 2023; 29:187-202. [PMID: 37022660 DOI: 10.1007/s13365-023-01123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
Zika virus (ZIKV) infection causes ocular and neurological pathologies with ZIKV-induction of developmental abnormalities following in utero infection a major concern. The study here has compared ZIKV and the related dengue virus (DENV) infection in the eye and brain. In vitro, both ZIKV and DENV could infect cell lines representing the retinal pigmented epithelium, endothelial cells, and Mueller cells, with distinct innate responses in each cell type. In a 1-day old mouse challenge model, both ZIKV and DENV infected the brain and eye by day 6 post-infection (pi). ZIKV was present at comparable levels in both tissues, with RNA increasing with time post-infection. DENV infected the brain, but RNA was detected in the eye of less than half of the mice challenged. NanoString analysis demonstrated comparable host responses in the brain for both viruses, including induction of mRNA for myosin light chain-2 (Mly2), and numerous antiviral and inflammatory genes. Notably, mRNA for multiple complement proteins were induced, but C2 and C4a were uniquely induced by ZIKV but not DENV. Consistent with the viral infection in the eye, DENV induced few responses while ZIKV induced substantial inflammatory and antiviral responses. Compared to the brain, ZIKV in the eye did not induce mRNAs such as C3, downregulated Retnla, and upregulated CSF-1. Morphologically, the ZIKV-infected retina demonstrated reduced formation of specific retinal layers. Thus, although ZIKV and DENV can both infect the eye and brain, there are distinct differences in host cell and tissue inflammatory responses that may be relevant to ZIKV replication and disease.
Collapse
Affiliation(s)
- E Cowell
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Room 5D-316, Flinders Medical Centre, Flinders Drive, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - L P Kris
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Room 5D-316, Flinders Medical Centre, Flinders Drive, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - G Bracho-Granado
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Room 5D-316, Flinders Medical Centre, Flinders Drive, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - H Jaber
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Room 5D-316, Flinders Medical Centre, Flinders Drive, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - J R Smith
- Eye and Vision Health, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - J M Carr
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Room 5D-316, Flinders Medical Centre, Flinders Drive, Bedford Park, Adelaide, South Australia, 5042, Australia.
| |
Collapse
|
5
|
Impaired muscle stem cell function and abnormal myogenesis in acquired myopathies. Biosci Rep 2023; 43:232343. [PMID: 36538023 PMCID: PMC9829652 DOI: 10.1042/bsr20220284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle possesses a high plasticity and a remarkable regenerative capacity that relies mainly on muscle stem cells (MuSCs). Molecular and cellular components of the MuSC niche, such as immune cells, play key roles to coordinate MuSC function and to orchestrate muscle regeneration. An abnormal infiltration of immune cells and/or imbalance of pro- and anti-inflammatory cytokines could lead to MuSC dysfunctions that could have long lasting effects on muscle function. Different genetic variants were shown to cause muscular dystrophies that intrinsically compromise MuSC function and/or disturb their microenvironment leading to impaired muscle regeneration that contributes to disease progression. Alternatively, many acquired myopathies caused by comorbidities (e.g., cardiopulmonary or kidney diseases), chronic inflammation/infection, or side effects of different drugs can also perturb MuSC function and their microenvironment. The goal of this review is to comprehensively summarize the current knowledge on acquired myopathies and their impact on MuSC function. We further describe potential therapeutic strategies to restore MuSC regenerative capacity.
Collapse
|