1
|
Saade U, de Boer J, Scandale I, Altcheh J, Pottel H, Chatelain E, Zrein M. Early assessment of antibodies decline in Chagas patients following treatment using a serological multiplex immunoassay. Nat Commun 2024; 15:10530. [PMID: 39627222 PMCID: PMC11615370 DOI: 10.1038/s41467-024-54910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Chagas disease following infection with Trypanosoma cruzi is a major public health issue, with the disease spreading beyond endemic regions and becoming more global due to the migration of infected individuals. The currently available anti-parasitic drugs, nifurtimox and benznidazole, remain insufficiently evaluated for their efficacy in adult patients. A key challenge is the lack of markers for parasitological cure, which also precludes the development of new treatments. Consequently, there is a critical need for a practical method to assess drug performance within a short timeframe. In this retrospective analysis of the phase 2 randomized controlled BENDITA trial (ClinicalTrials.gov: NCT03378661), we report the potential of a serological multiplex method (MultiCruzi), combined with advanced statistical analytical methods, to measure the response to anti-parasitic treatment of adult Chagas patients. Applying this approach to serum samples from adult patients in the indeterminate chronic stage of Chagas disease, treated with different benznidazole regimens and combinations, we predict treatment efficacy after just 6 months of follow-up, in sharp contrast to data obtained with conventional and recombinant T. cruzi ELISA tests. The obtained results are also compared with the PCR data. We propose integrating MultiCruzi as a serological method endpoint in proof-of-concept clinical trials for Chagas disease.
Collapse
Affiliation(s)
- Ursula Saade
- InfYnity Biomarkers, Lyon, France
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, 4123, Allschwil, Switzerland
- University of Basel, 4001, Basel, Switzerland
| | - Jasper de Boer
- Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Ivan Scandale
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Jaime Altcheh
- Parasitology Service, Hospital de Niños "Ricardo Gutierrez" and Instituto Multidisciplinario de Investigacion en Patologias Pediatricas (IMIPP)-CONICET-GCBA, Buenos Aires, Argentina
| | - Hans Pottel
- Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland.
| | | |
Collapse
|
2
|
Yan T, Weng F, Ming Y, Zhu S, Zhu M, Wang C, Guo C, Zhu K. Luminescence Probes in Bio-Applications: From Principle to Practice. BIOSENSORS 2024; 14:333. [PMID: 39056609 PMCID: PMC11274413 DOI: 10.3390/bios14070333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Bioanalysis based on optical imaging has gained significant progress in the last few decades. Luminescence probes are capable of detecting, monitoring, and tracing particular biomolecules in complex biological systems to figure out the roles of these molecules in organisms. Considering the rapid development of luminescence probes for bio-applications and their promising future, we have attempted to explore the working principles and recent advances in bio-applications of luminescence probes, in the hope of helping readers gain a detailed understanding of luminescence probes developed in recent years. In this review, we first focus on the current widely used luminescence probes, including fluorescence probes, bioluminescence probes, chemiluminescence probes, afterglow probes, photoacoustic probes, and Cerenkov luminescence probes. The working principles for each type of luminescence probe are concisely described and the bio-application of the luminescence probes is summarized by category, including metal ions detection, secretion detection, imaging, and therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunsheng Wang
- Department of Cardiovascular Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; (T.Y.); (F.W.); (Y.M.); (S.Z.); (M.Z.)
| | - Changfa Guo
- Department of Cardiovascular Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; (T.Y.); (F.W.); (Y.M.); (S.Z.); (M.Z.)
| | - Kai Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; (T.Y.); (F.W.); (Y.M.); (S.Z.); (M.Z.)
| |
Collapse
|
3
|
Menezes CADS, de Oliveira ALG, Barbosa ICM, de Jesus ACP, Chaves AT, Rocha MODC. Galectin-3 (Gal-3) and the tissue inhibitor of matrix metalloproteinase (TIMP-2) as potential biomarkers for the clinical evolution of chronic Chagas cardiomyopathy. Acta Trop 2024; 252:107153. [PMID: 38373528 DOI: 10.1016/j.actatropica.2024.107153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Chronic Chagas cardiomyopathy (CCC) is responsible for the highest morbidity and worst prognosis in Chagas disease patients. However, predicting factors that correlate with disease progression, morbidity, and mortality is challenging. It is necessary to have simple, quantitative, and economical risk biomarkers that add value to conventional methods and assist in the diagnosis and prognosis of patients with CCC or in evolution. OBJECTIVES We evaluated molecules related to cardiac remodeling and fibrosis, such as MMP-2, MMP-9, TIMP-2, TIMP-1, PICP, CTXI, and Gal-3, and correlated these biomarkers with echocardiographic variables (LVDD, LVEF, and E/e' ratio). METHODS Blood samples from Chagasic patients without apparent cardiopathy (WAC), CCC patients, and healthy individuals were used to perform plasma molecule dosages using Luminex or ELISA. RESULTS MMP-2 and TIMP-2 presented higher levels in CCC; in these patients, the inhibitory role of TIMP-2 over MMP-2 was reinforced. The ratio of MMP-2/TIMP-2 in WAC patients showed a bias in favor of the gelatinase pathway. MMP-9 and TIMP-1 showed higher levels in Chagas patients compared to healthy subjects. PICP and CTXI are not associated with cardiac deterioration in Chagas disease. Increased levels of Gal-3 are associated with worse cardiac function in CCC. Receiver operating characteristic (ROC) curve analysis identified Gal-3 and TIMP-2 as putative biomarkers to discriminate WAC from cardiac patients. CONCLUSIONS Among the molecules evaluated, Gal-3 and TIMP-2 have the potential to be used as biomarkers of cardiac remodeling and progressive myocardial fibrosis in Chagas disease.
Collapse
Affiliation(s)
- Cristiane Alves da Silva Menezes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, Minas Gerais CEP 31270-901, Brazil.
| | - Ana Laura Grossi de Oliveira
- Faculdade de Medicina, Programa de Pós-graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Isabela Cristina Magalhães Barbosa
- Faculdade de Medicina, Programa de Pós-graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Augusto César Parreiras de Jesus
- Faculdade de Medicina, Programa de Pós-graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ana Thereza Chaves
- Faculdade de Medicina, Programa de Pós-graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Manoel Otávio da Costa Rocha
- Faculdade de Medicina, Programa de Pós-graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
4
|
Zingales B, Macedo AM. Fifteen Years after the Definition of Trypanosoma cruzi DTUs: What Have We Learned? Life (Basel) 2023; 13:2339. [PMID: 38137940 PMCID: PMC10744745 DOI: 10.3390/life13122339] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Trypanosoma cruzi, the protozoan causative of Chagas disease (ChD), exhibits striking genetic and phenotypic intraspecific diversity, along with ecoepidemiological complexity. Human-pathogen interactions lead to distinct clinical presentations of ChD. In 2009, an international consensus classified T. cruzi strains into six discrete typing units (DTUs), TcI to TcVI, later including TcBat, and proposed reproducible genotyping schemes for DTU identification. This article aims to review the impact of classifying T. cruzi strains into DTUs on our understanding of biological, ecoepidemiological, and pathogenic aspects of T. cruzi. We will explore the likely origin of DTUs and the intrinsic characteristics of each group of strains concerning genome organization, genomics, and susceptibility to drugs used in ChD treatment. We will also provide an overview of the association of DTUs with mammalian reservoirs, and summarize the geographic distribution, and the clinical implications, of prevalent specific DTUs in ChD patients. Throughout this review, we will emphasize the crucial roles of both parasite and human genetics in defining ChD pathogenesis and chemotherapy outcome.
Collapse
Affiliation(s)
- Bianca Zingales
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | - Andréa M. Macedo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| |
Collapse
|
5
|
Gabaldón-Figueira JC, Martinez-Peinado N, Escabia E, Ros-Lucas A, Chatelain E, Scandale I, Gascon J, Pinazo MJ, Alonso-Padilla J. State-of-the-Art in the Drug Discovery Pathway for Chagas Disease: A Framework for Drug Development and Target Validation. Res Rep Trop Med 2023; 14:1-19. [PMID: 37337597 PMCID: PMC10277022 DOI: 10.2147/rrtm.s415273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
Chagas disease is the most important protozoan infection in the Americas, and constitutes a significant public health concern throughout the world. Development of new medications against its etiologic agent, Trypanosoma cruzi, has been traditionally slow and difficult, lagging in comparison with diseases caused by other kinetoplastid parasites. Among the factors that explain this are the incompletely understood mechanisms of pathogenesis of T. cruzi infection and its complex set of interactions with the host in the chronic stage of the disease. These demand the performance of a variety of in vitro and in vivo assays as part of any drug development effort. In this review, we discuss recent breakthroughs in the understanding of the parasite's life cycle and their implications in the search for new chemotherapeutics. For this, we present a framework to guide drug discovery efforts against Chagas disease, considering state-of-the-art preclinical models and recently developed tools for the identification and validation of molecular targets.
Collapse
Affiliation(s)
| | - Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
| | - Elisa Escabia
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
| | - Albert Ros-Lucas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - María-Jesús Pinazo
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| |
Collapse
|