1
|
Moretti R, Lim JT, Ferreira AGA, Ponti L, Giovanetti M, Yi CJ, Tewari P, Cholvi M, Crawford J, Gutierrez AP, Dobson SL, Ross PA. Exploiting Wolbachia as a Tool for Mosquito-Borne Disease Control: Pursuing Efficacy, Safety, and Sustainability. Pathogens 2025; 14:285. [PMID: 40137770 PMCID: PMC11944716 DOI: 10.3390/pathogens14030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Despite the application of control measures, mosquito-borne diseases continue to pose a serious threat to human health. In this context, exploiting Wolbachia, a common symbiotic bacterium in insects, may offer effective solutions to suppress vectors or reduce their competence in transmitting several arboviruses. Many Wolbachia strains can induce conditional egg sterility, known as cytoplasmic incompatibility (CI), when infected males mate with females that do not harbor the same Wolbachia infection. Infected males can be mass-reared and then released to compete with wild males, reducing the likelihood of wild females encountering a fertile mate. Furthermore, certain Wolbachia strains can reduce the competence of mosquitoes to transmit several RNA viruses. Through CI, Wolbachia-infected individuals can spread within the population, leading to an increased frequency of mosquitoes with a reduced ability to transmit pathogens. Using artificial methods, Wolbachia can be horizontally transferred between species, allowing the establishment of various laboratory lines of mosquito vector species that, without any additional treatment, can produce sterilizing males or females with reduced vector competence, which can be used subsequently to replace wild populations. This manuscript reviews the current knowledge in this field, describing the different approaches and evaluating their efficacy, safety, and sustainability. Successes, challenges, and future perspectives are discussed in the context of the current spread of several arboviral diseases, the rise of insecticide resistance in mosquito populations, and the impact of climate change. In this context, we explore the necessity of coordinating efforts among all stakeholders to maximize disease control. We discuss how the involvement of diverse expertise-ranging from new biotechnologies to mechanistic modeling of eco-epidemiological interactions between hosts, vectors, Wolbachia, and pathogens-becomes increasingly crucial. This coordination is especially important in light of the added complexity introduced by Wolbachia and the ongoing challenges posed by global change.
Collapse
Affiliation(s)
- Riccardo Moretti
- Casaccia Research Center, Department for Sustainability, Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (R.M.); (L.P.)
| | - Jue Tao Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.T.L.); (C.J.Y.); (P.T.)
| | | | - Luigi Ponti
- Casaccia Research Center, Department for Sustainability, Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (R.M.); (L.P.)
- Center for the Analysis of Sustainable Agricultural Systems, Kensington, CA 94707, USA or (A.P.G.)
| | - Marta Giovanetti
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, Brazil; (A.G.A.F.); (M.G.)
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Chow Jo Yi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.T.L.); (C.J.Y.); (P.T.)
| | - Pranav Tewari
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.T.L.); (C.J.Y.); (P.T.)
| | - Maria Cholvi
- Area of Parasitology, Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, Universitat de València, 46100 Valencia, Spain; (M.C.)
| | - Jacob Crawford
- Verily Life Sciences, South San Francisco, CA 94080, USA; (J.C.)
| | - Andrew Paul Gutierrez
- Center for the Analysis of Sustainable Agricultural Systems, Kensington, CA 94707, USA or (A.P.G.)
- Division of Ecosystem Science, College of Natural Resources, University of California, Berkeley, CA 94720, USA
| | - Stephen L. Dobson
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA or (S.L.D.)
- MosquitoMate, Inc., Lexington, KY 40502, USA
| | - Perran A. Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 2052, Australia; (P.A.R.)
| |
Collapse
|
2
|
Sánchez-González L, Crawford JE, Adams LE, Brown G, Ryff KR, Delorey M, Ruiz-Valcarcel J, Nazario N, Borrero N, Miranda J, Mitchell SN, Howell PI, Ohm JR, Behling C, Wasson B, Eldershaw C, White BJ, Rivera-Amill V, Barrera R, Paz-Bailey G. Incompatible Aedes aegypti male releases as an intervention to reduce mosquito population-A field trial in Puerto Rico. PLoS Negl Trop Dis 2025; 19:e0012839. [PMID: 39836703 PMCID: PMC11785262 DOI: 10.1371/journal.pntd.0012839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 01/31/2025] [Accepted: 01/14/2025] [Indexed: 01/23/2025] Open
Abstract
Mosquito-transmitted viruses such as dengue are a global and growing public health challenge. Without widely available vaccines, mosquito control is the primary tool for fighting the spread of these viruses. New mosquito control technologies are needed to complement existing methods, given current challenges with scalability, acceptability, and effectiveness. A field trial was conducted in collaboration with the Communities Organized to Prevent Arboviruses project in Ponce, Puerto Rico, to measure entomological and epidemiological effects of reducing Aedes aegypti populations using Wolbachia incompatible insect technique. We packed and shipped Wolbachia-males from California and released them into 19 treatment clusters from September 2020 to December 2020. Preliminary evaluation revealed sub-optimal Wolbachia-male densities and impact on the wild-type population. In 2021, we shifted to a phased release strategy starting in four clusters, reducing the mosquito population by 49% (CI 29-63%). We describe the investigation into male quality and other factors that may have limited the impact of Wolbachia-male releases. Laboratory assays showed a small but significant impact of packing and shipping on male fitness. However, mark-release-recapture assessments suggest that male daily survival rates in the field may have been significantly impacted. We compared induced-sterility levels and suppression of the wild population and found patterns consistent with mosquito population compensation in response to our intervention. Analysis of epidemiological impact was not possible due to very low viral transmission rates during the intervention period. Our entomological impact data provide evidence that Wolbachia incompatible-male releases reduced Ae. aegypti populations, although efficacy will be maximized when releases are part of an integrated control program. With improvement of shipping vessels and shipped male fitness, packing and shipping male mosquitoes could provide a key solution for expanding access to this technology. Our project underscores the challenges involved in large and complex field effectiveness assessments of novel vector control methods.
Collapse
Affiliation(s)
- Liliana Sánchez-González
- Division of Vector Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Jacob E. Crawford
- Verily Life Sciences, San Francisco, California, United States of America
| | - Laura E. Adams
- Division of Vector Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Grayson Brown
- Puerto Rico Vector Control Unit, San Juan, Puerto Rico
| | - Kyle R. Ryff
- Division of Vector Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Mark Delorey
- Division of Vector Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Jose Ruiz-Valcarcel
- Division of Vector Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | | | | | | | - Sara N. Mitchell
- Verily Life Sciences, San Francisco, California, United States of America
| | - Paul I. Howell
- Verily Life Sciences, San Francisco, California, United States of America
| | - Johanna R. Ohm
- Verily Life Sciences, San Francisco, California, United States of America
| | - Charlie Behling
- Verily Life Sciences, San Francisco, California, United States of America
| | - Brian Wasson
- Verily Life Sciences, San Francisco, California, United States of America
| | - Craig Eldershaw
- Verily Life Sciences, San Francisco, California, United States of America
| | - Bradley J. White
- Verily Life Sciences, San Francisco, California, United States of America
| | | | - Roberto Barrera
- Division of Vector Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Gabriela Paz-Bailey
- Division of Vector Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| |
Collapse
|
3
|
Fox T, Sguassero Y, Chaplin M, Rose W, Doum D, Arevalo-Rodriguez I, Villanueva G. Wolbachia-carrying Aedes mosquitoes for preventing dengue infection. Cochrane Database Syst Rev 2024; 4:CD015636. [PMID: 38597256 PMCID: PMC11005084 DOI: 10.1002/14651858.cd015636.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
BACKGROUND Dengue is a global health problem of high significance, with 3.9 billion people at risk of infection. The geographic expansion of dengue virus (DENV) infection has resulted in increased frequency and severity of the disease, and the number of deaths has increased in recent years. Wolbachia,an intracellular bacterial endosymbiont, has been under investigation for several years as a novel dengue-control strategy. Some dengue vectors (Aedes mosquitoes) can be transinfected with specific strains of Wolbachia, which decreases their fitness (ability to survive and mate) and their ability to reproduce, inhibiting the replication of dengue. Both laboratory and field studies have demonstrated the potential effect of Wolbachia deployments on reducing dengue transmission, and modelling studies have suggested that this may be a self-sustaining strategy for dengue prevention, although long-term effects are yet to be elucidated. OBJECTIVES To assess the efficacy of Wolbachia-carrying Aedes speciesdeployments (specifically wMel-, wMelPop-, and wAlbB- strains of Wolbachia) for preventing dengue virus infection. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, four other databases, and two trial registries up to 24 January 2024. SELECTION CRITERIA Randomized controlled trials (RCTs), including cluster-randomized controlled trials (cRCTs), conducted in dengue endemic or epidemic-prone settings were eligible. We sought studies that investigated the impact of Wolbachia-carrying Aedes deployments on epidemiological or entomological dengue-related outcomes, utilizing either the population replacement or population suppression strategy. DATA COLLECTION AND ANALYSIS Two review authors independently selected eligible studies, extracted data, and assessed the risk of bias using the Cochrane RoB 2 tool. We used odds ratios (OR) with the corresponding 95% confidence intervals (CI) as the effect measure for dichotomous outcomes. For count/rate outcomes, we planned to use the rate ratio with 95% CI as the effect measure. We used adjusted measures of effect for cRCTs. We assessed the certainty of evidence using GRADE. MAIN RESULTS One completed cRCT met our inclusion criteria, and we identified two further ongoing cRCTs. The included trial was conducted in an urban setting in Yogyakarta, Indonesia. It utilized a nested test-negative study design, whereby all participants aged three to 45 years who presented at healthcare centres with a fever were enrolled in the study provided they had resided in the study area for the previous 10 nights. The trial showed that wMel-Wolbachia infected Ae aegypti deployments probably reduce the odds of contracting virologically confirmed dengue by 77% (OR 0.23, 95% CI 0.15 to 0.35; 1 trial, 6306 participants; moderate-certainty evidence). The cluster-level prevalence of wMel Wolbachia-carrying mosquitoes remained high over two years in the intervention arm of the trial, reported as 95.8% (interquartile range 91.5 to 97.8) across 27 months in clusters receiving wMel-Wolbachia Ae aegypti deployments, but there were no reliable comparative data for this outcome. Other primary outcomes were the incidence of virologically confirmed dengue, the prevalence of dengue ribonucleic acid in the mosquito population, and mosquito density, but there were no data for these outcomes. Additionally, there were no data on adverse events. AUTHORS' CONCLUSIONS The included trial demonstrates the potential significant impact of wMel-Wolbachia-carrying Ae aegypti mosquitoes on preventing dengue infection in an endemic setting, and supports evidence reported in non-randomized and uncontrolled studies. Further trials across a greater diversity of settings are required to confirm whether these findings apply to other locations and country settings, and greater reporting of acceptability and cost are important.
Collapse
Affiliation(s)
- Tilly Fox
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Marty Chaplin
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Winsley Rose
- Department of Child Health, Christian Medical College, Vellore, India
| | - Dyna Doum
- Health Forefront Organization, Phnom Penh, Cambodia
| | - Ingrid Arevalo-Rodriguez
- Cochrane Response, Cochrane, London, UK
- Evidence Production & Methods Directorate, Cochrane, London, UK
| | | |
Collapse
|
4
|
Aldridge RL, Gibson S, Linthicum KJ. Aedes aegypti Controls AE. Aegypti: SIT and IIT-An Overview. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2024; 40:32-49. [PMID: 38427588 DOI: 10.2987/23-7154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The sterile insect technique (SIT) and the incompatible insect technique (IIT) are emerging and potentially revolutionary tools for controlling Aedes aegypti (L.), a prominent worldwide mosquito vector threat to humans that is notoriously difficult to reduce or eliminate in intervention areas using traditional integrated vector management (IVM) approaches. Here we provide an overview of the discovery, development, and application of SIT and IIT to Ae. aegypti control, and innovations and advances in technology, including transgenics, that could elevate these techniques to a worldwide sustainable solution to Ae. aegypti when combined with other IVM practices.
Collapse
|
5
|
Ridha MR, Marlinae L, Zubaidah T, Fadillah NA, Widjaja J, Rosadi D, Rahayu N, Ningsih M, Desimal I, Sofyandi A. Control methods for invasive mosquitoes of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Indonesia. Vet World 2023; 16:1952-1963. [PMID: 37859959 PMCID: PMC10583872 DOI: 10.14202/vetworld.2023.1952-1963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/30/2023] [Indexed: 10/21/2023] Open
Abstract
The two invasive mosquito species in Indonesia are Aedes aegypti and Ae. albopictus. These mosquitoes are a serious nuisance to humans and are also the primary vectors of several foreign pathogens, such as dengue, Zika, and chikungunya viruses. Efforts must be made to reduce the possibility of mosquito bites and the potential for disease transmission. Given the invasion of these two Aedes species, this approach should be considered as part of an integrated strategy to manage them. This review discusses existing and developing control techniques for invasive Ae. aegypti and Ae. albopictus, with an emphasis on those that have been and are being used in Indonesia. Environmental, mechanical, biological (e.g., Bacillus thuringiensis and Wolbachia), and chemical (e.g., insect growth regulators and pyrethroids) approaches are discussed in this review, considering their effectiveness, sustainability, and control methods.
Collapse
Affiliation(s)
- Muhammad Rasyid Ridha
- Vector-borne and Zoonotic Diseases Research Group, Research Center for Public Health and Nutrition, Cibinong Science Center, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor KM.46, Bogor, West Java, 16915, Indonesia
| | - Lenie Marlinae
- Department of Environmental Health, Public Health Study Program, Medical Faculty, Universitas Labung Mangkurat, Jl. A. Yani, Km. 36 Banjarbaru, South Kalimantan, Indonesia
| | - Tien Zubaidah
- Environmental Health Program, Banjarmasin Health Polytechnic, Jl. H. Mistar Cokrokusumo No.1A, Kemuning, Banjar Baru, South Kalimantan, 70714, Indonesia
| | - Noor Ahda Fadillah
- Department of Epidemiology, Public Health Study Program, Medical Faculty, Universitas Labung Mangkurat, Jl. A. Yani, Km. 36 Banjarbaru, South Kalimantan, Indonesia
| | - Junus Widjaja
- Vector-borne and Zoonotic Diseases Research Group, Research Center for Public Health and Nutrition, Cibinong Science Center, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor KM.46, Bogor, West Java, 16915, Indonesia
| | - Dian Rosadi
- Department of Epidemiology, Public Health Study Program, Medical Faculty, Universitas Labung Mangkurat, Jl. A. Yani, Km. 36 Banjarbaru, South Kalimantan, Indonesia
| | - Nita Rahayu
- Vector-borne and Zoonotic Diseases Research Group, Research Center for Public Health and Nutrition, Cibinong Science Center, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor KM.46, Bogor, West Java, 16915, Indonesia
| | - Murtiana Ningsih
- Public Health Study Program, Sports Sciences and Public Health Faculty, Universitas Pendidikan Mataram, Jl. Pemuda No. 59 A Mataram West Nusa Tenggara, Indonesia
| | - Iwan Desimal
- Public Health Study Program, Sports Sciences and Public Health Faculty, Universitas Pendidikan Mataram, Jl. Pemuda No. 59 A Mataram West Nusa Tenggara, Indonesia
| | - Arif Sofyandi
- Public Health Study Program, Sports Sciences and Public Health Faculty, Universitas Pendidikan Mataram, Jl. Pemuda No. 59 A Mataram West Nusa Tenggara, Indonesia
| |
Collapse
|