1
|
Alfred MO, Ochola L, Okeyo K, Bae E, Ogongo P, Odongo D, Njaanake K, Robinson JP. Application of microphysiological systems to unravel the mechanisms of schistosomiasis egg extravasation. Front Cell Infect Microbiol 2025; 15:1521265. [PMID: 40041145 PMCID: PMC11876127 DOI: 10.3389/fcimb.2025.1521265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
Despite decades of control efforts, the prevalence of schistosomiasis remains high in many endemic regions, posing significant challenges to global health. One of the key factors contributing to the persistence of the disease is the complex life cycle of the Schistosoma parasite, the causative agent, which involves multiple stages of development and intricate interactions with its mammalian hosts and snails. Among the various stages of the parasite lifecycle, the deposition of eggs and their migration through host tissues is significant, as they initiate the onset of the disease pathology by inducing inflammatory reactions and tissue damage. However, our understanding of the mechanisms underlying Schistosoma egg extravasation remains limited, hindering efforts to develop effective interventions. Microphysiological systems, particularly organ-on-a-chip systems, offer a promising approach to study this phenomenon in a controlled experimental setting because they allow the replication of physiological microenvironments in vitro. This review provides an overview of schistosomiasis, introduces the concept of organ-on-a-chip technology, and discusses its potential applications in the field of schistosomiasis research.
Collapse
Affiliation(s)
- Martin Omondi Alfred
- Department of Medical Microbiology and Immunology, University of Nairobi, Hospital Road, Kenyatta National Hospital, Nairobi, Kenya
- Department of Tropical and Infectious Diseases, Kenya Institute of Primate Research, Nairobi, Kenya
| | - Lucy Ochola
- Department of Tropical and Infectious Diseases, Kenya Institute of Primate Research, Nairobi, Kenya
| | - Kennedy Okeyo
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Euiwon Bae
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Paul Ogongo
- Department of Tropical and Infectious Diseases, Kenya Institute of Primate Research, Nairobi, Kenya
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - David Odongo
- Department of Medical Microbiology and Immunology, University of Nairobi, Hospital Road, Kenyatta National Hospital, Nairobi, Kenya
| | - Kariuki Njaanake
- Department of Medical Microbiology and Immunology, University of Nairobi, Hospital Road, Kenyatta National Hospital, Nairobi, Kenya
| | - J. Paul Robinson
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
2
|
Liu C, Fisher D, Pronyuk K, Musabaev E, Thu Hien NT, Dang Y, Zhao L. Therapeutic potential of natural products in schistosomiasis-associated liver fibrosis. Front Pharmacol 2024; 15:1332027. [PMID: 38770001 PMCID: PMC11102961 DOI: 10.3389/fphar.2024.1332027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
Schistosomiasis is a parasitic disease that endangers human health and social development. The granulomatous reaction of Schistosoma eggs in the liver is the main cause of hepatosplenomegaly and fibrotic lesions. Anti liver fibrosis therapy is crucial for patients with chronic schistosomiasis. Although Praziquantel is the only clinical drug used, it is limited in insecticide treatment and has a long-term large-scale use, which is forcing the search for cost-effective alternatives. Previous research has demonstrated that plant metabolites and extracts have effective therapeutic effects on liver fibrosis associated with schistosomiasis. This paper summarizes the mechanisms of action of metabolites and some plant extracts in alleviating schistosomiasis-associated liver fibrosis. The analysis was conducted using databases such as PubMed, Google Scholar, and China National Knowledge Infrastructure (CNKI) databases. Some plant metabolites and extracts ameliorate liver fibrosis by targeting multiple signaling pathways, including reducing inflammatory infiltration, oxidative stress, inhibiting alternate macrophage activation, suppressing hepatic stellate cell activation, and reducing worm egg load. Natural products improve liver fibrosis associated with schistosomiasis, but further research is needed to elucidate the effectiveness of natural products in treating liver fibrosis caused by schistosomiasis, as there is no reported data from clinical trials in the literature.
Collapse
Affiliation(s)
- Cuiling Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - David Fisher
- Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Khrystyna Pronyuk
- Infectious Diseases Department, O.Bogomolets National Medical University, Kyiv, Ukraine
| | - Erkin Musabaev
- The Research Institute of Virology, Ministry of Health, Tashkent, Uzbekistan
| | | | - Yiping Dang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Kovner AV, Kapushchak YK, Zaparina O, Mordvinov VA, Pakharukova MY. Hepatic vascular changes associated with Opisthorchis felineus infection in Syrian hamsters and humans. Acta Trop 2024; 250:107100. [PMID: 38101765 DOI: 10.1016/j.actatropica.2023.107100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/27/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
The liver fluke Opisthorchis felineus is a foodborne zoonotic pathogen endemic to Russia, Kazakhstan, and several European countries. The adult flukes affect the hepatobiliary system of piscivorous mammals and humans, thereby causing numerous complications, including liver fibrosis. Detailing the mechanisms of progression of the fibrotic complications is a hot topic in the field of research on opisthorchiasis pathogenesis. Pathologic angiogenesis appears to be associated with the fibrogenic progression due to active participation in the recruitment of inflammatory cells and many factors involved in the modulation of the extracellular matrix. The aim of the study was to evaluate neoangiogenesis and amyloid deposits in liver tissues of model animals and patients with confirmed chronic opisthorchiasis. In addition, we assessed a possible correlation of neoangiogenesis with liver fibrosis. We found a significant increase in the number of newly formed vessels and amyloid deposits in the liver of people with chronic opisthorchiasis compared to that of uninfected ones. Thus, for the first time we have demonstrated neoangiogenesis and amyloid deposits during O. felineus infection in a Mesocricetus auratus model. Regression analysis showed that CD34+ newly formed vessels correlate with fibrosis severity in the course of the infection. Our results indicate the potential contribution of angiogenesis to the progression of liver fibrosis, associated with O. felineus infection.
Collapse
Affiliation(s)
- Anna V Kovner
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Ak. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Yaroslav K Kapushchak
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Ak. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Oxana Zaparina
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Ak. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Viatcheslav A Mordvinov
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Ak. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Maria Y Pakharukova
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Ak. Lavrentiev Ave., Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia; Institute of Molecular Biology and Biophysics, Siberian Branch of Russian Academy of Medical Sciences, 2 Ak. Timakova Str., Novosibirsk, 630117, Russia
| |
Collapse
|