1
|
Identification of a Transcriptomic Network Underlying the Wrinkly and Smooth Phenotypes of Vibrio fischeri. J Bacteriol 2021; 203:JB.00259-20. [PMID: 33199286 PMCID: PMC7811199 DOI: 10.1128/jb.00259-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/04/2020] [Indexed: 01/27/2023] Open
Abstract
Vibrio fischeri is a cosmopolitan marine bacterium that oftentimes displays different colony morphologies, switching from a smooth to a wrinkly phenotype in order to adapt to changes in the environment. This wrinkly phenotype has also been associated with increased biofilm formation, an essential characteristic for V. fischeri to adhere to substrates, to suspended debris, and within the light organs of sepiolid squids. Elevated levels of biofilm formation are correlated with increased microbial survival of exposure to environmental stressors and the ability to expand niche breadth. Since V. fischeri has a biphasic life history strategy between its free-living and symbiotic states, we were interested in whether the wrinkly morphotype demonstrated differences in its expression profile in comparison to the naturally occurring and more common smooth variant. We show that genes involved in major biochemical cascades, including those involved in protein sorting, oxidative stress, and membrane transport, play a role in the wrinkly phenotype. Interestingly, only a few unique genes are specifically involved in macromolecule biosynthesis in the wrinkly phenotype, which underlies the importance of other pathways utilized for adaptation under the conditions in which Vibrio bacteria are producing this change in phenotype. These results provide the first comprehensive analysis of the complex form of genetic activation that underlies the diversity in morphologies of V. fischeri when switching between two different colony morphotypes, each representing a unique biofilm ecotype.IMPORTANCE The wrinkly bacterial colony phenotype has been associated with increased squid host colonization in V. fischeri The significance of our research is in identifying the genetic mechanisms that are responsible for heightened biofilm formation in V. fischeri This report also advances our understanding of gene regulation in V. fischeri and brings to the forefront a number of previously overlooked genetic networks. Several loci that were identified in this study were not previously known to be associated with biofilm formation in V. fischeri.
Collapse
|
2
|
Koza A, Jerdan R, Cameron S, Spiers AJ. Three biofilm types produced by a model pseudomonad are differentiated by structural characteristics and fitness advantage. MICROBIOLOGY-SGM 2020; 166:707-716. [PMID: 32520698 DOI: 10.1099/mic.0.000938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Model bacterial biofilm systems suggest that bacteria produce one type of biofilm, which is then modified by environmental and physiological factors, although the diversification of developing populations might result in the appearance of adaptive mutants producing altered structures with improved fitness advantage. Here we compare the air-liquid (A-L) interface viscous mass (VM) biofilm produced by Pseudomonas fluorescens SBW25 and the wrinkly spreader (WS) and complementary biofilm-forming strain (CBFS) biofilm types produced by adaptive SBW25 mutants in order to better understand the link between these physical structures and the fitness advantage they provide in experimental microcosms. WS, CBFS and VM biofilms can be differentiated by strength, attachment levels and rheology, as well as by strain characteristics associated with biofilm formation. Competitive fitness assays demonstrate that they provide similar advantages under static growth conditions but respond differently to increasing levels of physical disturbance. Pairwise competitions between biofilms suggest that these strains must be competing for at least two growth-limiting resources at the A-L interface, most probably O2 and nutrients, although VM and CBFS cells located lower down in the liquid column might provide an additional fitness advantage through the colonization of a less competitive zone below the biofilm. Our comparison of different SBW25 biofilm types illustrates more generally how varied biofilm characteristics and fitness advantage could become among adaptive mutants arising from an ancestral biofilm-forming strain and raises the question of how significant these changes might be in a range of medical, biotechnological and industrial contexts where diversification and change may be problematic.
Collapse
Affiliation(s)
- Anna Koza
- School of Applied Sciences, Abertay University, Bell Street, Dundee DD1 1HG, UK
| | - Robyn Jerdan
- School of Applied Sciences, Abertay University, Bell Street, Dundee DD1 1HG, UK
| | - Scott Cameron
- School of Applied Sciences, Abertay University, Bell Street, Dundee DD1 1HG, UK
| | - Andrew J Spiers
- School of Applied Sciences, Abertay University, Bell Street, Dundee DD1 1HG, UK
| |
Collapse
|
3
|
Watson C, Hush P, Williams J, Dawson A, Ojkic N, Titmuss S, Waclaw B. Reduced adhesion between cells and substrate confers selective advantage in bacterial colonies
(a). ACTA ACUST UNITED AC 2018. [DOI: 10.1209/0295-5075/123/68001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Koza A, Kusmierska A, McLaughlin K, Moshynets O, Spiers AJ. Adaptive radiation of Pseudomonas fluorescens SBW25 in experimental microcosms provides an understanding of the evolutionary ecology and molecular biology of A-L interface biofilm formation. FEMS Microbiol Lett 2018; 364:3850210. [PMID: 28535292 DOI: 10.1093/femsle/fnx109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
Abstract
Combined experimental evolutionary and molecular biology approaches have been used to investigate the adaptive radiation of Pseudomonas fluorescens SBW25 in static microcosms leading to the colonisation of the air-liquid interface by biofilm-forming mutants such as the Wrinkly Spreader (WS). In these microcosms, the ecosystem engineering of the early wild-type colonists establishes the niche space for subsequent WS evolution and colonisation. Random WS mutations occurring in the developing population that deregulate diguanylate cyclases and c-di-GMP homeostasis result in cellulose-based biofilms at the air-liquid interface. These structures allow Wrinkly Spreaders to intercept O2 diffusing into the liquid column and limit the growth of competitors lower down. As the biofilm matures, competition increasingly occurs between WS lineages, and niche divergence within the biofilm may support further diversification before system failure when the structure finally sinks. A combination of pleiotropic and epistasis effects, as well as secondary mutations, may explain variations in WS phenotype and fitness. Understanding how mutations subvert regulatory networks to express intrinsic genome potential and key innovations providing a selective advantage in novel environments is key to understanding the versatility of bacteria, and how selection and ecological opportunity can rapidly lead to substantive changes in phenotype and in community structure and function.
Collapse
Affiliation(s)
- Anna Koza
- School of Science, Engineering and Technology, Abertay University, Dundee DD1 1HG, UK
| | - Anna Kusmierska
- School of Science, Engineering and Technology, Abertay University, Dundee DD1 1HG, UK
| | - Kimberley McLaughlin
- School of Science, Engineering and Technology, Abertay University, Dundee DD1 1HG, UK
| | - Olena Moshynets
- Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kiev 03143, Ukraine
| | - Andrew J Spiers
- School of Science, Engineering and Technology, Abertay University, Dundee DD1 1HG, UK
| |
Collapse
|
5
|
New Insights into the Effects of Several Environmental Parameters on the Relative Fitness of a Numerically Dominant Class of Evolved Niche Specialist. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2016; 2016:4846565. [PMID: 28101396 PMCID: PMC5214101 DOI: 10.1155/2016/4846565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/24/2016] [Indexed: 11/17/2022]
Abstract
Adaptive radiation in bacteria has been investigated using Wrinkly Spreaders (WS), a morphotype which colonises the air-liquid (A-L) interface of static microcosms by biofilm formation with a significant fitness advantage over competitors growing lower down in the O2-limited liquid column. Here, we investigate several environmental parameters which impact the ecological opportunity that the Wrinkly Spreaders exploit in this model system. Manipulation of surface area/volume ratios suggests that the size of the WS niche was not as important as the ability to dominate the A-L interface and restrict competitor growth. The value of this niche to the Wrinkly Spreaders, as determined by competitive fitness assays, was found to increase as O2 flux to the A-L interface was reduced, confirming that competition for O2 was the main driver of WS fitness. The effect of O2 on fitness was also found to be dependent on the availability of nutrients, reflecting the need to take up both for optimal growth. Finally, the meniscus trap, a high-O2 region formed by the interaction of the A-L interface with the vial walls, was also important for fitness during the early stages of biofilm formation. These findings reveal the complexity of this seemingly simple model system and illustrate how changes in environmental physicality alter ecological opportunity and the fitness of the adaptive morphotype.
Collapse
|
6
|
Abstract
Microbes are now known to participate in an extensive repertoire of cooperative behaviors such as biofilm formation, production of extracellular public-goods, group motility, and higher-ordered multicellular structures. A fundamental question is how these cooperative tasks are maintained in the face of non-cooperating defector cells. Recently, a number of molecular mechanisms including facultative participation, spatial sorting, and policing have been discovered to stabilize cooperation. Often these different mechanisms work in concert to reinforce cooperation. In this review, we describe bacterial cooperation and the current understanding of the molecular mechanisms that maintain it.
Collapse
Affiliation(s)
- Eric Bruger
- Department of Microbiology and Molecular Genetics and the BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, 48824, USA
| | - Christopher Waters
- Department of Microbiology and Molecular Genetics and the BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
7
|
Cockrell AL, Pirlo RK, Babson DM, Cusick KD, Soto CM, Petersen ER, Davis MJ, Hong CI, Lee K, Fitzgerald LA, Biffinger JC. Suppressing the Neurospora crassa circadian clock while maintaining light responsiveness in continuous stirred tank reactors. Sci Rep 2015; 5:10691. [PMID: 26031221 PMCID: PMC4451529 DOI: 10.1038/srep10691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 04/28/2015] [Indexed: 11/09/2022] Open
Abstract
Neurospora crassa has been utilized as a model organism for studying biological, regulatory, and circadian rhythms for over 50 years. These circadian cycles are driven at the molecular level by gene transcription events to prepare for environmental changes. N. crassa is typically found on woody biomass and is commonly studied on agar-containing medium which mimics its natural environment. We report a novel method for disrupting circadian gene transcription while maintaining light responsiveness in N. crassa when held in a steady metabolic state using bioreactors. The arrhythmic transcription of core circadian genes and downstream clock-controlled genes was observed in constant darkness (DD) as determined by reverse transcription-quantitative PCR (RT-qPCR). Nearly all core circadian clock genes were up-regulated upon exposure to light during 11hr light/dark cycle experiments under identical conditions. Our results demonstrate that the natural timing of the robust circadian clock in N. crassa can be disrupted in the dark when maintained in a consistent metabolic state. Thus, these data lead to a path for the production of industrial scale enzymes in the model system, N. crassa, by removing the endogenous negative feedback regulation by the circadian oscillator.
Collapse
Affiliation(s)
- Allison L Cockrell
- Chemistry Division, US Naval Research Laboratory, 4555 Overlook Ave., SW., Washington, DC, 20375, USA
| | - Russell K Pirlo
- Chemistry Division, US Naval Research Laboratory, 4555 Overlook Ave., SW., Washington, DC, 20375, USA
| | - David M Babson
- Nova Research Inc., 1900 Elkin St., Suite 230, Alexandria, VA, 22308, USA
| | - Kathleen D Cusick
- Chemistry Division, US Naval Research Laboratory, 4555 Overlook Ave., SW., Washington, DC, 20375, USA
| | - Carissa M Soto
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Ave., SW., Washington, DC, 20375, USA
| | - Emily R Petersen
- Nova Research Inc., 1900 Elkin St., Suite 230, Alexandria, VA, 22308, USA
| | | | - Christian I Hong
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Kwangwon Lee
- Department of Biology, Rutgers University, Camden, NJ, 08102, USA
| | - Lisa A Fitzgerald
- Chemistry Division, US Naval Research Laboratory, 4555 Overlook Ave., SW., Washington, DC, 20375, USA
| | - Justin C Biffinger
- Chemistry Division, US Naval Research Laboratory, 4555 Overlook Ave., SW., Washington, DC, 20375, USA
| |
Collapse
|
8
|
Udall YC, Deeni Y, Hapca SM, Raikes D, Spiers AJ. The evolution of biofilm-forming Wrinkly Spreaders in static microcosms and drip-fed columns selects for subtle differences in wrinkleality and fitness. FEMS Microbiol Ecol 2015; 91:fiv057. [DOI: 10.1093/femsec/fiv057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2015] [Indexed: 12/30/2022] Open
|
9
|
A mechanistic explanation linking adaptive mutation, niche change, and fitness advantage for the wrinkly spreader. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2014; 2014:675432. [PMID: 24551477 PMCID: PMC3914426 DOI: 10.1155/2014/675432] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/08/2013] [Indexed: 11/17/2022]
Abstract
Experimental evolution studies have investigated adaptive radiation in static liquid microcosms using the environmental bacterium Pseudomonas fluorescens SBW25. In evolving populations a novel adaptive mutant known as the Wrinkly Spreader arises within days having significant fitness advantage over the ancestral strain. A molecular investigation of the Wrinkly Spreader has provided a mechanistic explanation linking mutation with fitness improvement through the production of a cellulose-based biofilm at the air-liquid interface. Colonisation of this niche provides greater access to oxygen, allowing faster growth than that possible for non-biofilm-forming competitors located in the lower anoxic region of the microcosm. Cellulose is probably normally used for attachment to plant and soil aggregate surfaces and to provide protection in dehydrating conditions. However, the evolutionary innovation of the Wrinkly Spreader in static microcosms is the use of cellulose as the matrix of a robust biofilm, and is achieved through mutations that deregulate multiple diguanylate cyclases leading to the over-production of cyclic-di-GMP and the stimulation of cellulose expression. The mechanistic explanation of the Wrinkly Spreader success is an exemplar of the modern evolutionary synthesis, linking molecular biology with evolutionary ecology, and provides an insight into the phenomenal ability of bacteria to adapt to novel environments.
Collapse
|
10
|
Environmental modification and niche construction: developing O2 gradients drive the evolution of the Wrinkly Spreader. ISME JOURNAL 2010; 5:665-73. [PMID: 20962880 DOI: 10.1038/ismej.2010.156] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The evolutionary success of the novel Wrinkly Spreader (WS) genotypes in diversifying Pseudomonas fluorescens SBW25 populations in static liquid microcosms has been attributed to the greater availability of O(2) at the air-liquid (A-L) interface where the WS produces a physically cohesive-class biofilm. However, the importance of O(2) gradients in SBW25 adaptation has never been examined. We have explicitly tested the role of O(2) in evolving populations using microsensor profiling and experiments conducted under high and low O(2) conditions. Initial colonists of static microcosms were found to establish O(2) gradients before significant population growth had occurred, converting a previously homogenous environment into one containing a resource continuum with high and low O(2) regions. These gradients were found to persist for long periods by which time significant numbers of WS had appeared colonising the high O(2) niches. Growth was O(2) limited in static microcosms, but high O(2) conditions like those found near the A-L interface supported greater growth and favoured the emergence of WS-like genotypes. A fitness advantage to biofilm formation was seen under high but not low O(2) conditions, suggesting that the cost of biofilm production could only be offset when O(2) levels above the A-L interface were high. Profiling of mature WS biofilms showed that they also contained high and low O(2) regions. Niches within these may support further diversification and succession of the developing biofilm population. O(2) availability has been found to be a major factor underlying the evolutionary success of the WS genotype in static microcosms and illustrates the importance of this resource continuum in microbial diversification and adaptation.
Collapse
|
11
|
Koza A, Hallett PD, Moon CD, Spiers AJ. Characterization of a novel air-liquid interface biofilm of Pseudomonas fluorescens SBW25. MICROBIOLOGY-SGM 2009; 155:1397-1406. [PMID: 19383709 DOI: 10.1099/mic.0.025064-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonads are able to form a variety of biofilms that colonize the air-liquid (A-L) interface of static liquid microcosms, and differ in matrix composition, strength, resilience and degrees of attachment to the microcosm walls. From Pseudomonas fluorescens SBW25, mutants have evolved during prolonged adaptation-evolution experiments which produce robust biofilms of the physically cohesive class at the A-L interface, and which have been well characterized. In this study we describe a novel A-L interface biofilm produced by SBW25 that is categorized as a viscous mass (VM)-class biofilm. Several metals were found to induce this biofilm in static King's B microcosms, including copper, iron, lead and manganese, and we have used iron to allow further examination of this structure. Iron was demonstrated to induce SBW25 to express cellulose, which provided the matrix of the biofilm, a weak structure that was readily destroyed by physical disturbance. This was confirmed in situ by a low (0.023-0.047 g) maximum deformation mass and relatively poor attachment as measured by crystal violet staining. Biofilm strength increased with increasing iron concentration, in contrast to attachment levels, which decreased with increasing iron. Furthermore, iron added to mature biofilms significantly increased strength, suggesting that iron also promotes interactions between cellulose fibres that increase matrix interconnectivity. Whilst weak attachment is important in maintaining the biofilm at the A-L interface, surface-interaction effects involving cellulose, which reduced surface tension by approximately 3.8 mN m(-1), may also contribute towards this localization. The fragility and viscoelastic nature of the biofilm were confirmed by controlled-stress amplitude sweep tests to characterize critical rheological parameters, which included a shear modulus of 0.75 Pa, a zero shear viscosity of 0.24 Pa s(-1) and a flow point of 0.028 Pa. Growth and morphological data thus far support a non-specific metal-associated physiological, rather than mutational, origin for production of the SBW25 VM biofilm, which is an example of the versatility of bacteria to inhabit optimal niches within their environment.
Collapse
Affiliation(s)
- Anna Koza
- SIMBIOS Centre, Level 5 Kydd Building, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, UK
| | - Paul D Hallett
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Christina D Moon
- AgResearch Limited, Grasslands Research Centre, Private Bag 11008, Palmerston North, New Zealand
| | - Andrew J Spiers
- SIMBIOS Centre, Level 5 Kydd Building, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, UK
| |
Collapse
|