1
|
Samudra SP, Park S, Esser EA, McDonald TP, Borges AM, Eggenschwiler J, Menke DB. A new cell culture resource for investigations of reptilian gene function. Development 2024; 151:dev204275. [PMID: 39576177 DOI: 10.1242/dev.204275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/20/2024] [Indexed: 12/02/2024]
Abstract
The establishment of CRISPR/Cas9 gene editing in Anolis sagrei has positioned this species as a powerful model for studies of reptilian gene function. To enhance this model, we developed an immortalized lizard fibroblast cell line (ASEC-1) for the exploration of reptilian gene function in cellular processes. We demonstrate the use of this cell line by scrutinizing the role of primary cilia in lizard Hedgehog (Hh) signaling. Using CRISPR/Cas9 mutagenesis, we disrupted the ift88 gene, which is required for ciliogenesis in diverse organisms. We determined that loss of itf88 from lizard cells leads to an absence of primary cilia, a partial derepression of gli1 transcription, and an inability of the cells to respond to the Smoothened agonist, SAG. Through a cross-species analysis of SAG-induced transcriptional responses in cultured limb bud cells, we further determined that ∼46% of genes induced as a response to Hh pathway activation in A. sagrei are also SAG responsive in Mus musculus limb bud cells. Our results highlight conserved and diverged aspects of Hh signaling in anoles and establish a new resource for investigations of reptilian gene function.
Collapse
Affiliation(s)
- Sukhada P Samudra
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Sungdae Park
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Elizabeth A Esser
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | - Arianna M Borges
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | - Douglas B Menke
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Huang X, Ren Q, Wang Y, Shimeld SM, Li G. Amphioxus Gli knockout disrupts the development of left-right asymmetry but has limited impact on neural patterning. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:492-499. [PMID: 38045549 PMCID: PMC10689630 DOI: 10.1007/s42995-023-00195-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/18/2023] [Indexed: 12/05/2023]
Abstract
The Gli transcription factors are the primary mediators of Hedgehog (Hh) signaling. Vertebrate genomes contain multiple Gli paralogues with different functions downstream of Hh signal receipt, in part explaining the complexity of cellular responses to Hh that allow concentration-dependent target gene activation. Amphioxus is a chordate that split from the vertebrate lineage early in the evolution of chordates, before the genome duplications that occurred in early vertebrate evolution. It has a single Gli gene whose transcripts can be alternately spliced to yield two protein isoforms called GliS and GliL. We generated two knockout mutations in amphioxus Gli, one that affects the whole gene and a second that only affects GliL. Both knockouts showed major morphological and molecular defects in the development of left-right asymmetry, a phenotype that is similar but not identical to that previously found in Hh mutants. Hh signaling also patterns the amphioxus neural tube. Here, however, knockout of GliL showed no identifiable phenotype, while knockout of the full gene showed only small changes to the expression of one gene family, Olig. Other genes that were prominently affected by Hh knockout were not altered in expression in either knockout. Reasons for the differences between Hh and Gli knockouts in the pharynx and neural tube are discussed in the context of the likely different functions of amphioxus Gli isoforms. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00195-w.
Collapse
Affiliation(s)
- Xin Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Qiongqiong Ren
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Yiquan Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | | | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| |
Collapse
|
3
|
Onodera S, Azuma T. Hedgehog-Related Mutation Causes Bone Malformations with or without Hereditary Gene Mutations. Int J Mol Sci 2023; 24:12903. [PMID: 37629084 PMCID: PMC10454035 DOI: 10.3390/ijms241612903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The hedgehog (Hh) family consists of numerous signaling mediators that play important roles at various stages of development. Thus, the Hh pathway is essential for bone tissue development and tumorigenesis. Gorlin syndrome is a skeletal and tumorigenic disorder caused by gain-of-function mutations in Hh signaling. In this review, we first present the phenotype of Gorlin syndrome and the relationship between genotype and phenotype in bone and craniofacial tissues, including the causative gene as well as other Hh-related genes. Next, the importance of new diagnostic methods using next-generation sequencing and multiple gene panels will be discussed. We summarize Hh-related genetic disorders, including cilia disease, and the genetics of Hh-related bone diseases.
Collapse
Affiliation(s)
- Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| |
Collapse
|
4
|
Leon A, Subirana L, Magre K, Cases I, Tena JJ, Irimia M, Gomez-Skarmeta JL, Escriva H, Bertrand S. Gene regulatory networks of epidermal and neural fate choice in a chordate. Mol Biol Evol 2022; 39:6547258. [PMID: 35276009 PMCID: PMC9004418 DOI: 10.1093/molbev/msac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neurons are a highly specialized cell type only found in metazoans. They can be scattered throughout the body or grouped together, forming ganglia or nerve cords. During embryogenesis, centralized nervous systems develop from the ectoderm, which also forms the epidermis. How pluripotent ectodermal cells are directed toward neural or epidermal fates, and to which extent this process is shared among different animal lineages, are still open questions. Here, by using micromere explants, we were able to define in silico the putative gene regulatory networks (GRNs) underlying the first steps of the epidermis and the central nervous system formation in the cephalochordate amphioxus. We propose that although the signal triggering neural induction in amphioxus (i.e., Nodal) is different from vertebrates, the main transcription factors implicated in this process are conserved. Moreover, our data reveal that transcription factors of the neural program seem to not only activate neural genes but also to potentially have direct inputs into the epidermal GRN, suggesting that the Nodal signal might also contribute to neural fate commitment by repressing the epidermal program. Our functional data on whole embryos support this result and highlight the complex interactions among the transcription factors activated by the signaling pathways that drive ectodermal cell fate choice in chordates.
Collapse
Affiliation(s)
- Anthony Leon
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Lucie Subirana
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Kevin Magre
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Ildefonso Cases
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Stéphanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| |
Collapse
|
5
|
Molecular Bases of Human Malformation Syndromes Involving the SHH Pathway: GLIA/R Balance and Cardinal Phenotypes. Int J Mol Sci 2021; 22:ijms222313060. [PMID: 34884862 PMCID: PMC8657641 DOI: 10.3390/ijms222313060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Human hereditary malformation syndromes are caused by mutations in the genes of the signal transduction molecules involved in fetal development. Among them, the Sonic hedgehog (SHH) signaling pathway is the most important, and many syndromes result from its disruption. In this review, we summarize the molecular mechanisms and role in embryonic morphogenesis of the SHH pathway, then classify the phenotype of each malformation syndrome associated with mutations of major molecules in the pathway. The output of the SHH pathway is shown as GLI activity, which is generated by SHH in a concentration-dependent manner, i.e., the sum of activating form of GLI (GLIA) and repressive form of GLI (GLIR). Which gene is mutated and whether the mutation is loss-of-function or gain-of-function determine in which concentration range of SHH the imbalance occurs. In human malformation syndromes, too much or too little GLI activity produces symmetric phenotypes affecting brain size, craniofacial (midface) dysmorphism, and orientation of polydactyly with respect to the axis of the limb. The symptoms of each syndrome can be explained by the GLIA/R balance model.
Collapse
|
6
|
Benito-Gutiérrez È, Gattoni G, Stemmer M, Rohr SD, Schuhmacher LN, Tang J, Marconi A, Jékely G, Arendt D. The dorsoanterior brain of adult amphioxus shares similarities in expression profile and neuronal composition with the vertebrate telencephalon. BMC Biol 2021; 19:110. [PMID: 34020648 PMCID: PMC8139002 DOI: 10.1186/s12915-021-01045-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/06/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The evolutionary origin of the telencephalon, the most anterior part of the vertebrate brain, remains obscure. Since no obvious counterpart to the telencephalon has yet been identified in invertebrate chordates, it is difficult to trace telencephalic origins. One way to identify homologous brain parts between distantly related animal groups is to focus on the combinatorial expression of conserved regionalisation genes that specify brain regions. RESULTS Here, we report the combined expression of conserved transcription factors known to specify the telencephalon in the vertebrates in the chordate amphioxus. Focusing on adult specimens, we detect specific co-expression of these factors in the dorsal part of the anterior brain vesicle, which we refer to as Pars anterodorsalis (PAD). As in vertebrates, expression of the transcription factors FoxG1, Emx and Lhx2/9 overlaps that of Pax4/6 dorsally and of Nkx2.1 ventrally, where we also detect expression of the Hedgehog ligand. This specific pattern of co-expression is not observed prior to metamorphosis. Similar to the vertebrate telencephalon, the amphioxus PAD is characterised by the presence of GABAergic neurons and dorsal accumulations of glutamatergic as well as dopaminergic neurons. We also observe sustained proliferation of neuronal progenitors at the ventricular zone of the amphioxus brain vesicle, as observed in the vertebrate brain. CONCLUSIONS Our findings suggest that the PAD in the adult amphioxus brain vesicle and the vertebrate telencephalon evolved from the same brain precursor region in ancestral chordates, which would imply homology of these structures. Our comparative data also indicate that this ancestral brain already contained GABA-, glutamatergic and dopaminergic neurons, as is characteristic for the olfactory bulb of the vertebrate telencephalon. We further speculate that the telencephalon might have evolved in vertebrates via a heterochronic shift in developmental timing.
Collapse
Affiliation(s)
- Èlia Benito-Gutiérrez
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Giacomo Gattoni
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Manuel Stemmer
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
- Present Address: Max-Planck Institute for Neurobiology in Martinsried, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Silvia D Rohr
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Laura N Schuhmacher
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
- Present Address: Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jocelyn Tang
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Aleksandra Marconi
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| |
Collapse
|
7
|
Elliott KH, Chen X, Salomone J, Chaturvedi P, Schultz PA, Balchand SK, Servetas JD, Zuniga A, Zeller R, Gebelein B, Weirauch MT, Peterson KA, Brugmann SA. Gli3 utilizes Hand2 to synergistically regulate tissue-specific transcriptional networks. eLife 2020; 9:e56450. [PMID: 33006313 PMCID: PMC7556880 DOI: 10.7554/elife.56450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022] Open
Abstract
Despite a common understanding that Gli TFs are utilized to convey a Hh morphogen gradient, genetic analyses suggest craniofacial development does not completely fit this paradigm. Using the mouse model (Mus musculus), we demonstrated that rather than being driven by a Hh threshold, robust Gli3 transcriptional activity during skeletal and glossal development required interaction with the basic helix-loop-helix TF Hand2. Not only did genetic and expression data support a co-factorial relationship, but genomic analysis revealed that Gli3 and Hand2 were enriched at regulatory elements for genes essential for mandibular patterning and development. Interestingly, motif analysis at sites co-occupied by Gli3 and Hand2 uncovered mandibular-specific, low-affinity, 'divergent' Gli-binding motifs (dGBMs). Functional validation revealed these dGBMs conveyed synergistic activation of Gli targets essential for mandibular patterning and development. In summary, this work elucidates a novel, sequence-dependent mechanism for Gli transcriptional activity within the craniofacial complex that is independent of a graded Hh signal.
Collapse
Affiliation(s)
- Kelsey H Elliott
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research FoundationCincinnatiUnited States
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Joseph Salomone
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research FoundationCincinnatiUnited States
- Medical-Scientist Training Program, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Praneet Chaturvedi
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Preston A Schultz
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Sai K Balchand
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | | | - Aimée Zuniga
- Developmental Genetics, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Rolf Zeller
- Developmental Genetics, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Matthew T Weirauch
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Center for Autoimmune Genomics and Etiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | | | - Samantha A Brugmann
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Shriners Children’s HospitalCincinnatiUnited States
| |
Collapse
|
8
|
Ono H, Koop D, Holland LZ. Nodal and Hedgehog synergize in gill slit formation during development of the cephalochordate Branchiostoma floridae. Development 2018; 145:dev.162586. [PMID: 29980563 DOI: 10.1242/dev.162586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 06/14/2018] [Indexed: 12/16/2022]
Abstract
The larval pharynx of the cephalochordate Branchiostoma (amphioxus) is asymmetrical. The mouth is on the left, and endostyle and gill slits are on the right. At the neurula, Nodal and Hedgehog (Hh) expression becomes restricted to the left. To dissect their respective roles in gill slit formation, we inhibited each pathway separately for 20 min at intervals during the neurula stage, before gill slits penetrate, and monitored the effects on morphology and expression of pharyngeal markers. The results pinpoint the short interval spanning the gastrula/neurula transition as the critical period for specification and positioning of future gill slits. Thus, reduced Nodal signaling shifts the gill slits ventrally, skews the pharyngeal domains of Hh, Pax1/9, Pax2/5/8, Six1/2 and IrxC towards the left, and reduces Hh and Tbx1/10 expression in endoderm and mesoderm, respectively. Nodal auto-regulates. Decreased Hh signaling does not affect gill slit positions or Hh or Nodal expression, but it does reduce the domain of Gli, the Hh target, in the pharyngeal endoderm. Thus, during the neurula stage, Nodal and Hh cooperate in gill slit development - Hh mediates gill slit formation and Nodal establishes their left-right position.
Collapse
Affiliation(s)
- Hiroki Ono
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| | - Demian Koop
- Discipline of Anatomy and Histology, University of Sydney, Sydney, NSW 2006, Australia
| | - Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| |
Collapse
|
9
|
Somorjai IML, Martí-Solans J, Diaz-Gracia M, Nishida H, Imai KS, Escrivà H, Cañestro C, Albalat R. Wnt evolution and function shuffling in liberal and conservative chordate genomes. Genome Biol 2018; 19:98. [PMID: 30045756 PMCID: PMC6060547 DOI: 10.1186/s13059-018-1468-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/22/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND What impact gene loss has on the evolution of developmental processes, and how function shuffling has affected retained genes driving essential biological processes, remain open questions in the fields of genome evolution and EvoDevo. To investigate these problems, we have analyzed the evolution of the Wnt ligand repertoire in the chordate phylum as a case study. RESULTS We conduct an exhaustive survey of Wnt genes in genomic databases, identifying 156 Wnt genes in 13 non-vertebrate chordates. This represents the most complete Wnt gene catalog of the chordate subphyla and has allowed us to resolve previous ambiguities about the orthology of many Wnt genes, including the identification of WntA for the first time in chordates. Moreover, we create the first complete expression atlas for the Wnt family during amphioxus development, providing a useful resource to investigate the evolution of Wnt expression throughout the radiation of chordates. CONCLUSIONS Our data underscore extraordinary genomic stasis in cephalochordates, which contrasts with the liberal and dynamic evolutionary patterns of gene loss and duplication in urochordate genomes. Our analysis has allowed us to infer ancestral Wnt functions shared among all chordates, several cases of function shuffling among Wnt paralogs, as well as unique expression domains for Wnt genes that likely reflect functional innovations in each chordate lineage. Finally, we propose a potential relationship between the evolution of WntA and the evolution of the mouth in chordates.
Collapse
Affiliation(s)
- Ildikó M L Somorjai
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9ST, Scotland, UK.
- Scottish Oceans Institute, School of Biology, University of St Andrews, East Sands, St Andrews, KY16 8LB, Scotland, UK.
| | - Josep Martí-Solans
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Miriam Diaz-Gracia
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Kaoru S Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Hector Escrivà
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Cristian Cañestro
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.
| | - Ricard Albalat
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
10
|
Forbes TA, Howden SE, Lawlor K, Phipson B, Maksimovic J, Hale L, Wilson S, Quinlan C, Ho G, Holman K, Bennetts B, Crawford J, Trnka P, Oshlack A, Patel C, Mallett A, Simons C, Little MH. Patient-iPSC-Derived Kidney Organoids Show Functional Validation of a Ciliopathic Renal Phenotype and Reveal Underlying Pathogenetic Mechanisms. Am J Hum Genet 2018; 102:816-831. [PMID: 29706353 DOI: 10.1016/j.ajhg.2018.03.014] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/05/2018] [Indexed: 02/07/2023] Open
Abstract
Despite the increasing diagnostic rate of genomic sequencing, the genetic basis of more than 50% of heritable kidney disease remains unresolved. Kidney organoids differentiated from induced pluripotent stem cells (iPSCs) of individuals affected by inherited renal disease represent a potential, but unvalidated, platform for the functional validation of novel gene variants and investigation of underlying pathogenetic mechanisms. In this study, trio whole-exome sequencing of a prospectively identified nephronophthisis (NPHP) proband and her parents identified compound-heterozygous variants in IFT140, a gene previously associated with NPHP-related ciliopathies. IFT140 plays a key role in retrograde intraflagellar transport, but the precise downstream cellular mechanisms responsible for disease presentation remain unknown. A one-step reprogramming and gene-editing protocol was used to derive both uncorrected proband iPSCs and isogenic gene-corrected iPSCs, which were differentiated to kidney organoids. Proband organoid tubules demonstrated shortened, club-shaped primary cilia, whereas gene correction rescued this phenotype. Differential expression analysis of epithelial cells isolated from organoids suggested downregulation of genes associated with apicobasal polarity, cell-cell junctions, and dynein motor assembly in proband epithelial cells. Matrigel cyst cultures confirmed a polarization defect in proband versus gene-corrected renal epithelium. As such, this study represents a "proof of concept" for using proband-derived iPSCs to model renal disease and illustrates dysfunctional cellular pathways beyond the primary cilium in the setting of IFT140 mutations, which are established for other NPHP genotypes.
Collapse
|
11
|
Niida Y, Inoue M, Ozaki M, Takase E. Human Malformation Syndromes of Defective GLI: Opposite Phenotypes of 2q14.2 (GLI2) and 7p14.2 (GLI3) Microdeletions and a GLIA/R Balance Model. Cytogenet Genome Res 2018; 153:56-65. [PMID: 29298444 DOI: 10.1159/000485227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2017] [Indexed: 02/06/2023] Open
Abstract
GLI family zinc finger proteins are transcriptional effectors of the sonic hedgehog signaling pathway. GLI regulates gene expression and repression at various phases of embryonic morphogenesis. In humans, 4 GLI genes are known, and GLI2 (2q14.2) and GLI3 (7p14.1) mutations cause different syndromes. Here, we present 2 distinctive cases with a chromosomal microdeletion in one of these genes. Patient 1 is a 14-year-old girl with Culler-Jones syndrome. She manifested short stature, cleft palate, and mild intellectual/social disability caused by a 6.6-Mb deletion of 2q14.1q14.3. Patient 2 is a 2-year-old girl with Greig cephalopolysyndactyly contiguous gene deletion syndrome. She manifested macrocephaly, preaxial polysyndactyly, psychomotor developmental delay, cerebral cavernous malformations, and glucose intolerance due to a 6.2-Mb deletion of 7p14.1p12.3 which included GLI3, GCK, and CCM2. Each patient manifests a different phenotype which is associated with different functions of each GLI gene and different effects of the chromosomal contiguous gene deletion. We summarize the phenotypic extent of GLI2/3 syndromes in the literature and determine that these 2 syndromes manifest opposite features to a certain extent, such as midface hypoplasia or macrocephaly, and anterior or posterior side of polydactyly. We propose a GLIA/R balance model that may explain these findings.
Collapse
Affiliation(s)
- Yo Niida
- Division of Clinical Genetics, Multidisciplinary Medical Center, Kanazawa Medical University Hospital, Uchinada, Japan
| | | | | | | |
Collapse
|
12
|
Albuixech-Crespo B, López-Blanch L, Burguera D, Maeso I, Sánchez-Arrones L, Moreno-Bravo JA, Somorjai I, Pascual-Anaya J, Puelles E, Bovolenta P, Garcia-Fernàndez J, Puelles L, Irimia M, Ferran JL. Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain. PLoS Biol 2017; 15:e2001573. [PMID: 28422959 PMCID: PMC5396861 DOI: 10.1371/journal.pbio.2001573] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/22/2017] [Indexed: 11/25/2022] Open
Abstract
All vertebrate brains develop following a common Bauplan defined by anteroposterior (AP) and dorsoventral (DV) subdivisions, characterized by largely conserved differential expression of gene markers. However, it is still unclear how this Bauplan originated during evolution. We studied the relative expression of 48 genes with key roles in vertebrate neural patterning in a representative amphioxus embryonic stage. Unlike nonchordates, amphioxus develops its central nervous system (CNS) from a neural plate that is homologous to that of vertebrates, allowing direct topological comparisons. The resulting genoarchitectonic model revealed that the amphioxus incipient neural tube is unexpectedly complex, consisting of several AP and DV molecular partitions. Strikingly, comparison with vertebrates indicates that the vertebrate thalamus, pretectum, and midbrain domains jointly correspond to a single amphioxus region, which we termed Di-Mesencephalic primordium (DiMes). This suggests that these domains have a common developmental and evolutionary origin, as supported by functional experiments manipulating secondary organizers in zebrafish and mice.
Collapse
Affiliation(s)
- Beatriz Albuixech-Crespo
- Department of Genetics, School of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Spain
| | - Laura López-Blanch
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Demian Burguera
- Department of Genetics, School of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), Sevilla, Spain
| | - Luisa Sánchez-Arrones
- Centro de Biología Molecular Severo Ochoa CSIC-UAM and CIBERER, ISCIII, Madrid, Spain
| | | | - Ildiko Somorjai
- The Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, Scotland, United Kingdom
- Biomedical Sciences Research Complex, University of St Andrews, Fife, Scotland, United Kingdom
| | | | - Eduardo Puelles
- Instituto de Neurociencias, UMH-CSIC, Campus de San Juan, Sant Joan d'Alacant, Alicante, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa CSIC-UAM and CIBERER, ISCIII, Madrid, Spain
| | - Jordi Garcia-Fernàndez
- Department of Genetics, School of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia (IMIB), Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia (IMIB), Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| |
Collapse
|
13
|
Holland ND, Holland LZ, Heimberg A. Hybrids between the Florida amphioxus (Branchiostoma floridae) and the Bahamas lancelet (Asymmetron lucayanum): developmental morphology and chromosome counts. THE BIOLOGICAL BULLETIN 2015; 228:13-24. [PMID: 25745097 DOI: 10.1086/bblv228n1p13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The cephalochordate genera Branchiostoma and Asymmetron diverged during the Mesozoic Era. In spite of the long separation of the parental clades, eggs of the Florida amphioxus, B. floridae, when fertilized with sperm of the Bahamas lancelet, A. lucayanum (and vice versa), develop through embryonic and larval stages. The larvae reach the chordate phylotypic stage (i.e., the pharyngula), characterized by a dorsal nerve cord, notochord, perforate pharynx, and segmented trunk musculature. After about 2 weeks of larval development, the hybrids die, as do the A. lucayanum purebreds, although all were eating the same algal diet that sustains B. floridae purebreds through adulthood in the laboratory; it is thus unclear whether death of the hybrids results from incompatible parental genomes or an inadequate diet. The diploid chromosome count in A. lucayanum and B. floridae purebreds is, respectively, 34 and 38, whereas it is 36 in hybrids in either direction. The hybrid larvae exhibit several morphological characters intermediate between those of the parents, including the size of the preoral ciliated pit and the angles of deflection of the gill slits and anus from the ventral midline. Based on the time since the two parent clades diverged (120 or 160 million years, respectively, by nuclear and mitochondrial gene analysis), the cross between Branchiostoma and Asymmetron is the most extreme example of hybridization that has ever been unequivocally demonstrated among multicellular animals.
Collapse
Affiliation(s)
- Nicholas D Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093-0202; and
| | - Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093-0202; and
| | - Alysha Heimberg
- EMBL Australia, Medicine, Nursing and Health Sciences, Clayton Campus, Monash University, Melbourne 3800, Australia
| |
Collapse
|
14
|
Fernández JP, Agüero TH, Vega López GA, Marranzino G, Cerrizuela S, Aybar MJ. Developmental expression and role of Kinesin Eg5 duringXenopus laevisembryogenesis. Dev Dyn 2013; 243:527-40. [DOI: 10.1002/dvdy.24094] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 10/29/2013] [Accepted: 11/01/2013] [Indexed: 01/28/2023] Open
Affiliation(s)
- Juan P. Fernández
- INSIBIO, CONICET; Universidad Nacional de Tucumán; Tucumán Argentina
| | - Tristán H. Agüero
- INSIBIO, CONICET; Universidad Nacional de Tucumán; Tucumán Argentina
| | | | | | | | - Manuel J. Aybar
- INSIBIO, CONICET; Universidad Nacional de Tucumán; Tucumán Argentina
- Instituto de Biología “Dr. Francisco D. Barbieri,”; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán; Tucumán Argentina
| |
Collapse
|
15
|
Holland LZ, Carvalho JE, Escriva H, Laudet V, Schubert M, Shimeld SM, Yu JK. Evolution of bilaterian central nervous systems: a single origin? EvoDevo 2013; 4:27. [PMID: 24098981 PMCID: PMC3856589 DOI: 10.1186/2041-9139-4-27] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/14/2013] [Indexed: 12/21/2022] Open
Abstract
The question of whether the ancestral bilaterian had a central nervous system (CNS) or a diffuse ectodermal nervous system has been hotly debated. Considerable evidence supports the theory that a CNS evolved just once. However, an alternative view proposes that the chordate CNS evolved from the ectodermal nerve net of a hemichordate-like ancestral deuterostome, implying independent evolution of the CNS in chordates and protostomes. To specify morphological divisions along the anterior/posterior axis, this ancestor used gene networks homologous to those patterning three organizing centers in the vertebrate brain: the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer, and subsequent evolution of the vertebrate brain involved elaboration of these ancestral signaling centers; however, all or part of these signaling centers were lost from the CNS of invertebrate chordates. The present review analyzes the evidence for and against these theories. The bulk of the evidence indicates that a CNS evolved just once - in the ancestral bilaterian. Importantly, in both protostomes and deuterostomes, the CNS represents a portion of a generally neurogenic ectoderm that is internalized and receives and integrates inputs from sensory cells in the remainder of the ectoderm. The expression patterns of genes involved in medio/lateral (dorso/ventral) patterning of the CNS are similar in protostomes and chordates; however, these genes are not similarly expressed in the ectoderm outside the CNS. Thus, their expression is a better criterion for CNS homologs than the expression of anterior/posterior patterning genes, many of which (for example, Hox genes) are similarly expressed both in the CNS and in the remainder of the ectoderm in many bilaterians. The evidence leaves hemichordates in an ambiguous position - either CNS centralization was lost to some extent at the base of the hemichordates, or even earlier, at the base of the hemichordates + echinoderms, or one of the two hemichordate nerve cords is homologous to the CNS of protostomes and chordates. In any event, the presence of part of the genetic machinery for the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer in invertebrate chordates together with similar morphology indicates that these organizers were present, at least in part, at the base of the chordates and were probably elaborated upon in the vertebrate lineage.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0202, USA
| | - João E Carvalho
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (UMR 7009 – CNRS/UPMC), Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, B.P. 28, 06230 Villefranche-sur-Mer, France
| | - Hector Escriva
- CNRS, UMR 7232, BIOM, Université Pierre et Marie Curie Paris 06, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Vincent Laudet
- Institut de Génomique Fonctionnelle de Lyon (CNRS UMR5242, UCBL, ENS, INRA 1288), Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (UMR 7009 – CNRS/UPMC), Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, B.P. 28, 06230 Villefranche-sur-Mer, France
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
16
|
Briscoe J, Thérond PP. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 2013; 14:416-29. [DOI: 10.1038/nrm3598] [Citation(s) in RCA: 1212] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Robertshaw E, Kiecker C. Phylogenetic origins of brain organisers. SCIENTIFICA 2012; 2012:475017. [PMID: 24278699 PMCID: PMC3820451 DOI: 10.6064/2012/475017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/21/2012] [Indexed: 06/02/2023]
Abstract
The regionalisation of the nervous system begins early in embryogenesis, concomitant with the establishment of the anteroposterior (AP) and dorsoventral (DV) body axes. The molecular mechanisms that drive axis induction appear to be conserved throughout the animal kingdom and may be phylogenetically older than the emergence of bilateral symmetry. As a result of this process, groups of patterning genes that are equally well conserved are expressed at specific AP and DV coordinates of the embryo. In the emerging nervous system of vertebrate embryos, this initial pattern is refined by local signalling centres, secondary organisers, that regulate patterning, proliferation, and axonal pathfinding in adjacent neuroepithelium. The main secondary organisers for the AP neuraxis are the midbrain-hindbrain boundary, zona limitans intrathalamica, and anterior neural ridge and for the DV neuraxis the notochord, floor plate, and roof plate. A search for homologous secondary organisers in nonvertebrate lineages has led to controversy over their phylogenetic origins. Based on a recent study in hemichordates, it has been suggested that the AP secondary organisers evolved at the base of the deuterostome superphylum, earlier than previously thought. According to this view, the lack of signalling centres in some deuterostome lineages is likely to reflect a secondary loss due to adaptive processes. We propose that the relative evolutionary flexibility of secondary organisers has contributed to a broader morphological complexity of nervous systems in different clades.
Collapse
Affiliation(s)
- Ellen Robertshaw
- MRC Centre for Developmental Neurobiology, King's College London, 4th Floor, New Hunt's House, Guy's Hospital Campus, London SE1 1UL, UK
| | - Clemens Kiecker
- MRC Centre for Developmental Neurobiology, King's College London, 4th Floor, New Hunt's House, Guy's Hospital Campus, London SE1 1UL, UK
| |
Collapse
|
18
|
Comparative genomics of the Hedgehog loci in chordates and the origins of Shh regulatory novelties. Sci Rep 2012; 2:433. [PMID: 22666536 PMCID: PMC3364491 DOI: 10.1038/srep00433] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/15/2012] [Indexed: 12/04/2022] Open
Abstract
The origin and evolution of the complex regulatory landscapes of some vertebrate developmental genes, often spanning hundreds of Kbp and including neighboring genes, remain poorly understood. The Sonic Hedgehog (Shh) genomic regulatory block (GRB) is one of the best functionally characterized examples, with several discrete enhancers reported within its introns, vast upstream gene-free region and neighboring genes (Lmbr1 and Rnf32). To investigate the origin and evolution of this GRB, we sequenced and characterized the Hedgehog (Hh) loci from three invertebrate chordate amphioxus species, which share several early expression domains with Shh. Using phylogenetic footprinting within and between chordate lineages, and reporter assays in zebrafish probing >30 Kbp of amphioxus Hh, we report large sequence and functional divergence between both groups. In addition, we show that the linkage of Shh to Lmbr1 and Rnf32, necessary for the unique gnatostomate-specific Shh limb expression, is a vertebrate novelty occurred between the two whole-genome duplications.
Collapse
|
19
|
Abstract
Gli zinc-finger proteins are transcription factors involved in the intracellular signal transduction controlled by the Hedgehog family of secreted molecules. They are frequently mutated in human congenital malformations, and their abnormal regulation leads to tumorigenesis. Genetic studies in several model systems indicate that their activity is tightly regulated by Hedgehog signaling through various posttranslational modifications, including phosphorylation, ubiquitin-mediated degradation, and proteolytic processing, as well as through nucleocytoplasmic shuttling. In vertebrate cells, primary cilia are required for the sensing of Hedgehog pathway activity and involved in the processing and activation of Gli proteins. Two evolutionarily conserved Hedgehog pathway components, Suppressor of fused and Kif7, are core intracellular regulators of mammalian Gli proteins. Recent studies revealed that Gli proteins are also regulated transcriptionally and posttranslationally through noncanonical mechanisms independent of Hedgehog signaling. In this review, we describe the regulation of Gli proteins during development and discuss possible mechanisms for their abnormal activation during tumorigenesis.
Collapse
Affiliation(s)
- Chi-Chung Hui
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.
| | | |
Collapse
|
20
|
Lynch VJ, Wagner GP. Revisiting a classic example of transcription factor functional equivalence: are Eyeless and Pax6 functionally equivalent or divergent? JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 316B:93-8. [DOI: 10.1002/jez.b.21373] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 08/04/2010] [Accepted: 08/06/2010] [Indexed: 11/07/2022]
|
21
|
Rétaux S, Kano S. Midline signaling and evolution of the forebrain in chordates: a focus on the lamprey Hedgehog case. Integr Comp Biol 2010; 50:98-109. [PMID: 21558191 DOI: 10.1093/icb/icq032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lampreys are agnathans (vertebrates without jaws). They occupy a key phylogenetic position in the emergence of novelties and in the diversification of morphology at the dawn of vertebrates. We have used lampreys to investigate the possibility that embryonic midline signaling systems have been a driving force for the evolution of the forebrain in vertebrates. We have focused on Sonic Hedgehog/Hedgehog (Shh/Hh) signaling. In this article, we first review and summarize our recent work on the comparative analysis of embryonic expression patterns for Shh/Hh, together with Fgf8 (fibroblast growth factor 8) and Wnt (wingless-Int) pathway components, in the embryonic lamprey forebrain. Comparison with nonvertebrate chordates on one hand, and jawed vertebrates on the other hand, shows that these morphogens/growth factors acquired new expression domains in the most rostral part of the neural tube in lampreys compared to nonvertebrate chordates, and in jawed vertebrates compared to lampreys. These data are consistent with the idea that changes in Shh, Fgf8 or Wnt signaling in the course of evolution have been instrumental for the emergence and diversification of the telencephalon, a part of the forebrain that is unique to vertebrates. We have then used comparative genomics on Shh/Hh loci to identify commonalities and differences in noncoding regulatory sequences across species and phyla. Conserved noncoding elements (CNEs) can be detected in lamprey Hh introns, even though they display unique structural features and need adjustments of parameters used for in silico alignments to be detected, because of lamprey-specific properties of the genome. The data also show conservation of a ventral midline enhancer located in Shh/Hh intron 2 of all chordates, the very species which possess a notochord and a floor plate, but not in earlier emerged deuterostomes or protostomes. These findings exemplify how the Shh/Hh locus is one of the best loci to study genome evolution with regards to developmental events.
Collapse
Affiliation(s)
- Sylvie Rétaux
- NeD-UPR3294, CNRS, Institut Alfred Fessard, avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | | |
Collapse
|
22
|
Islam AFMT, Moly PK, Miyamoto Y, Kusakabe TG. Distinctive expression patterns of Hedgehog pathway genes in the Ciona intestinalis larva: implications for a role of Hedgehog signaling in postembryonic development and chordate evolution. Zoolog Sci 2010; 27:84-90. [PMID: 20141412 DOI: 10.2108/zsj.27.84] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Members of the Hedgehog (Hh) family are soluble ligands that orchestrate a wide spectrum of developmental processes ranging from left-right axis determination of the embryo to tissue patterning and organogenesis. Tunicates, including ascidians, are the closest relatives of vertebrates, and elucidation of Hh signaling in ascidians should provide an important clue towards better understanding the role of this pathway in development. In previous studies, expression patterns of genes encoding Hh and its downstream factor Gli have been examined up to the tailbud stage in the ascidian embryo, but their expression in the larva has not been reported. Here we show the spatial expression patterns of hedgehog (Ci-hh1, Ci-hh2), patched (Ci-ptc), smoothened (Ci-smo), and Gli (Ci-Gli) orthologs in larvae of the ascidian Ciona intestinalis. The expression patterns of Ci-hh2 and Ci-Gli dramatically change during the period between the late tailbud embryo and the swimming larva. At the larval stage, expression of Ci-Gli was found in a central part of the endoderm and in the visceral ganglion, while Ci-hh2 was expressed in two discrete endodermal regions, anteriorly and posteriorly adjacent to the cells expressing Gli. The expression patterns of these genes suggest that the Hh ligand controls postembryonic development of the endoderm and the central nervous system. Expression of a gene encoding Hh in the anterior and/or pharyngeal endoderm is probably an ancient chordate character; diversification of regulation and targets of the Hh signaling in this region may have played a major role in the evolution of chordate body structures.
Collapse
|
23
|
Lin Y, Cai Z, Huang S, Yang L, Wang C, Liu Z, Cao J, An Y, Zhang H. Ptc, Smo, Sufu, and the Hedgehog signaling pathway in amphioxus. Evol Dev 2009; 11:710-8. [DOI: 10.1111/j.1525-142x.2009.00378.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Lynch VJ. Use with caution: developmental systems divergence and potential pitfalls of animal models. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2009; 82:53-66. [PMID: 19562005 PMCID: PMC2701150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transgenic animal models have played an important role in elucidating gene functions and the molecular basis development, physiology, behavior, and pathogenesis. Transgenic models have been so successful that they have become a standard tool in molecular genetics and biomedical studies and are being used to fulfill one of the main goals of the post-genomic era: to assign functions to each gene in the genome. However, the assumption that gene functions and genetic systems are conserved between models and humans is taken for granted, often in spite of evidence that gene functions and networks diverge during evolution. In this review, I discuss some mechanisms that generate functional divergence and highlight recent examples demonstrating that gene functions and regulatory networks diverge through time. These examples suggest that annotation of gene functions based solely on mutant phenotypes in animal models, as well as assumptions of conserved functions between species, can be wrong. Therefore, animal models of gene function and human disease may not provide appropriate information, particularly for rapidly evolving genes and systems.
Collapse
|
25
|
Abbasi AA, Goode DK, Amir S, Grzeschik KH. Evolution and functional diversification of the GLI family of transcription factors in vertebrates. Evol Bioinform Online 2009; 5:5-13. [PMID: 19812723 PMCID: PMC2747127 DOI: 10.4137/ebo.s2322] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background In vertebrates the “SONIC HEDGEHOG” signalling pathway has been implicated in cell-fate determination, proliferation and the patterning of many different cell types and organs. As the GLI family members (GLI1, GLI2 and GLI3) are key mediators of hedgehog morphogenetic signals, over the past couple of decades they have been extensively scrutinized by genetic, molecular and biochemical means. Thus, a great deal of information is currently available about the functional aspects of GLI proteins in various vertebrate species. To address the roles of GLI genes in diversifying the repertoire of the Hh signalling and deploying them for the vertebrate specifications, in this study we have examined the evolutionary patterns of vertebrate GLI sequences within and between species. Results Phylogenetic tree analysis suggests that the vertebrate GLI1, GLI2 and GLI3 genes diverged after the separation of urochordates from vertebrates and before the tetrapods-bony fishes split. Lineage specific duplication events were also detected. Estimation of mode and strength of selection acting on GLI orthologs demonstrated that all members of the GLI gene family experienced more relaxed selection in teleost fish than in the mammalian lineage. Furthermore, the GLI1 gene appeared to have been exposed to different functional constraints in fish and tetrapod lineages, whilst a similar level of functional constraints on GLI2 and GLI3 was suggested by comparable average non-synonymous (Ka) substitutions across the lineages. A relative rate test suggested that the majority of the paralogous copies of the GLI family analyzed evolved with similar evolutionary rates except GLI1 which evolved at a significantly faster rate than its paralogous counterparts in tetrapods. Conclusions Our analysis shows that sequence evolutionary patterns of GLI family members are largely correlated with the reported similarities and differences in the functionality of GLI proteins within and between the various vertebrate species. We propose that duplication and divergence of GLI genes has increased in the complexity of vertebrate body plan by recruiting the hedgehog signalling for the novel developmental tasks.
Collapse
Affiliation(s)
- Amir Ali Abbasi
- National Center for Bioinformatics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | | | | | | |
Collapse
|
26
|
Hammond KL, Baxendale S, McCauley DW, Ingham PW, Whitfield TT. Expression ofpatched, prdm1andengrailedin the lamprey somite reveals conserved responses to Hedgehog signaling. Evol Dev 2009; 11:27-40. [DOI: 10.1111/j.1525-142x.2008.00300.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Shimeld SM. C2H2 zinc finger genes of the Gli, Zic, KLF, SP, Wilms' tumour, Huckebein, Snail, Ovo, Spalt, Odd, Blimp-1, Fez and related gene families from Branchiostoma floridae. Dev Genes Evol 2008; 218:639-49. [PMID: 18795322 DOI: 10.1007/s00427-008-0248-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 08/29/2008] [Indexed: 02/02/2023]
Abstract
The C2H2 zinc finger is one of the most common domains encoded by animal genomes and has been implicated in DNA binding as well as protein-protein interactions and RNA binding. Genes encoding C2H2 zinc finger domains include not only well-studied conserved transcription factors such as Gli and Snail but also include a large diversity of more rapidly evolving genes. Here, I focus on the description of amphioxus members of families and super-families of C2H2 zinc finger genes that have been the subject of functional studies in other species, specifically the Gli, Zic, Glis, Snail, Scratch, Krox, Wilms' tumour, Huckebein, SP, KLF, Ovo, Spalt, Blimp-1, Odd and Fez genes. Surveys of the Branchiostoma floridae genome reveal members of all of these groups of genes. Genes are named according to molecular phylogenetic analyses, such that the nomenclature reflects pre-existing gene names in the context of gene families that have descended from a single common ancestral gene in the common ancestor of chordates and insects. In total, this comprises 28 B. floridae C2H2 zinc finger genes, representing at least 15 gene families. For 17 of these genes, expressed sequence tag clusters and associated clone identification codes relating to the B. floridae gene collection are given.
Collapse
Affiliation(s)
- Sebastian M Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| |
Collapse
|
28
|
Wang Y, Price MA. A unique protection signal in Cubitus interruptus prevents its complete proteasomal degradation. Mol Cell Biol 2008; 28:5555-68. [PMID: 18625727 PMCID: PMC2546926 DOI: 10.1128/mcb.00524-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 04/30/2008] [Accepted: 07/02/2008] [Indexed: 11/20/2022] Open
Abstract
The limited proteolysis of Cubitus interruptus (Ci), the transcription factor for the developmentally and medically important Hedgehog (Hh) signaling pathway, triggers a critical switch between transcriptional repressor and activator forms. Ci repressor is formed when the C terminus of full-length Ci is degraded by the ubiquitin-proteasome pathway, an unusual reaction since the proteasome typically completely degrades its substrates. We show that several regions of Ci are required for generation of the repressor form: the zinc finger DNA binding domain, a single lysine residue (K750) near the degradation end point, and a 163-amino-acid region at the C terminus. Unlike other proteins that are partially degraded by the proteasome, dimerization is not a key feature of Ci processing. Using a pulse-chase assay in cultured Drosophila cells, we distinguish between regions required for initiation of degradation and those required for the protection of the Ci N terminus from degradation. We present a model whereby the zinc finger region and K750 together form a unique protection signal that prevents the complete degradation of Ci by the proteasome.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | |
Collapse
|
29
|
Lynch VJ, Wagner GP. Resurrecting the role of transcription factor change in developmental evolution. Evolution 2008; 62:2131-54. [PMID: 18564379 DOI: 10.1111/j.1558-5646.2008.00440.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A long-standing question in evolutionary and developmental biology concerns the relative contribution of cis-regulatory and protein changes to developmental evolution. Central to this argument is which mutations generate evolutionarily relevant phenotypic variation? A review of the growing body of evolutionary and developmental literature supports the notion that many developmentally relevant differences occur in the cis-regulatory regions of protein-coding genes, generally to the exclusion of changes in the protein-coding region of genes. However, accumulating experimental evidence demonstrates that many of the arguments against a role for proteins in the evolution of gene regulation, and the developmental evolution in general, are no longer supported and there is an increasing number of cases in which transcription factor protein changes have been demonstrated in evolution. Here, we review the evidence that cis-regulatory evolution is an important driver of phenotypic evolution and provide examples of protein-mediated developmental evolution. Finally, we present an argument that the evolution of proteins may play a more substantial, but thus far underestimated, role in developmental evolution.
Collapse
Affiliation(s)
- Vincent J Lynch
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA.
| | | |
Collapse
|