1
|
Horbay R, Hamraghani A, Ermini L, Holcik S, Beug ST, Yeganeh B. Role of Ceramides and Lysosomes in Extracellular Vesicle Biogenesis, Cargo Sorting and Release. Int J Mol Sci 2022; 23:ijms232315317. [PMID: 36499644 PMCID: PMC9735581 DOI: 10.3390/ijms232315317] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cells have the ability to communicate with their immediate and distant neighbors through the release of extracellular vesicles (EVs). EVs facilitate intercellular signaling through the packaging of specific cargo in all type of cells, and perturbations of EV biogenesis, sorting, release and uptake is the basis of a number of disorders. In this review, we summarize recent advances of the complex roles of the sphingolipid ceramide and lysosomes in the journey of EV biogenesis to uptake.
Collapse
Affiliation(s)
- Rostyslav Horbay
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Ali Hamraghani
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Leonardo Ermini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sophie Holcik
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Shawn T. Beug
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| | - Behzad Yeganeh
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| |
Collapse
|
2
|
Abstract
DNA plasmids can be used to induce a protective (or therapeutic) immune response by delivering genes encoding vaccine antigens. That naked DNA (without the refinement of coat proteins or host evasion systems) can cross from outside the cell into the nucleus and be expressed is particularly remarkable given the sophistication of the immune system in preventing infection by pathogens. As a result of the ease, low cost, and speed of custom gene synthesis, DNA vaccines dangle a tantalizing prospect of the next wave of vaccine technology, promising individual designer vaccines for cancer or mass vaccines with a rapid response time to emerging pandemics. There is considerable enthusiasm for the use of DNA vaccination as an approach, but this enthusiasm should be tempered by the successive failures in clinical trials to induce a potent immune response. The technology is evolving with the development of improved delivery systems that increase expression levels, particularly electroporation and the incorporation of genetically encoded adjuvants. This review will introduce some key concepts in the use of DNA plasmids as vaccines, including how the DNA enters the cell and is expressed, how it induces an immune response, and a summary of clinical trials with DNA vaccines. The review also explores the advances being made in vector design, delivery, formulation, and adjuvants to try to realize the promise of this technology for new vaccines. If the immunogenicity and expression barriers can be cracked, then DNA vaccines may offer a step change in mass vaccination.
Collapse
|
3
|
Gahan PB. The Biology of CNAPS. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2015. [DOI: 10.1007/978-94-017-9168-7_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Uno S, Nishikawa M, Mohri K, Umeki Y, Matsuzaki N, Takahashi Y, Fujita H, Kadowaki N, Takakura Y. Efficient delivery of immunostimulatory DNA to mouse and human immune cells through the construction of polypod-like structured DNA. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:765-74. [DOI: 10.1016/j.nano.2013.11.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 11/12/2013] [Accepted: 11/19/2013] [Indexed: 12/22/2022]
|
5
|
Weiss R, Scheiblhofer S, Roesler E, Weinberger E, Thalhamer J. mRNA vaccination as a safe approach for specific protection from type I allergy. Expert Rev Vaccines 2014; 11:55-67. [DOI: 10.1586/erv.11.168] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Silva CL, Bonato VLD, dos Santos-Júnior RR, Zárate-Bladés CR, Sartori A. Recent advances in DNA vaccines for autoimmune diseases. Expert Rev Vaccines 2014; 8:239-52. [DOI: 10.1586/14760584.8.2.239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Affiliation(s)
- Peter Gahan
- Anatomy & Human Sciences; King's College London; London Bridge London SE1 1UL UK
| |
Collapse
|
8
|
Construction of an immunostimulatory plasmid, pUCpGs10, and research on its immune adjuvant effect. Mol Biotechnol 2013; 54:58-67. [PMID: 22544607 DOI: 10.1007/s12033-012-9544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In order to overcome the instability of CpG ODN in vivo, sequence diversity, and individual differences, eleven CpG ODN fragments were meticulously selected and linked to form a Multi-CpG, which were repeatedly inserted into the cloning vector pUC19 for constructing the recombinant plasmid pUCpGs10 containing ten of Multi-CpG. Using the multi-genotype HCV E1 and multi-epitope complex HCV-T as immunogens, and plasmid pUCpGs10 as the immune adjuvant, Balb/c mice were immunized through nasal and subcutaneous immunization. Strong-specific humoral and cellular immune response were induced, which can obviously inhibit the growth of homograft expressing HCV antigen. The immune adjuvant effect of pUCpGs10 closely matched that of Freund's complete adjuvant. The plasmid pUCpGs10 can significantly improve IgA content in serum and different mucosal extract and systematical T-cell response via intranasal immunization. In conclusions, the newly constructed immunostimulatory plasmid pUCpGs10 is able to effectively activate the humoral and cellular immune activity, and possesses activation on mucosal immune response.
Collapse
|
9
|
Scheiblhofer S, Thalhamer J, Weiss R. Laser microporation of the skin: prospects for painless application of protective and therapeutic vaccines. Expert Opin Drug Deliv 2013; 10:761-73. [PMID: 23425032 PMCID: PMC3667678 DOI: 10.1517/17425247.2013.773970] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Introduction: In contrast to muscle and subcutaneous tissue, the skin is easily accessible and provides unique immunological properties. Increasing knowledge about the complex interplay of skin-associated cell types in the development of cutaneous immune responses has fueled efforts to target the skin for vaccination as well as for immunotherapy. Areas covered: This review provides an overview on skin layers and their resident immunocompetent cell types. Advantages and shortcomings of standard methods and innovative technologies to circumvent the outermost skin barrier are addressed. Studies employing fractional skin ablation by infrared lasers for cutaneous delivery of drugs, as well as high molecular weight molecules such as protein antigens or antibodies, are reviewed, and laserporation is introduced as a versatile transcutaneous vaccination platform. Specific targeting of the epidermis or the dermis by different laser settings, the resulting kinetics of uptake and transport and the immune response types elicited are discussed, and the potential of this transcutaneous delivery platform for allergen-specific immunotherapy is demonstrated. Expert opinion: Needle-free and painless vaccination approaches have the potential to replace standard methods due to their improved safety and optimal patient compliance. The use of fractional laser devices for stepwise ablation of skin layers might be advantageous for both vaccination against microbial pathogens, as well as immunotherapeutic approaches, such as allergen-specific immunotherapy. Thorough investigation of the underlying immunological mechanisms will help to provide the knowledge for a rational design of transcutaneous protective/therapeutic vaccines.
Collapse
Affiliation(s)
- Sandra Scheiblhofer
- University of Salzburg, Department of Molecular Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | | | | |
Collapse
|
10
|
Hopkins RA, Connolly JE. The specialized roles of immature and mature dendritic cells in antigen cross-presentation. Immunol Res 2012; 53:91-107. [PMID: 22450675 DOI: 10.1007/s12026-012-8300-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Exogenous antigen cross-presentation is integral to the stimulation of cytotoxic T-lymphocytes against viruses and tumors. Central to this process are dendritic cells (DCs), which specialize in cross-presentation. DCs may be considered to exist in two radically different states of activation, generally referred to as immature and mature. In each of these states, the cell has a series of separate and specialized abilities for the induction of T-cell immunity. In the immature state, the DC is adept in surveying the periphery, acquiring and storing antigen, but has a limited capacity for direct T-cell activation. During a brief and defined window of time following DC stimulation, nearly every aspect of antigen handling changes, as it transitions from an entity focused on protein preservation to one capable of efficient cross-presentation. It is this time period and the underlying molecular mechanisms active here, which form the core of our studies on cross-presentation.
Collapse
Affiliation(s)
- Richard A Hopkins
- Program in Translational Immunology, Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #03 Immunos, Biopolis, Singapore
| | | |
Collapse
|
11
|
Malardo T, Batalhão ME, Panunto-Castelo A, Almeida LP, Padilha E, Fontoura IC, Silva CL, Carnio EC, Coelho-Castelo AAM. Low-dose plasmid DNA treatment increases plasma vasopressin and regulates blood pressure in experimental endotoxemia. BMC Immunol 2012; 13:59. [PMID: 23137350 PMCID: PMC3526548 DOI: 10.1186/1471-2172-13-59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 10/31/2012] [Indexed: 11/10/2022] Open
Abstract
Background Although plasmid DNA encoding an antigen from pathogens or tumor cells has been widely studied as vaccine, the use of plasmid vector (without insert) as therapeutic agent requires further investigation. Results Here, we showed that plasmid DNA (pcDNA3) at low doses inhibits the production of IL-6 and TNF-α by lipopolysaccharide (LPS)-stimulated macrophage cell line J774. These findings led us to evaluate whether plasmid DNA could act as an anti-inflammatory agent in a Wistar rat endotoxemia model. Rats injected simultaneously with 1.5 mg/kg of LPS and 10 or 20 μg of plasmid DNA had a remarkable attenuation of mean arterial blood pressure (MAP) drop at 2 hours after treatment when compared with rats injected with LPS only. The beneficial effect of the plasmid DNA on MAP was associated with decreased expression of IL-6 in liver and increased concentration of plasma vasopressin (AVP), a known vasoconstrictor that has been investigated in hemorrhagic shock management. No difference was observed in relation to nitric oxide (NO) production. Conclusion Our results demonstrate for the first time that plasmid DNA vector at low doses presents anti-inflammatory property and constitutes a novel approach with therapeutic potential in inflammatory diseases.
Collapse
Affiliation(s)
- Thiago Malardo
- Department of Biochemistry and Immunology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto SP 14049-900, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Li L, Saade F, Petrovsky N. The future of human DNA vaccines. J Biotechnol 2012; 162:171-82. [PMID: 22981627 DOI: 10.1016/j.jbiotec.2012.08.012] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/01/2012] [Accepted: 08/06/2012] [Indexed: 01/03/2023]
Abstract
DNA vaccines have evolved greatly over the last 20 years since their invention, but have yet to become a competitive alternative to conventional protein or carbohydrate based human vaccines. Whilst safety concerns were an initial barrier, the Achilles heel of DNA vaccines remains their poor immunogenicity when compared to protein vaccines. A wide variety of strategies have been developed to optimize DNA vaccine immunogenicity, including codon optimization, genetic adjuvants, electroporation and sophisticated prime-boost regimens, with each of these methods having its advantages and limitations. Whilst each of these methods has contributed to incremental improvements in DNA vaccine efficacy, more is still needed if human DNA vaccines are to succeed commercially. This review foresees a final breakthrough in human DNA vaccines will come from application of the latest cutting-edge technologies, including "epigenetics" and "omics" approaches, alongside traditional techniques to improve immunogenicity such as adjuvants and electroporation, thereby overcoming the current limitations of DNA vaccines in humans.
Collapse
Affiliation(s)
- Lei Li
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia
| | | | | |
Collapse
|
13
|
Gahan PB, Stroun M. The virtosome-a novel cytosolic informative entity and intercellular messenger. Cell Biochem Funct 2011; 28:529-38. [PMID: 20941743 DOI: 10.1002/cbf.1690] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Studies on a range of prokaryote and eukaryote cells and tissues have shown that a newly synthesized DNA/RNA-lipoprotein complex is released in a regulated manner. This complex, termed a virtosome, is a novel cytosolic component of eukaryote cells. The released virtosomes can readily enter other cells where they can modify the biology of the recipient cells. Such modifications include immunological changes and transformation from normal to cancer cells. The virtosomes form a normal component of the circulating nucleic acids in plasma and serum currently used for clinical diagnostic purposes. Given the transformative powers of virtosomes released from tumour cells, the presence of such a complex in human plasma could readily offer the basis of an alternative mechanism for the initiation of metastases.
Collapse
|
14
|
|
15
|
Faurez F, Dory D, Le Moigne V, Gravier R, Jestin A. Biosafety of DNA vaccines: New generation of DNA vectors and current knowledge on the fate of plasmids after injection. Vaccine 2010; 28:3888-95. [DOI: 10.1016/j.vaccine.2010.03.040] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 03/09/2010] [Accepted: 03/21/2010] [Indexed: 12/16/2022]
|
16
|
Gahan PB, Stroun M. The Biology of Circulating Nucleic Acids in Plasma and Serum (CNAPS). NUCLEIC ACIDS AND MOLECULAR BIOLOGY 2010. [DOI: 10.1007/978-3-642-12617-8_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Enhanced prion protein stability coupled to DNA recognition and milieu acidification. Biophys Chem 2009; 141:135-9. [DOI: 10.1016/j.bpc.2008.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/23/2008] [Accepted: 12/23/2008] [Indexed: 11/19/2022]
|