1
|
Li T, Lin S, Zhu Y, Ye D, Rong X, Wang L. Basic biology and roles of CEBPD in cardiovascular disease. Cell Death Discov 2025; 11:102. [PMID: 40087290 PMCID: PMC11909146 DOI: 10.1038/s41420-025-02357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/25/2025] [Accepted: 02/12/2025] [Indexed: 03/17/2025] Open
Abstract
CCAAT/enhancer-binding protein delta (CEBPD), as an evolutionarily conserved protein in mammals, belongs to the CEBP transcription factor family, which modulates many biological processes. The diversity of CEBPD functions partly depends on the cell type and cellular context. Aberrant CEBPD expression and activity are associated with multiple organ diseases, including cardiovascular diseases. In this review, we describe the basic molecular biology of CEBPD to understand its expression regulation, modifications, and functions. Here, we summarize the recent advances in genetically modified animals with CEBPD. Finally, we discuss the contribution of CEBPD to cardiovascular diseases and highlight the strategies for developing novel therapies targeting CEBPD.
Collapse
Affiliation(s)
- Tongjun Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Shaoling Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Yingyin Zhu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
2
|
Jo M, Brännström M, Akins JW, Curry TE. New insights into the ovulatory process in the human ovary. Hum Reprod Update 2025; 31:21-47. [PMID: 39331957 PMCID: PMC11696709 DOI: 10.1093/humupd/dmae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Successful ovulation is essential for natural conception and fertility. Defects in the ovulatory process are associated with various conditions of infertility or subfertility in women. However, our understanding of the intra-ovarian biochemical mechanisms underlying this process in women has lagged compared to our understanding of animal models. This has been largely due to the limited availability of human ovarian samples that can be used to examine changes across the ovulatory period and delineate the underlying cellular/molecular mechanisms in women. Despite this challenge, steady progress has been made to improve our knowledge of the ovulatory process in women by: (i) collecting granulosa cells across the IVF interval, (ii) creating a novel approach to collecting follicular cells and tissues across the periovulatory period from normally cycling women, and (iii) developing unique in vitro models to examine the LH surge or hCG administration-induced ovulatory changes in gene expression, the regulatory mechanisms underlying the ovulatory changes, and the specific functions of the ovulatory factors. OBJECTIVE AND RATIONALE The objective of this review is to summarize findings generated using in vivo and in vitro models of human ovulation, with the goal of providing new insights into the mechanisms underlying the ovulatory process in women. SEARCH METHODS This review is based on the authors' own studies and a search of the relevant literature on human ovulation to date using PubMed search terms such as 'human ovulation EGF-signaling', 'human ovulation steroidogenesis', 'human ovulation transcription factor', 'human ovulation prostaglandin', 'human ovulation proteinase', 'human ovulation angiogenesis' 'human ovulation chemokine', 'human ovulatory disorder', 'human granulosa cell culture'. Our approach includes comparing the data from the authors' studies with the existing microarray or RNA-seq datasets generated using ovarian cells obtained throughout the ovulatory period from humans, monkeys, and mice. OUTCOMES Current findings from studies using in vivo and in vitro models demonstrate that the LH surge or hCG administration increases the expression of ovulatory mediators, including EGF-like factors, steroids, transcription factors, prostaglandins, proteolytic systems, and other autocrine and paracrine factors, similar to those observed in other animal models such as rodents, ruminants, and monkeys. However, the specific ovulatory factors induced, their expression pattern, and their regulatory mechanisms vary among different species. These species-specific differences stress the necessity of utilizing human samples to delineate the mechanisms underlying the ovulatory process in women. WIDER IMPLICATIONS The data from human ovulation in vivo and in vitro models have begun to fill the gaps in our understanding of the ovulatory process in women. Further efforts are needed to discover novel ovulatory factors. One approach to address these gaps is to improve existing in vitro models to more closely mimic in vivo ovulatory conditions in humans. This is critically important as the knowledge obtained from these human studies can be translated directly to aid in the diagnosis of ovulation-associated pathological conditions, for the development of more effective treatment to help women with anovulatory infertility or, conversely, to better manage ovulation for contraceptive purposes. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | | | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
3
|
Włodarczyk M, Ciebiera M, Nowicka G, Łoziński T, Ali M, Al-Hendy A. Epigallocatechin Gallate for the Treatment of Benign and Malignant Gynecological Diseases-Focus on Epigenetic Mechanisms. Nutrients 2024; 16:559. [PMID: 38398883 PMCID: PMC10893337 DOI: 10.3390/nu16040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The most common malignant gynecologic diseases are cervical, uterine, ovarian, vaginal, and vulvar cancer. Among them, ovarian cancer causes more deaths than any other cancer of the female reproductive system. A great number of women suffer from endometriosis, uterine fibroids (UFs), adenomyosis, dysmenorrhea, and polycystic ovary syndrome (PCOS), which are widespread benign health problems causing troublesome and painful symptoms and significantly impairing the quality of life of affected women, and they are some of the main causes of infertility. In addition to the available surgical and pharmacological options, the effects of supporting standard treatment with naturally occurring compounds, mainly polyphenols, are being studied. Catechins are responsible for the majority of potential health benefits attributed to green tea consumption. Epigallocatechin gallate (EGCG) is considered a non-toxic, natural compound with potential anticancer properties. Antioxidant action is its most common function, but attention is also drawn to its participation in cell division inhibition, apoptosis stimulation and epigenetic regulation. In this narrative review, we describe the role of EGCG consumption in preventing the development of benign reproductive disorders such as UF, endometriosis, and PCOS, as well as malignant gynecologic conditions. We discuss possible epigenetic mechanisms that may be related to the action of EGCG.
Collapse
Affiliation(s)
- Marta Włodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 00-189 Warsaw, Poland;
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
- Development and Research Center of Non-Invasive Therapies, Pro-Familia Hospital, 35-302 Rzeszów, Poland
| | - Grażyna Nowicka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Tomasz Łoziński
- Department of Obstetrics and Gynecology, Pro-Familia Hospital, 35-302 Rzeszow, Poland;
- Department of Gynecology and Obstetrics, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (M.A.); (A.A.-H.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (M.A.); (A.A.-H.)
| |
Collapse
|
4
|
Cao P, Yang W, Wang P, Li X, Nashun B. Characterization of DNA Methylation and Screening of Epigenetic Markers in Polycystic Ovary Syndrome. Front Cell Dev Biol 2021; 9:664843. [PMID: 34113617 PMCID: PMC8186667 DOI: 10.3389/fcell.2021.664843] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine and metabolic disorder in women, which is characterized by androgen excess, ovulation dysfunction, and polycystic ovary. Although the etiology of PCOS is largely unknown, many studies suggest that aberrant DNA methylation is an important contributing factor for its pathological changes. In this study, we investigated DNA methylation characteristics and their impact on gene expression in granulosa cells obtained from PCOS patients. Transcriptome analysis found that differentially expressed genes were mainly enriched in pathways of insulin resistance, fat cell differentiation, and steroid metabolism in PCOS. Overall DNA methylation level in granulosa cells was reduced in PCOS, and the first introns were found to be the major genomic regions that were hypomethylated in PCOS. Integrated analysis of transcriptome, DNA methylation, and miRNAs in ovarian granulosa cells revealed a DNA methylation and miRNA coregulated network and identified key candidate genes for pathogenesis of PCOS, including BMP4, ETS1, and IRS1. Our study shed more light on epigenetic mechanism of PCOS and provided valuable reference for its diagnosis and treatment.
Collapse
Affiliation(s)
- Pengbo Cao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wanting Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Peijun Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xihe Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.,Research Center for Animal Genetic Resources of Mongolia Plateau, School of Life Sciences, Inner Mongolia University, Hohhot, China.,Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Hohhot, China
| | - Buhe Nashun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
5
|
El-Sokary M, Ibrahim S, El-Naby AS, Sosa A, Mahmoud K, Nawito M. New insights into molecular aspects of sperm-oviductal binding in Egyptian buffaloes using an in vitro model: Effects of oviductal segments and media. Andrologia 2021; 53:e13984. [PMID: 33565139 DOI: 10.1111/and.13984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/06/2020] [Accepted: 01/05/2021] [Indexed: 11/28/2022] Open
Abstract
We aimed (I) to simulate an in vivo milieu, through establishing an in vitro paradigm to study sperm-oviductal interactions using different segments of oviduct, as well as different incubation media, and (II) to investigate spatial changes of oviductal gene expression. Two experiments were designed; one was to investigate the yield of oviduct aggregates from different oviduct segments; in the second experiment, we observed effects of different incubation media on sperm-oviductal binding. Oviduct cell pellets before (control) and after sperm binding were collected for RNA isolation and gene expression. Isthmus resulted in a higher aggregate yield and possessed the highest affinity towards spermatozoa. The different segments of oviduct showed clear changes in gene expression after sperm binding. TALP medium promoted formation of a higher number of oviduct aggregates towards spermatozoa. Different media resulted in profound alterations in isthmus gene expression. Collectively, isthmus segment in TALP media showed the highest binding affinity to spermatozoa. At the molecular level, our in vitro model was successful for simulation in vivo milieu. Thus, our findings could be used as a simple tool to gain more insights into the molecular regulation of sperm movement, selection and affinity for oviductal binding in buffaloes.
Collapse
Affiliation(s)
- Mohamed El-Sokary
- Department of Theriogenology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Sally Ibrahim
- Department of Animal Reproduction and A.I, Veterinary Research Division, National Research Centre, Dokki, Egypt
| | - Al-Shimaa El-Naby
- Department of Theriogenology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - A Sosa
- Department of Animal Reproduction and A.I, Veterinary Research Division, National Research Centre, Dokki, Egypt
| | - Karima Mahmoud
- Department of Animal Reproduction and A.I, Veterinary Research Division, National Research Centre, Dokki, Egypt
| | - M Nawito
- Department of Animal Reproduction and A.I, Veterinary Research Division, National Research Centre, Dokki, Egypt
| |
Collapse
|
6
|
Guo Q, Wang J, Gao Y, Li X, Hao Y, Ning S, Wang P. Dynamic TF-lncRNA Regulatory Networks Revealed Prognostic Signatures in the Development of Ovarian Cancer. Front Bioeng Biotechnol 2020; 8:460. [PMID: 32478062 PMCID: PMC7237576 DOI: 10.3389/fbioe.2020.00460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
The pathological development of ovarian cancer (OC) is a complex progression that depends on multiple alterations of coding and non-coding genes. Therefore, it is important to capture the transcriptional-regulating events during the progression of OC development and to identify reliable markers for predicting clinical outcomes in patients. A dataset of 399 ovarian serous cystadenocarcinoma patients at different stages from The Cancer Genome Atlas (TCGA) was analyzed. Stage-specific transcription factor (TF)-long non-coding RNA (lncRNA) regulatory networks were constructed by integrating high-throughput RNA molecular profiles and TF binding information. Systematic analysis was performed to characterize the TF-lncRNA-regulating behaviors across different stages of OC. Cox regression analysis and Kaplan-Meier survival curves were used to evaluate the prognostic efficiency of TF-lncRNA regulations and cliques. The stage-specific TF-lncRNA regulatory networks at three OC stages (II, III, and IV) exhibited common structures and specific topologies of risk TFs and lncRNAs. A TF-lncRNA activity profile across different stages revealed that TFs were highly stage-selective in regulating lncRNAs. Functional analysis indicated that groups of TF-lncRNA interactions were involved in specific pathological processes in the development of OC. In a STAT3-FOS co-regulating clique, the TFs STAT3 and FOS were selectively regulating target lncRNAs across different OC stages. Further survival analysis indicated that this TF-lncRNA biclique may have the potential for predicting OC prognosis. This study revealed the topological and dynamic principles of TF-lncRNA regulatory networks and provided a resource for further analysis of stage-specific regulating mechanisms of OC.
Collapse
Affiliation(s)
- Qiuyan Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Department of Gynecology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Junwei Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Department of Respiratory Medicine, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yue Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xin Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yangyang Hao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Peng Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Guo LL, Wang SF. Downregulated Long Noncoding RNA GAS5 Fails to Function as Decoy of CEBPB, Resulting in Increased GDF15 Expression and Rapid Ovarian Cancer Cell Proliferation. Cancer Biother Radiopharm 2019; 34:537-546. [PMID: 31314588 DOI: 10.1089/cbr.2019.2889] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Introduction: Growth differentiation factor 15 (GDF15), a newly identified member of transforming growth factor (GDF) superfamily, is upregulated in ovarian (OV) cancer. Upregulated GDF15 positively correlates with poor prognosis of OV cancer. Thus, elucidation of the mechanism underlying GDF15 overexpression is important. Method and Results: PROMO and JASPAR prediction software were used to find transcription factors for GDF15 expression. Data from TCGA database were analyzed to find long noncoding RNAs (lncRNAs) that were also abnormally expressed in OV cancer and had associations with GDF15 expression. Transcription factor CEBPB was predicted as an important regulator of GDF15, confirmed by luciferase reporter assay. However, CEBPB expression was not significantly changed in OV cancer. Data from TCGA database showed that lncRNA GAS5 is downregulated in OV cancer and its expression is negatively correlated with GDF15 expression. RPISeq showed high affinity of GAS5 to CEBPB and this was confirmed by RNA-binding protein immunoprecipitation assay. GAS5 overexpression increased its binding to CEBPB and consequently downregulated GDF15. GAS5 overexpression and GDF15 knockdown decreased viability and increased apoptosis of OV cancer cells, but CEBPB overexpression had opposite effects. However, simultaneous GAS5 and CEBPB overexpression or CEBPB overexpression together with GDF15 knockdown had no effect on cell viability and apoptosis. Conclusion: GAS5 functions as decoy of CEBPB, blocking transcription-promoting effect of CEBPB on GDF15.
Collapse
Affiliation(s)
- Lin-Lin Guo
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, China
| | - Shan-Feng Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, China
| |
Collapse
|
8
|
Vázquez-Martínez ER, Gómez-Viais YI, García-Gómez E, Reyes-Mayoral C, Reyes-Muñoz E, Camacho-Arroyo I, Cerbón M. DNA methylation in the pathogenesis of polycystic ovary syndrome. Reproduction 2019; 158:R27-R40. [DOI: 10.1530/rep-18-0449] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the leading endocrine and metabolic disorder in premenopausal women characterized by hyperandrogenism and abnormal development of ovarian follicles. To date, the PCOS etiology remains unclear and has been related to insulin resistance, obesity, type 2 diabetes mellitus, cardiovascular disease and infertility, among other morbidities. Substantial evidence illustrates the impact of genetic, intrauterine and environmental factors on the PCOS etiology. Lately, epigenetic factors have garnered considerable attention in the pathogenesis of PCOS considering that changes in the content of DNA methylation, histone acetylation and noncoding RNAs have been reported in various tissues of women with this disease. DNA methylation is changed in the peripheral and umbilical cord blood, as well as in ovarian and adipose tissue of women with PCOS, suggesting the involvement of this epigenetic modification in the pathogenesis of the disease. Perhaps, these defects in DNA methylation promote the deregulation of genes involved in inflammation, hormone synthesis and signaling and glucose and lipid metabolism. Research on the role of DNA methylation in the pathogenesis of PCOS is just beginning, and several issues await investigation. This review aims to provide an overview of current research focused on DNA methylation and PCOS, as well as discuss the perspectives regarding this topic.
Collapse
|
9
|
Sowamber R, Chehade R, Bitar M, Dodds LV, Milea A, Slomovitz B, Shaw PA, George SHL. CCAAT/enhancer binding protein delta (C/EBPδ) demonstrates a dichotomous role in tumour initiation and promotion of epithelial carcinoma. EBioMedicine 2019; 44:261-274. [PMID: 31078521 PMCID: PMC6603855 DOI: 10.1016/j.ebiom.2019.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
Background CCAAT/enhancer binding protein delta (C/EBPδ,CEBPD), a gene part of the highly conserved basic-leucine zipper (b-ZIP) domain of transcriptional factors, is downregulated in 65% of high grade serous carcinomas of the ovary (HGSC). Overexpression of C/EBPδ in different tumours, such as glioblastoma and breast cancer either promotes tumour progression or inhibits growth and has low expression in normal tissue until activated by cytotoxic stressors. Methods Higher overall expression of C/EBPδ in the luteal phase of the menstrual cycle prompted us to investigate the role of C/EBPδ in carcinogenesis. In vitro experiments were conducted in fallopian tube cell samples and cancer cell lines to investigate the role of C/EBPδ in proliferation, migration, and the epithelial to mesenchymal transition. Findings Expression of C/EBPδ induced premature cellular arrest and decreased soft agar colony formation. Loss of C/EBPδ in epithelial cancer cell lines did not have significant effects on proliferation, yet overexpression demonstrated downregulation of growth, similar to normal fallopian tube cells. C/EBPδ promoted a partial mesenchymal to epithelial (MET) phenotype by upregulating E-cadherin and downregulating Vimentin and N-cadherin in FTE cells and increased migratory activity, which suggests a regulatory role in the epithelial-mesenchymal plasticity of these cells. Interpretation Our findings suggest that C/EBPδ regulates the phenotype of normal fallopian tube cells by acting on downstream regulatory factors that are implicated in the development of ovarian serous carcinogenesis. Fund This study was funded by the CDMRP Ovarian Cancer program (W81WH-0701-0371, W81XWH-18-1-0072), the Princess Margaret Cancer Centre Foundation, Foundation for Women's Cancer – The Belinda-Sue/Mary-Jane Walker Fund, Colleen's Dream Foundation and Sylvester Comprehensive Cancer Center.
Collapse
Affiliation(s)
- Ramlogan Sowamber
- Campbell Family Institute for Breast Cancer Research, Toronto, Ontario, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Rania Chehade
- Campbell Family Institute for Breast Cancer Research, Toronto, Ontario, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Mahmoud Bitar
- Campbell Family Institute for Breast Cancer Research, Toronto, Ontario, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Leah V Dodds
- Sylvester Comprehensive Cancer Center, Miami, Florida, United States; University of Miami, Leonard Miller School of Medicine, Miami, Florida, United States
| | - Anca Milea
- Campbell Family Institute for Breast Cancer Research, Toronto, Ontario, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Brian Slomovitz
- Sylvester Comprehensive Cancer Center, Miami, Florida, United States; Department of Obstetrics and Gynecology and Reproductive Sciences, Division of Gynecology Oncology, Miami, Florida, United States; University of Miami, Leonard Miller School of Medicine, Miami, Florida, United States
| | - Patricia A Shaw
- Campbell Family Institute for Breast Cancer Research, Toronto, Ontario, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| | - Sophia H L George
- Sylvester Comprehensive Cancer Center, Miami, Florida, United States; Department of Obstetrics and Gynecology and Reproductive Sciences, Division of Gynecology Oncology, Miami, Florida, United States; University of Miami, Leonard Miller School of Medicine, Miami, Florida, United States.
| |
Collapse
|
10
|
Zhen YH, Wang L, Riaz H, Wu JB, Yuan YF, Han L, Wang YL, Zhao Y, Dan Y, Huo LJ. Knockdown of CEBPβ by RNAi in porcine granulosa cells resulted in S phase cell cycle arrest and decreased progesterone and estradiol synthesis. J Steroid Biochem Mol Biol 2014; 143:90-8. [PMID: 24607812 DOI: 10.1016/j.jsbmb.2014.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 12/13/2022]
Abstract
Cultured ovarian granulosa cells (GCs) are essential models to study molecular mechanisms of gene regulation during folliculogenesis. CCAAT enhancer binding proteins β (CEBPβ) has been identified in the ovary and is critical for follicular growth, ovulation and luteinization in mice. In the present study, hormonal treatment indicated that luteinizing hormone (LH) and exogenous human chorionic gonadotropins (hCG) significantly increased the expression of CEBPβ in porcine GCs. By RNAi-Ready pSIREN-RetroQ-ZsGreen Vector mediated recombinant pshRNA vectors, CEBPβ gene was successfully knocked down in porcine GCs, confirmed by mRNA and protein level analyzed by real time PCR and western blot, respectively. We further found that knockdown of CEBPβ significantly increased the expression of p-ERK1/2. Furthermore, CEBPβ knockdown arrested the GCs at S phase of cell cycle, but had no effects on cell apoptosis. More importantly, it markedly down regulated the concentration of estradiol (E2) and progesterone (P4) in the culture medium. To uncover the regulatory mechanism of CEBPβ knockdown on cell cycle and steroids synthesis, we found that the mRNA expression of bcl-2 (anti-apoptosis), StAR and Runx2 (steroid hormone synthesis) was up-regulated, while genes related to apoptosis (Caspase-3 and p53), hormonal synthesis (CYP11A1) and cell cycle (cyclinA1, cyclinB1, cyclinD1) were down-regulated, suggesting that knockdown of CEBPβ may inhibit apoptosis, regulate cell cycle and hormone secretions at the transcriptional level in porcine GCs. Furthermore, knockdown of CEBPβ significantly increased the expression of PTGS2 and decreased the expression of IGFBP4, Has2 and PTGFR which are important for folliculogenesis in porcine GCs. In conclusion, this study reveals that CEBPβ is a key regulator of porcine GCs through modulation of cell cycle, apoptosis, steroid synthesis, and other regulators of folliculogenesis.
Collapse
Affiliation(s)
- Yan-Hong Zhen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Li Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Hasan Riaz
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Jia-Bin Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Yi-Feng Yuan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Li Han
- College of Animal Science and Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yan-Ling Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Yi Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Yi Dan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| |
Collapse
|
11
|
Balamurugan K, Sterneck E. The many faces of C/EBPδ and their relevance for inflammation and cancer. Int J Biol Sci 2013; 9:917-33. [PMID: 24155666 PMCID: PMC3805898 DOI: 10.7150/ijbs.7224] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/27/2013] [Indexed: 12/29/2022] Open
Abstract
The CCAAT/enhancer binding protein delta (CEBPD, C/EBPδ) is a transcription factor that modulates many biological processes including cell differentiation, motility, growth arrest, proliferation, and cell death. The diversity of C/EBPδ's functions depends in part on the cell type and cellular context and can have opposing outcomes. For example, C/EBPδ promotes inflammatory signaling, but it can also inhibit pro-inflammatory pathways, and in a mouse model of mammary tumorigenesis, C/EBPδ reduces tumor incidence but promotes tumor metastasis. This review highlights the multifaceted nature of C/EBPδ's functions, with an emphasis on pathways that are relevant for cancer and inflammation, and illustrates how C/EBPδ emerged from the shadow of its family members as a fascinating “jack of all trades.” Our current knowledge on C/EBPδ indicates that, rather than being essential for a specific cellular process, C/EBPδ helps to interpret a variety of cues in a cell-type and context-dependent manner, to adjust cellular functions to specific situations. Therefore, insights into the roles and mechanisms of C/EBPδ signaling can lead to a better understanding of how the integration of different signaling pathways dictates normal and pathological cell functions and physiology.
Collapse
Affiliation(s)
- Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD-21702-1201, U.S.A
| | | |
Collapse
|
12
|
Shen HR, Qiu LH, Zhang ZQ, Qin YY, Cao C, Di W. Genome-Wide Methylated DNA Immunoprecipitation Analysis of Patients with Polycystic Ovary Syndrome. PLoS One 2013; 8:e64801. [PMID: 23705014 PMCID: PMC3660316 DOI: 10.1371/journal.pone.0064801] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 04/17/2013] [Indexed: 01/01/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex, heterogeneous disorder of uncertain etiology. Recent studies suggested that insulin resistance (IR) plays an important role in the development of PCOS. In the current study, we aimed to investigate the molecular mechanism of IR in PCOS. We employed genome-wide methylated DNA immunoprecipitation (MeDIP) analysis to characterize genes that are differentially methylated in PCOS patients vs. healthy controls. Besides, we also identified the differentially methylated genes between patients with PCOS-non-insulin resistance (PCOS-NIR) and PCOS-insulin resistance (PCOS-IR). A total of 79 genes were differentially methylated between PCOS-NIR vs. PCOS-IR patients, and 40 genes were differentially methylated in PCOS patients vs. healthy controls. We analyzed these differentially methylated genes by constructing regulatory networks and protein-protein interaction (PPI) networks. Further, Gene Ontology (GO) and pathway enrichment analysis were also performed to investigate the biological functions of networks. We identified multiple categories of genes that were differentially methylated between PCOS-NIR and PCOS-IR patients, or between PCOS patients and healthy controls. Significantly, GO categories of immune response were differentially methylated in PCOS-IR vs. PCOS-NIR. Further, genes in cancer pathways were also differentially methylated in PCOS-NIR vs. PCOS-IR patients or in PCOS patients vs. healthy controls. The results of this current study will help to further understand the mechanism of PCOS.
Collapse
Affiliation(s)
- Hao-ran Shen
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-hua Qiu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-qing Zhang
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Yuan-yuan Qin
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cong Cao
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
- * E-mail: (CC); (WD)
| | - Wen Di
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (CC); (WD)
| |
Collapse
|
13
|
Patodia S, Raivich G. Role of transcription factors in peripheral nerve regeneration. Front Mol Neurosci 2012; 5:8. [PMID: 22363260 PMCID: PMC3277281 DOI: 10.3389/fnmol.2012.00008] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 01/24/2012] [Indexed: 11/13/2022] Open
Abstract
Following axotomy, the activation of multiple intracellular signaling cascades causes the expression of a cocktail of regeneration-associated transcription factors which interact with each other to determine the fate of the injured neurons. The nerve injury response is channeled through manifold and parallel pathways, integrating diverse inputs, and controlling a complex transcriptional output. Transcription factors form a vital link in the chain of regeneration, converting injury-induced stress signals into downstream protein expression via gene regulation. They can regulate the intrinsic ability of axons to grow, by controlling expression of whole cassettes of gene targets. In this review, we have investigated the functional roles of a number of different transcription factors - c-Jun, activating transcription factor 3, cAMP response element binding protein, signal transducer, and activator of transcription-3, CCAAT/enhancer binding proteins β and δ, Oct-6, Sox11, p53, nuclear factor kappa-light-chain-enhancer of activated B cell, and ELK3 - in peripheral nerve regeneration. Studies involving use of conditional mutants, microarrays, promoter region mapping, and different injury paradigms, have enabled us to understand their distinct as well as overlapping roles in achieving anatomical and functional regeneration after peripheral nerve injury.
Collapse
Affiliation(s)
- Smriti Patodia
- Centre for Perinatal Brain Protection and Repair, University College London London, UK
| | | |
Collapse
|
14
|
Fan HY, Liu Z, Johnson PF, Richards JS. CCAAT/enhancer-binding proteins (C/EBP)-α and -β are essential for ovulation, luteinization, and the expression of key target genes. Mol Endocrinol 2010; 25:253-68. [PMID: 21177758 DOI: 10.1210/me.2010-0318] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
LH activation of the epidermal growth factor receptor/RAS/ERK1/2 pathway is essential for ovulation and luteinization because granulosa cell (GC) depletion of ERK1/2 (ERK1/2(gc)(-/-) mice) renders mice infertile. As mediators of ERK1/2-dependent GC differentiation, the CCAAT/enhancer-binding proteins, (C/EBP)α and C/EBPβ, were also disrupted. Female Cebpb(gc)(-/-) mutant mice, but not Cebpa(gc)(-/-) mice, were subfertile whereas Cebpa/b(gc)(-/-) double-mutant females were sterile. Follicles failed to ovulate, ovaries were devoid of corpora lutea, luteal cell marker genes (Lhcgr, Prlr, Ptgfr, Cyp11a1, and Star) were absent, and serum progesterone levels were low. Microarray analyses identified numerous C/EBPα/β target genes in equine chorionic gonadotropin (eCG)-human (h)CG-treated mice. At 4 h post-hCG, a subset (19%) of genes altered in the Cebpa/b-depleted cells was also altered in ERK1/2-depleted cells; hence they are common effectors of ERK1/2. Additional genes down-regulated in the Cebpa/b-depleted cells at 8 and 24 h post-hCG include known (Akr1b7, Runx2, Star, Saa3) and novel (Abcb1b, Apln, Igfbp4, Prlr, Ptgfr Timp4) C/EBP targets and effectors of luteal and vascular cell development. Bhmt, a gene controlling methionine metabolism and thought to be expressed exclusively in liver and kidney, was high in wild-type luteal cells but totally absent in Cebpa/b mutant cells. Because numerous genes potentially associated with vascular development were suppressed in the mutant cells, C/EBPα/β appear to dictate the luteinization process by also controlling genes that regulate the formation of the extensive vascular network required to sustain luteal cells. Thus, C/EBPα/β mediate the terminal differentiation of GCs during the complex process of luteinization.
Collapse
Affiliation(s)
- Heng-Yu Fan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
15
|
Hour TC, Lai YL, Kuan CI, Chou CK, Wang JM, Tu HY, Hu HT, Lin CS, Wu WJ, Pu YS, Sterneck E, Huang AM. Transcriptional up-regulation of SOD1 by CEBPD: a potential target for cisplatin resistant human urothelial carcinoma cells. Biochem Pharmacol 2010; 80:325-34. [PMID: 20385105 PMCID: PMC3586239 DOI: 10.1016/j.bcp.2010.04.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 04/02/2010] [Accepted: 04/05/2010] [Indexed: 02/04/2023]
Abstract
Bladder cancer is the fourth most common type of cancer in men (ninth in women) in the United States. Cisplatin is an effective agent against the most common subtype, urothelial carcinoma. However, the development of chemotherapy resistance is a severe clinical problem for the successful treatment of this and other cancers. A better understanding of the cellular and molecular events in response to cisplatin treatment and the development of resistance are critical to improve the therapeutic options for patients. Here, we report that expression of the CCAAT/enhancer binding protein delta (CEBPD, C/EBPdelta, NF-IL6beta) is induced by cisplatin in the human bladder urothelial carcinoma NTUB1 cell line and is specifically elevated in a cisplatin resistant subline. Expression of CEBPD reduced cisplatin-induced reactive oxygen species (ROS) and apoptosis in NTUB1 cells by inducing the expression of Cu/Zn-superoxide dismutase (SOD1) via direct promoter transactivation. Several reports have implicated CEBPD as a tumor suppressor gene. This study reveals a novel role for CEBPD in conferring drug resistance, suggesting that it can also be pro-oncogenic. Furthermore, our data suggest that SOD inhibitors, which are already used as anti-angiogenic agents, may be suitable for combinatorial chemotherapy to prevent or treat cisplatin resistance in bladder and possibly other cancers.
Collapse
Affiliation(s)
- Tzyh-Chyuan Hour
- Department of Medicine, Graduate Institute of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yan-Liang Lai
- Department of Medicine, Graduate Institute of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-I Kuan
- Department of Medicine, Graduate Institute of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chen-Kung Chou
- Department of Biomedical Sciences, Chang Gung University, Tao-Yuan, Taiwan
| | - Ju-Ming Wang
- Institute of Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan
| | - Huang-Yao Tu
- Department of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huei-Ting Hu
- Department of Medicine, Graduate Institute of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chang-Shen Lin
- Department of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Esta Sterneck
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - A-Mei Huang
- Department of Medicine, Graduate Institute of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|