1
|
Peláez JN, Bernstein S, Okoro J, Rodas E, Liang I, Leipertz A, Marion-Poll F, Whiteman NK. Taste evolution in an herbivorous drosophilid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582299. [PMID: 38464294 PMCID: PMC10925181 DOI: 10.1101/2024.02.27.582299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Plant secondary metabolites pose a challenge for generalist herbivorous insects because they are not only potentially toxic, they also may trigger aversion. On the contrary, some highly specialized herbivorous insects evolved to use these same compounds as 'token stimuli' for unambiguous determination of their host plants. Two questions that emerge from these observations are how recently derived herbivores evolve to overcome this aversion to plant secondary metabolites and the extent to which they evolve increased attraction to these same compounds. In this study, we addressed these questions by focusing on the evolution of bitter taste preferences in the herbivorous drosophilid Scaptomyza flava, which is phylogenetically nested deep in the paraphyletic Drosophila. We measured behavioral and neural responses of S. flava and a set of non-herbivorous species representing a phylogenetic gradient (S. pallida, S. hsui, and D. melanogaster) towards host- and non-host derived bitter plant compounds. We observed that S. flava evolved a shift in bitter detection, rather than a narrow shift towards glucosinolates, the precursors of mustard-specific defense compounds. In a dye-based consumption assay, S. flava exhibited shifts in aversion toward the non-mustard bitter, plant-produced alkaloids caffeine and lobeline, and reduced aversion towards glucosinolates, whereas the non-herbivorous species each showed strong aversion to all bitter compounds tested. We then examined whether these changes in bitter preferences of S. flava could be explained by changes in sensitivity in the peripheral nervous system and compared electrophysiological responses from the labellar sensilla of S. flava, S. pallida, and D. melanogaster. Using scanning electron microscopy, we also created a map of labellar sensilla in S. flava and S. pallida. We assigned each sensillum to a functional sensilla class based on their morphology and initial response profiles to bitter and sweet compounds. Despite a high degree of conservation in the morphology and spatial placement of sensilla between S. flava and S. pallida, electrophysiological studies revealed that S. flava had reduced sensitivity to glucosinolates to varying degrees. We found this reduction only in I type sensilla. Finally, we speculate on the potential role that evolutionary genetic changes in gustatory receptors between S. pallida and S. flava may play in driving these patterns. Specifically, we hypothesize that the evolution of bitter receptors expressed in I type sensilla may have driven the reduced sensitivity observed in S. flava, and ultimately, its reduced bitter aversion. The S. flava system showcases the importance of reduced aversion to bitter defense compounds in relatively young herbivorous lineages, and how this may be achieved at the molecular and physiological level.
Collapse
Affiliation(s)
- Julianne N. Peláez
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Susan Bernstein
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Judith Okoro
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Esteban Rodas
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Irene Liang
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Anna Leipertz
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Frédéric Marion-Poll
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
- Université Paris-Saclay, AgroParisTech, 91120 Palaiseau, France
| | - Noah K. Whiteman
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Molecular & Cellular Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Zhang Y, Zhang J, Gao K, Lu R, Cao X, Yang L, Nie G. Genome-wide comparative identification and analysis of membrane-FADS-like superfamily genes in freshwater economic fishes. FEBS Open Bio 2023. [PMID: 36883721 DOI: 10.1002/2211-5463.13594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/18/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
Membrane fatty acid desaturase (FADS)-like superfamily proteins (FADSs) are essential for the synthesis of unsaturated fatty acids (UFAs). Recently, studies on FADS in fishes have mostly focused on marine species, and a comprehensive analysis of the FADS superfamily, including the FADS, stearoyl-CoA desaturase (SCD), and sphingolipid delta 4-desaturase (DEGS) families, in freshwater economic fishes is urgently required. To this end, we conducted a thorough analysis of the number, gene/protein structure, chromosomal location, gene linkage map, phylogeny, and expression of the FADS superfamily. We identified 156 FADSs genes in the genome of 27 representative species. Notably, FADS1 and SCD5 were lost in most freshwater fish and other teleosts. All FADSs proteins contain 4 transmembrane helices and 2-3 amphipathic α-helices. FADSs in the same family are often linked on the same chromosome; moreover, FADS and SCD or DEGS are frequently collocated on the same chromosome. In addition, FADS, SCD, and DEGS family proteins share similar evolutionary patterns. Interestingly, FADS6, as a member of the FADS family, exhibits a similar gene structure and chromosome location to that of SCD family members, which may be the transitional form of FADS and SCD. This study shed light on the type, structure, and phylogenetic relationship of FADSs in freshwater fishes, offering a new perspective into the functional mechanism analysis of FADSs.
Collapse
Affiliation(s)
- Yuru Zhang
- College of Fisheries, Henan Normal University, Xinxiang, China.,College of Fisheries, Engineering Technology Research Centre of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
| | - Junmei Zhang
- College of Fisheries, Henan Normal University, Xinxiang, China.,College of Fisheries, Engineering Technology Research Centre of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
| | - Kedi Gao
- College of Fisheries, Henan Normal University, Xinxiang, China.,College of Fisheries, Engineering Technology Research Centre of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
| | - Ronghua Lu
- College of Fisheries, Henan Normal University, Xinxiang, China.,College of Fisheries, Engineering Technology Research Centre of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
| | - Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang, China.,College of Fisheries, Engineering Technology Research Centre of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
| | - Liping Yang
- College of Fisheries, Henan Normal University, Xinxiang, China.,College of Fisheries, Engineering Technology Research Centre of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang, China.,College of Fisheries, Engineering Technology Research Centre of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
| |
Collapse
|
3
|
Ufimov R, Gorospe JM, Fér T, Kandziora M, Salomon L, van Loo M, Schmickl R. Utilizing paralogs for phylogenetic reconstruction has the potential to increase species tree support and reduce gene tree discordance in target enrichment data. Mol Ecol Resour 2022; 22:3018-3034. [PMID: 35796729 DOI: 10.1111/1755-0998.13684] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/28/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
The analysis of target enrichment data in phylogenetics lacks optimization toward using paralogs for phylogenetic reconstruction. We developed a novel approach of detecting paralogs and utilizing them for phylogenetic tree inference, by retrieving both ortho- and paralogous copies and creating orthologous alignments, from which the gene trees are built. We implemented this approach in ParalogWizard and demonstrate its performance in plant groups that underwent a whole genome duplication relatively recently: the subtribe Malinae (family Rosaceae), using Angiosperms353 as well as Malinae481 probes, the genus Oritrophium (family Asteraceae), using Compositae1061 probes, and the genus Amomum (family Zingiberaceae), using Zingiberaceae1180 probes. Discriminating between orthologs and paralogs reduced gene tree discordance and increased the species tree support in the case of the Malinae, but not for Oritrophium and Amomum. This may relate to the difference in the proportion of paralogous loci between the datasets, which was highest for the Malinae. Overall, retrieving paralogs for phylogenetic reconstruction following ParalogWizard has the potential to increase the species tree support and reduce gene tree discordance in target enrichment data, particularly if the proportion of paralogous loci is high.
Collapse
Affiliation(s)
- Roman Ufimov
- Department of Forest Growth, Silviculture and Genetics, Austrian Research Centre for Forests, Seckendorff-Gudent-Weg 8, 1130, Vienna, Austria.,Komarov Botanical Institute, Russian Academy of Sciences, ul. Prof. Popova 2, 197376, St. Petersburg, Russian Federation
| | - Juan Manuel Gorospe
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic.,Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| | - Tomáš Fér
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| | - Martha Kandziora
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| | - Luciana Salomon
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| | - Marcela van Loo
- Department of Forest Growth, Silviculture and Genetics, Austrian Research Centre for Forests, Seckendorff-Gudent-Weg 8, 1130, Vienna, Austria
| | - Roswitha Schmickl
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic.,Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| |
Collapse
|
4
|
Ojha A, Zhang W. Characterization of gustatory receptor 7 in the brown planthopper reveals functional versatility. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 132:103567. [PMID: 33741431 DOI: 10.1016/j.ibmb.2021.103567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Insect pests consume tastants as their necessary energy and nutrient sources. Gustatory receptors play important roles in insect life and can form within an extremely complicated regulatory network. However, there are still many gustatory genes that have a significant impact on insect physiology, but their functional mechanism is still unknown. Here, we purified and characterized a gustatory receptor (protein) coding gene, NlGr7, from the brown planthopper (BPH) Nilaparvata lugens, which is an important insect pest of rice. Our results revealed that NlGr7 has an active association with various ligands, such as lectins, lipids (phospho- and sphingolipid) and copper. The mass-spectrometry result showed that NlGr7 is a sugar receptor, and NlGr7 is validated by different types of insoluble polysaccharides and a varied range of tastants. Further, we observed that NlGr7-bound ATP hydrolysed on the ATPase activity assay, which indicated that NlGr7 may be associated with important biological functions in the BPH. Furthermore, an injection of NlGr7 (protein), into newly emerged female adults of BPH, showed the reduced vitellogenin in ovary. The important NlGr7 for chemoreception has now been characterized in the BPH. We showed that NlGr7 in the BPH is required for various protein-ligands, as well as protein-sugars interactions, and for regulation of fecundity marker to play crucial roles in this pest. This study will provide valuable information for further functional studies of chemoreception mechanisms in this important agricultural pest.
Collapse
Affiliation(s)
- Abhishek Ojha
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
5
|
Olafson PU, Aksoy S, Attardo GM, Buckmeier G, Chen X, Coates CJ, Davis M, Dykema J, Emrich SJ, Friedrich M, Holmes CJ, Ioannidis P, Jansen EN, Jennings EC, Lawson D, Martinson EO, Maslen GL, Meisel RP, Murphy TD, Nayduch D, Nelson DR, Oyen KJ, Raszick TJ, Ribeiro JMC, Robertson HM, Rosendale AJ, Sackton TB, Saelao P, Swiger SL, Sze SH, Tarone AM, Taylor DB, Warren WC, Waterhouse RM, Weirauch MT, Werren JH, Wilson RK, Zdobnov EM, Benoit JB. The genome of the stable fly, Stomoxys calcitrans, reveals potential mechanisms underlying reproduction, host interactions, and novel targets for pest control. BMC Biol 2021; 19:41. [PMID: 33750380 PMCID: PMC7944917 DOI: 10.1186/s12915-021-00975-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/03/2021] [Indexed: 01/01/2023] Open
Abstract
Background The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies. Results This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction and identification of expanded gene families with functional associations to vision, chemosensation, immunity, and metabolic detoxification pathways. Conclusions The combined sequencing, assembly, and curation of the male stable fly genome followed by RNA-Seq and downstream analyses provide insights necessary to understand the biology of this important pest. These resources and new data will provide the groundwork for expanding the tools available to control stable fly infestations. The close relationship of Stomoxys to other blood-feeding (horn flies and Glossina) and non-blood-feeding flies (house flies, medflies, Drosophila) will facilitate understanding of the evolutionary processes associated with development of blood feeding among the Cyclorrhapha. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-00975-9.
Collapse
Affiliation(s)
- Pia U Olafson
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA.
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Geoffrey M Attardo
- Department of Entomology and Nematology, University of California - Davis, Davis, CA, USA
| | - Greta Buckmeier
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA
| | - Xiaoting Chen
- The Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Craig J Coates
- Department of Entomology, Texas A & M University, College Station, TX, USA
| | - Megan Davis
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA
| | - Justin Dykema
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Scott J Emrich
- Department of Electrical Engineering & Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland
| | - Evan N Jansen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Daniel Lawson
- The European Molecular Biology Laboratory, The European Bioinformatics Institute, The Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | | | - Gareth L Maslen
- The European Molecular Biology Laboratory, The European Bioinformatics Institute, The Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Dana Nayduch
- Arthropod-borne Animal Diseases Research Unit, USDA-ARS, Manhattan, KS, USA
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kennan J Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Tyler J Raszick
- Department of Entomology, Texas A & M University, College Station, TX, USA
| | - José M C Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Timothy B Sackton
- Informatics Group, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Perot Saelao
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA
| | - Sonja L Swiger
- Department of Entomology, Texas A&M AgriLife Research and Extension Center, Stephenville, TX, USA
| | - Sing-Hoi Sze
- Department of Computer Science & Engineering, Department of Biochemistry & Biophysics, Texas A & M University, College Station, TX, USA
| | - Aaron M Tarone
- Department of Entomology, Texas A & M University, College Station, TX, USA
| | - David B Taylor
- Agroecosystem Management Research Unit, USDA-ARS, Lincoln, NE, USA
| | - Wesley C Warren
- University of Missouri, Bond Life Sciences Center, Columbia, MO, USA
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Richard K Wilson
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,College of Medicine, Ohio State University, Columbus, OH, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
6
|
Dweck HKM, Carlson JR. Molecular Logic and Evolution of Bitter Taste in Drosophila. Curr Biol 2019; 30:17-30.e3. [PMID: 31839451 DOI: 10.1016/j.cub.2019.11.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/13/2019] [Accepted: 11/01/2019] [Indexed: 01/05/2023]
Abstract
Taste systems detect a vast diversity of toxins, which are perceived as bitter. When a species adapts to a new environment, its taste system must adapt to detect new death threats. We deleted each of six commonly expressed bitter gustatory receptors (Grs) from Drosophila melanogaster. Systematic analysis revealed that requirements for these Grs differed for the same tastant in different neurons and for different tastants in the same neuron. Responses to some tastants in some neurons required four Grs, including Gr39a. Deletions also produced increased or novel responses, supporting a model of Gr-Gr inhibitory interactions. Coexpression of four Grs conferred several bitter responses to a sugar neuron. We then examined bitter coding in three other Drosophila species. We found major evolutionary shifts. One shift depended on the concerted activity of seven Grs. This work shows how the complex logic of bitter coding provides the capacity to detect innumerable hazards and the flexibility to adapt to new ones.
Collapse
Affiliation(s)
- Hany K M Dweck
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
7
|
Xu W, Papanicolaou A, Zhang HJ, Anderson A. Expansion of a bitter taste receptor family in a polyphagous insect herbivore. Sci Rep 2016; 6:23666. [PMID: 27032373 PMCID: PMC4817054 DOI: 10.1038/srep23666] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/07/2016] [Indexed: 12/22/2022] Open
Abstract
The Insect taste system plays a central role in feeding behaviours and co-evolution of insect-host interactions. Gustatory receptors form the interface between the insect taste system and the environment. From genome and transcriptome sequencing we identified 197 novel gustatory receptor (GR) genes from the polyphagous pest Helicoverpa armigera. These GRs include a significantly expanded bitter receptor family (180 GRs) that could be further divided into three categories based on polypeptide lengths, gene structure and amino acid sequence. Type 1 includes 29 bitter Gr genes that possess introns. Type 2 includes 13 long intronless bitter Gr genes, while Type 3 comprises 131 short intronless bitter Gr genes. Calcium imaging analysis demonstrated that three Type 3 GRs (HarmGR35, HarmGR50 and HarmGR195) can be activated by a crude extract of cotton leaves. HarmGR195, a GR specifically and selectively expressed in adult tarsi, showed a specific response to proline, an amino acid widely present in plant tissues. We hypothesise that the expansion in the H. armigera GR family may be functionally tied to its polyphagous behavior. Understanding the molecular basis of polyphagy may provide opportunities for the development of new environmentally friendly pest control strategies.
Collapse
Affiliation(s)
- Wei Xu
- CSIRO Food and Nutrition Flagship, Black Mountain, ACT, Australia 2601.,School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia 6150
| | | | - Hui-Jie Zhang
- CSIRO Food and Nutrition Flagship, Black Mountain, ACT, Australia 2601
| | - Alisha Anderson
- CSIRO Food and Nutrition Flagship, Black Mountain, ACT, Australia 2601
| |
Collapse
|
8
|
Evaluation of Ancestral Sequence Reconstruction Methods to Infer Nonstationary Patterns of Nucleotide Substitution. Genetics 2015; 200:873-90. [PMID: 25948563 DOI: 10.1534/genetics.115.177386] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/28/2015] [Indexed: 01/07/2023] Open
Abstract
Inference of gene sequences in ancestral species has been widely used to test hypotheses concerning the process of molecular sequence evolution. However, the approach may produce spurious results, mainly because using the single best reconstruction while ignoring the suboptimal ones creates systematic biases. Here we implement methods to correct for such biases and use computer simulation to evaluate their performance when the substitution process is nonstationary. The methods we evaluated include parsimony and likelihood using the single best reconstruction (SBR), averaging over reconstructions weighted by the posterior probabilities (AWP), and a new method called expected Markov counting (EMC) that produces maximum-likelihood estimates of substitution counts for any branch under a nonstationary Markov model. We simulated base composition evolution on a phylogeny for six species, with different selective pressures on G+C content among lineages, and compared the counts of nucleotide substitutions recorded during simulation with the inference by different methods. We found that large systematic biases resulted from (i) the use of parsimony or likelihood with SBR, (ii) the use of a stationary model when the substitution process is nonstationary, and (iii) the use of the Hasegawa-Kishino-Yano (HKY) model, which is too simple to adequately describe the substitution process. The nonstationary general time reversible (GTR) model, used with AWP or EMC, accurately recovered the substitution counts, even in cases of complex parameter fluctuations. We discuss model complexity and the compromise between bias and variance and suggest that the new methods may be useful for studying complex patterns of nucleotide substitution in large genomic data sets.
Collapse
|
9
|
Duvaux L, Geissmann Q, Gharbi K, Zhou JJ, Ferrari J, Smadja CM, Butlin RK. Dynamics of copy number variation in host races of the pea aphid. Mol Biol Evol 2014; 32:63-80. [PMID: 25234705 PMCID: PMC4271520 DOI: 10.1093/molbev/msu266] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Copy number variation (CNV) makes a major contribution to overall genetic variation and is suspected to play an important role in adaptation. However, aside from a few model species, the extent of CNV in natural populations has seldom been investigated. Here, we report on CNV in the pea aphid Acyrthosiphon pisum, a powerful system for studying the genetic architecture of host-plant adaptation and speciation thanks to multiple host races forming a continuum of genetic divergence. Recent studies have highlighted the potential importance of chemosensory genes, including the gustatory and olfactory receptor gene families (Gr and Or, respectively), in the process of host race formation. We used targeted resequencing to achieve a very high depth of coverage, and thereby revealed the extent of CNV of 434 genes, including 150 chemosensory genes, in 104 individuals distributed across eight host races of the pea aphid. We found that CNV was widespread in our global sample, with a significantly higher occurrence in multigene families, especially in Ors. We also observed a decrease in the gene probability of being completely duplicated or deleted (CDD) with increase in coding sequence length. Genes with CDD variants were usually more polymorphic for copy number, especially in the P450 gene family where toxin resistance may be related to gene dosage. We found that Gr were overrepresented among genes discriminating host races, as were CDD genes and pseudogenes. Our observations shed new light on CNV dynamics and are consistent with CNV playing a role in both local adaptation and speciation.
Collapse
Affiliation(s)
- Ludovic Duvaux
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Quentin Geissmann
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Karim Gharbi
- Edinburgh Genomics, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Julia Ferrari
- Department of Biology, University of York, York, United Kingdom
| | - Carole M Smadja
- Institut des Sciences de l'Evolution (UMR 5554), CNRS, IRD, Université Montpellier 2, Montpellier, France
| | - Roger K Butlin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom Sven Lovén Centre for Marine Sciences-Tjärnö, University of Gothenburg, Strömstad, Sweden
| |
Collapse
|
10
|
Abstract
Genes are perpetually added to and deleted from genomes during evolution. Thus, it is important to understand how new genes are formed and how they evolve to be critical components of the genetic systems that determine the biological diversity of life. Two decades of effort have shed light on the process of new gene origination and have contributed to an emerging comprehensive picture of how new genes are added to genomes, ranging from the mechanisms that generate new gene structures to the presence of new genes in different organisms to the rates and patterns of new gene origination and the roles of new genes in phenotypic evolution. We review each of these aspects of new gene evolution, summarizing the main evidence for the origination and importance of new genes in evolution. We highlight findings showing that new genes rapidly change existing genetic systems that govern various molecular, cellular, and phenotypic functions.
Collapse
Affiliation(s)
- Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois 60637;
| | | | | | | |
Collapse
|
11
|
A sugar gustatory receptor identified from the foregut of cotton bollworm Helicoverpa armigera. J Chem Ecol 2012; 38:1513-20. [PMID: 23224441 PMCID: PMC3532720 DOI: 10.1007/s10886-012-0221-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 12/29/2022]
Abstract
Helicoverpa armigera (Hübner) is one of the most polyphagous and cosmopolitan pest species, the larvae of which feed on numerous important crops. The gustatory system is critical in guiding insect feeding behavior. Here, we identified a gustatory receptor from H. armigera, HaGR9, which shows high levels of identity to DmGR43a from Drosophila melanogaster and BmGR9 from Bombyx mori. Reverse transcriptase PCR (RT-PCR) revealed HaGR9 is highly expressed in larval foregut, with little or no expression in other chemosensory tissues. Membrane topology studies indicated that, like two previously studied B. mori GRs, BmGR8 and BmGR53, HaGR9 has an inverted topology relative to G protein-coupled receptors (GPCRs), an intracellular N-terminus and an extracellular C-terminus. Calcium imaging studies confirmed HaGR9 is a sugar receptor showing dose-dependent responses to D-galactose, D-maltose, and D-fructose. This highly-expressed foregut-specific gustatory receptor may contribute to the regulation of larval feeding behavior.
Collapse
|
12
|
Abstract
The fruitless (fru) gene in Drosophila plays a pivotal role in the formation of neural circuits underlying gender-specific behaviors. Specific labeling of fru expressing neurons has revealed a core circuit responsible for male courtship behavior.Females with a small number of masculinized neuronal clusters in their brain can initiate male-type courtship behavior. By examining the correlations between the masculinized neurons and behavioral gender type, a male-specific neuronal cluster,named P1, which coexpresses fru and double sex, was identified as a putative trigger center for male-type courtship behavior. P1 neurons extend dendrite to the lateral horn,where multimodal sensory inputs converge. Molecular studies suggest that fru determines the level of masculinization of neurons by orchestrating the transcription of a set of downstream genes, which remain to be identified.
Collapse
Affiliation(s)
- Daisuke Yamamoto
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences,Sendai, Japan.
| |
Collapse
|
13
|
Watanabe K, Toba G, Koganezawa M, Yamamoto D. Gr39a, a highly diversified gustatory receptor in Drosophila, has a role in sexual behavior. Behav Genet 2011; 41:746-53. [PMID: 21416142 DOI: 10.1007/s10519-011-9461-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 03/02/2011] [Indexed: 01/14/2023]
Abstract
Sexual recognition among individuals is crucial for the reproduction of animals. In Drosophila, like in many other animals, pheromones are suggested to play an important role in conveying information about an individual, such as sex, maturity and mating status. Sex-specific cuticular hydrocarbon components are thought to be major sex pheromones in Drosophila, and are postulated to act through the gustatory system, since they are mostly non-volatile chemicals. However, very little is known about the molecular and neural bases of gustatory pheromone reception. So far, a few putative gustatory receptors, including Gr32a and Gr68a, have been implicated in courtship behavior. Here, we examine another putative gustatory receptor, Gr39a, which shares a cluster with both Gr32a and Gr68a in a molecular phylogeny of the gustatory receptor family, for its potential role in courtship behavior. The Gr39a gene produces four isoforms through alternative splicing of different 5'-most exons. A quantitative real-time PCR analysis showed that the expression levels of all four splice variants of Gr39a were reduced in a fly line in which a P element was inserted into the Gr39a locus. Homozygous and hemizygous males for the P-element insertion, as well as males in which Gr39a was knocked down by RNAi, all showed reduced courtship levels toward females. The courtship levels returned to normal when the P element was excised out. A close analysis of courtship behavior of the mutant males revealed that the average duration of a continuous courtship bout was significantly shorter in the mutants than in the wild type. The results suggest that Gr39a has a role in sustaining courtship behavior in males, possibly through the reception of a stimulating arrestant pheromone.
Collapse
Affiliation(s)
- Kanako Watanabe
- Division of Neurogenetics, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | |
Collapse
|
14
|
Koganezawa M, Matsuo T, Kimura KI, Yamamoto D. Shaping of Drosophila male courtship posture by a gustatory pheromone. Ann N Y Acad Sci 2009; 1170:497-501. [PMID: 19686184 DOI: 10.1111/j.1749-6632.2009.03889.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Drosophila melanogaster males display stereotypical courtship ritual in courting potential mates. The fruitless (fru) gene plays a pivotal role in the generation of male-typical courtship behavior by instructing the formation of the central circuitry underlying this behavior during development. The fru gene expression can be monitored by a reporter, fruNP21, that labels approximately 800 neurons in the adult male brain. Among these fru-expressing neurons, a male-specific neural cluster called P1 initiated male-typical courtship behavior; when the P1 cluster was ectopically produced in the female brain, many such females displayed male-typical courtship behavior toward a target female. To further elucidate the central circuitry for courtship behavior, we examined central projections of sensory neurons that appear to perceive sex pheromones sensed in the foreleg gustatory receptors. The central terminals of these sensory neurons are located near dendrites of the fru-expressing interneurons named mAL. These results suggest that different subsets of fru-expressing neurons are involved in both the sensory integration of sexual cues and the activation of motor centers that generate motor outputs for courtship behavior in the Drosophila brain.
Collapse
Affiliation(s)
- Masayuki Koganezawa
- Division of Neurogenetics, Department of Developmental Biology and Neurosciences, Tohoku University Graduate School of Life Science, Sendai, Japan
| | | | | | | |
Collapse
|