1
|
Wang X, Zhao J, Ji F, Wang M, Wu B, Qin J, Dong G, Zhao R, Wang C. Genomic Characteristics and Molecular Epidemiology of Multidrug-Resistant Klebsiella pneumoniae Strains Carried by Wild Birds. Microbiol Spectr 2023; 11:e0269122. [PMID: 36840587 PMCID: PMC10101063 DOI: 10.1128/spectrum.02691-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/04/2023] [Indexed: 02/24/2023] Open
Abstract
This study aimed to explore the relationship between wild birds and the transmission of multidrug-resistant strains. Klebsiella pneumoniae was isolated from fresh feces of captured wild birds and assessed by the broth microdilution method and comparative genomics. Four Klebsiella pneumoniae isolates showed different resistance phenotypes; S90-2 and S141 were both resistant to ampicillin, cefuroxime, and cefazolin, while M911-1 and S130-1 were sensitive to most of the 14 antibiotics tested. S90-2 belongs to sequence type 629 (ST629), and its genome includes 30 resistance genes, including blaCTX-M-14 and blaSHV-11, while its plasmid pS90-2.3 (IncR) carries qacEdelta1, sul1, and aph(3')-Ib. S141 belongs to ST1662, and its genome includes a total of 27 resistance genes, including blaSHV-217. M911-1 is a new ST, carrying blaSHV-1 and fosA6, and its plasmid pM911-1.1 (novel) carries qnrS1, blaLAP-2, and tet(A). S130-1 belongs to ST3753, carrying blaSHV-11 and fosA6, and its plasmid pS130-1 [IncFIB(K)] carries only one resistance gene, tet(A). pM911-1.1 and pS90-2.3 do not have conjugative transfer ability, but their resistance gene fragments are derived from multiple homologous Enterobacteriaceae strain chromosomes or plasmids, and the formation of resistance gene fragments (multidrug resistance region) involves interactions between multiple mobile element genes, resulting in a complex and diverse resistance plasmid structure. The homologous plasmids related to pM911-1.1 and pS90-2.3 were mainly from isolated human-infecting bacteria in China, namely, K. pneumoniae and Escherichia coli. The multidrug-resistant K. pneumoniae isolates carried by wild birds in this study had drug resistance phenotypes conferred primarily by multidrug resistance plasmids that were closely related to human-infecting bacteria. IMPORTANCE Little is known about the pathogenic microorganisms carried by wild animals. This study found that the multidrug resistance phenotype of Klebsiella pneumoniae isolates carried by wild birds was mainly attributed to multidrug resistance plasmids, and these multidrug resistance plasmids from wild birds were closely related to human-infecting bacteria. Wild bird habitats overlap to a great extent with human and livestock habitats, which further increases the potential for horizontal transfer of multidrug-resistant bacteria among humans, animals, and the environment. Therefore, wild birds, as potential transmission hosts of multidrug-resistant bacteria, should be given attention and monitored.
Collapse
Affiliation(s)
- Xue Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| | - Jianan Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| | - Fang Ji
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| | - Meng Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| | - Bin Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| | - Jianhua Qin
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| | - Guoying Dong
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Ruili Zhao
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Chengmin Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| |
Collapse
|
2
|
Wang N, Luo J, Deng F, Huang Y, Zhou H. Antibiotic Combination Therapy: A Strategy to Overcome Bacterial Resistance to Aminoglycoside Antibiotics. Front Pharmacol 2022; 13:839808. [PMID: 35281905 PMCID: PMC8905495 DOI: 10.3389/fphar.2022.839808] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
After the first aminoglycoside antibiotic streptomycin being applied in clinical practice in the mid-1940s, aminoglycoside antibiotics (AGAs) are widely used to treat clinical bacterial infections and bacterial resistance to AGAs is increasing. The bacterial resistance to AGAs is owed to aminoglycoside modifying enzyme modification, active efflux pump gene overexpression and 16S rRNA ribosomal subunit methylation, leading to modification of AGAs' structures and decreased concentration of drugs within bacteria. As AGAs's side effects and bacterial resistance, the development of AGAs is time-consuming and difficult. Because bacterial resistance may occur in a short time after application in clinical practice, it was found that the antibacterial effect of the combination was not only better than that of AGAs alone but also reduce the dosage of antibiotics, thereby reducing the occurrence of side effects. This article reviews the clinical use of AGAs, the antibacterial mechanisms, the molecular mechanisms of bacterial resistance, and especially focuses a recent development of the combination of AGAs with other drugs to exert a synergistic antibacterial effect to provide a new strategy to overcome bacterial resistance to AGAs.
Collapse
Affiliation(s)
| | | | | | | | - Hong Zhou
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint Laboratory of International Cooperation, Ministry of Education of Characteristic Ethnic Medicine, School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Zurabov F, Zhilenkov E. Characterization of four virulent Klebsiella pneumoniae bacteriophages, and evaluation of their potential use in complex phage preparation. Virol J 2021; 18:9. [PMID: 33407669 PMCID: PMC7789013 DOI: 10.1186/s12985-020-01485-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/28/2020] [Indexed: 12/22/2022] Open
Abstract
Background Nowadays, hundreds of thousands of deaths per year are caused by antibiotic resistant nosocomial infections and the prognosis for future years is much worse, as evidenced by modern research. Bacteria of the Klebsiella genus are one of the main pathogens that cause nosocomial infections. Among the many antimicrobials offered to replace or supplement traditional antibiotics, bacteriophages are promising candidates. Methods This article presents microbiological, physicochemical and genomic characterization of 4 virulent bacteriophages belonging to Siphoviridae, Myoviridae and Podoviridae families. Phages were studied by electron microscopy; their host range, lytic activity, adsorption rate, burst size, latent period, frequency of phage-resistant forms generation, lysis dynamics and sensitivity of phage particles to temperature and pH were identified; genomes of all 4 bacteriophages were studied by restriction digestion and complete genome sequence. Results Studied phages showed wide host range and high stability at different temperature and pH values. In contrast with single phages, a cocktail of bacteriophages lysed all studied bacterial strains, moreover, no cases of the emergence of phage-resistant bacterial colonies were detected. Genomic data proved that isolated viruses do not carry antibiotic resistance, virulence or lysogenic genes. Three out of four bacteriophages encode polysaccharide depolymerases, which are involved in the degradation of biofilms and capsules. Conclusions The bacteriophages studied in this work are promising for further in vivo studies and might be used in phage therapy as part of a complex therapeutic and prophylactic phage preparation. The conducted studies showed that the complex preparation is more effective than individual phages. The use of the complex phage cocktail allows to extend the lytic spectrum, and significantly reduces the possibility of phage-resistant forms generation.
Collapse
Affiliation(s)
- Fedor Zurabov
- Research and Production Center "MicroMir", LLC, Moscow, Russia. .,Department of Virology, Lomonosov Moscow State University, Moscow, Russia.
| | | |
Collapse
|
4
|
Uddin R, Siraj B, Rafi S, Azam SS, Wadood A. Structure-based Virtual Screening Approach for the Discovery of Potent Inhibitors of Aminoglycoside 6'-N-Acetyltransferase Type Ib [AAC(6')-Ib] against K. pneumoniae Infections. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817666200108095912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Aminoglycoside 6'-N-acetyltransferase type Ib (AAC(6')-Ib) from
Klebsiella pneumoniae is an established drug target and has conferred insensitivity to
aminoglycosides. Aminoglycosides are often inactivated by aminoglycoside modifying enzymes
encoded by genes present in the chromosome, plasmids, and other genetic elements. The AAC(6′)-
Ib is an enzyme of clinical importance found in a wide variety of gram-negative pathogens. The
AAC(6′)-Ib enzyme is of interest not only because of its ubiquity but also because of other
characteristics e.g., it presents significant microheterogeneity at the N-termini and the aac(6′)-Ib
gene is often present in integrons, transposons, plasmids, genomic islands, and other genetic
structures. The majority of the reported potent inhibitors against the target are substrate analogs.
Therefore, there is a need to develop or discover new scaffolds other than substrate analogs as
AAC(6')-Ib inhibitor.
Objective:
The objective of this study is to set optimum parameters for the structure-based virtual
screening by multiple docking and scoring methods. The multiple scoring of each ligand also
incorporates the ‘Induced Fit’ docking effect that helps to build further confidence in the shortlisted
compounds. The method eventually is able to predict the potential inhibitors that bind to the active
site and can potentially inhibit the activity of the Aminoglycoside 6′-N-acetyltransferase type Ib
[AAC(6’)-Ib] from Klebsiella pneumoniae.
Methods:
Using the available three-dimensional structure of enzyme AAC(6')-Ib inhibitor complex,
a structure-based virtual screening was performed with the hope of prioritizing the promising leads.
In order to set up the protocol, 30,000 drug-like molecules were selected from the ChemBridge
library. Multiple docking programs, i.e. UCSF DOCK6 and AutoDock Vina have been applied in
the current study so that a consensus is developed to the predicted binding modes and thus the
docking accuracy. The Amber scores of the Dock6 – a secondary scoring function was also used to
perform the ‘Induced Fit’ effect and correspondingly re-rank the compounds.
Results:
The top 30 ranked compounds of the most frequent scored were selected from the
histogram. The 2D interactions of those 30 compounds were drawn from the Ligplot+ tool. Six of
the compounds were prioritized as potential inhibitors as they are representing the maximum
number of interactions from the rest of the compounds and also possess the drug-likeness as
predicted by the estimated ADMET properties.
Conclusion:
This study provided useful insight that the proposed compounds have the potential to
bind to the aminoglycoside binding site of AAC(6′)-Ib that may eventually inhibit the Klebsiella
pneumoniae. This study has the potential to propose putative new and novel inhibitors against a
resistant drug target of Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Bushra Siraj
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sidra Rafi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syed Sikander Azam
- National Centre for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
5
|
Zhang G, Li J, Ai G, He J, Wang C, Feng J. A new intrinsic aminoglycoside 6'-N-acetyltransferase subclass, AAC(6')-III, in Burkholderia pseudomallei, Burkholderia mallei and Burkholderia oklahomensis. J Antimicrob Chemother 2020; 75:1352-1353. [PMID: 32016409 DOI: 10.1093/jac/dkaa011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Gang Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianjuan Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guomin Ai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jialiang He
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Chao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Ramirez MS, Iriarte A, Reyes-Lamothe R, Sherratt DJ, Tolmasky ME. Small Klebsiella pneumoniae Plasmids: Neglected Contributors to Antibiotic Resistance. Front Microbiol 2019; 10:2182. [PMID: 31616398 PMCID: PMC6764390 DOI: 10.3389/fmicb.2019.02182] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Klebsiella pneumoniae is the causative agent of community- and, more commonly, hospital-acquired infections. Infections caused by this bacterium have recently become more dangerous due to the acquisition of multiresistance to antibiotics and the rise of hypervirulent variants. Plasmids usually carry genes coding for resistance to antibiotics or virulence factors, and the recent sequence of complete K. pneumoniae genomes showed that most strains harbor many of them. Unlike large plasmids, small, usually high copy number plasmids, did not attract much attention. However, these plasmids may include genes coding for specialized functions, such as antibiotic resistance, that can be expressed at high levels due to gene dosage effect. These genes may be part of mobile elements that not only facilitate their dissemination but also participate in plasmid evolution. Furthermore, high copy number plasmids may also play a role in evolution by allowing coexistence of mutated and non-mutated versions of a gene, which helps to circumvent the constraints imposed by trade-offs after certain genes mutate. Most K. pneumoniae plasmids 25-kb or smaller replicate by the ColE1-type mechanism and many of them are mobilizable. The transposon Tn1331 and derivatives were found in a high percentage of these plasmids. Another transposon that was found in representatives of this group is the bla KPC-containing Tn4401. Common resistance determinants found in these plasmids were aac(6')-Ib and genes coding for β-lactamases including carbapenemases.
Collapse
Affiliation(s)
- Maria S. Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Sciences, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Universidad de la República de Uruguay, Montevideo, Uruguay
| | | | - David J. Sherratt
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Sciences, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Ullmann IF, Tunsjø HS, Andreassen M, Nielsen KM, Lund V, Charnock C. Detection of Aminoglycoside Resistant Bacteria in Sludge Samples From Norwegian Drinking Water Treatment Plants. Front Microbiol 2019; 10:487. [PMID: 30918503 PMCID: PMC6424899 DOI: 10.3389/fmicb.2019.00487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/25/2019] [Indexed: 02/01/2023] Open
Abstract
Through a culture-based approach using sludge from drinking water treatment plants, this study reports on the presence of aminoglycoside resistant bacteria at 23 different geographical locations in Norway. Sludge samples are derived from a large environmental area including drinking water sources and their surrounding catchment areas. Aminoglycoside resistant bacteria were detected at 18 of the sample sites. Only five samples did not show any growth of isolates resistant to the selected aminoglycosides, kanamycin and gentamycin. There was a statistically significant correlation between the numbers of kanamycin and gentamycin resistant bacteria isolated from the 23 samples, perhaps suggesting common determinants of resistance. Based on 16S rRNA sequencing of 223 aminoglycoside resistant isolates, three different genera of Bacteroidetes were found to dominate across samples. These were Flavobacterium, Mucilaginibacter and Pedobacter. Further phenotypic and genotypic analyses showed that efflux pumps, reduced membrane permeability and four assayed genes coding for aminoglycoside modifying enzymes AAC(6′)-Ib, AAC(3′)-II, APH(3′)-II, APH(3′)-III, could only explain the resistance of a few of the isolates selected for testing. aph(3′)-II was detected in 1.6% of total isolates, aac(6′)-Ib and aph(3′)-III in 0.8%, while aac(3′)-II was not detected in any of the isolates. The isolates, for which potential resistance mechanisms were found, represented 13 different genera suggesting that aminoglycoside resistance is widespread in bacterial genera indigenous to sludge. The present study suggests that aminoglycoside resistant bacteria are present in Norwegian environments with limited anthropogenic exposures. However, the resistance mechanisms remain largely unknown, and further analyses, including culture-independent methods, could be performed to investigate other potential resistance mechanisms. This is, to our knowledge, the first large scale nationwide investigation of aminoglycoside resistance in the Norwegian environment.
Collapse
Affiliation(s)
- Ingvild F Ullmann
- Department of Life Sciences and Health, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Hege S Tunsjø
- Department of Life Sciences and Health, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Monica Andreassen
- Department of Zoonotic, Food- and Waterborne Infections, Norwegian Institute of Public Health, Oslo, Norway
| | - Kaare Magne Nielsen
- Department of Life Sciences and Health, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Vidar Lund
- Department of Zoonotic, Food- and Waterborne Infections, Norwegian Institute of Public Health, Oslo, Norway
| | - Colin Charnock
- Department of Life Sciences and Health, OsloMet - Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
8
|
Vila J, Sáez-López E, Johnson JR, Römling U, Dobrindt U, Cantón R, Giske CG, Naas T, Carattoli A, Martínez-Medina M, Bosch J, Retamar P, Rodríguez-Baño J, Baquero F, Soto SM. Escherichia coli: an old friend with new tidings. FEMS Microbiol Rev 2018; 40:437-463. [PMID: 28201713 DOI: 10.1093/femsre/fuw005] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/23/2015] [Accepted: 02/04/2016] [Indexed: 12/16/2022] Open
Abstract
Escherichia coli is one of the most-studied microorganisms worldwide but its characteristics are continually changing. Extraintestinal E. coli infections, such as urinary tract infections and neonatal sepsis, represent a huge public health problem. They are caused mainly by specialized extraintestinal pathogenic E. coli (ExPEC) strains that can innocuously colonize human hosts but can also cause disease upon entering a normally sterile body site. The virulence capability of such strains is determined by a combination of distinctive accessory traits, called virulence factors, in conjunction with their distinctive phylogenetic background. It is conceivable that by developing interventions against the most successful ExPEC lineages or their key virulence/colonization factors the associated burden of disease and health care costs could foreseeably be reduced in the future. On the other hand, one important problem worldwide is the increase of antimicrobial resistance shown by bacteria. As underscored in the last WHO global report, within a wide range of infectious agents including E. coli, antimicrobial resistance has reached an extremely worrisome situation that ‘threatens the achievements of modern medicine’. In the present review, an update of the knowledge about the pathogenicity, antimicrobial resistance and clinical aspects of this ‘old friend’ was presented.
Collapse
Affiliation(s)
- J Vila
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Department of Clinical Microbiology, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - E Sáez-López
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - J R Johnson
- VA Medical Center, Minneapolis, MN, USA, and University of Minnesota, Minneapolis, MN, USA
| | - U Römling
- Karolinska Institute, Stockholm, Sweden
| | - U Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - R Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - C G Giske
- Karolinska Institute, Stockholm, Sweden
| | - T Naas
- Hôpital de Bicêtre, Université Paris Sud, Le Kremlin-Bicêtre, France
| | - A Carattoli
- Department of infectious, parasitic and immune-mediated diseases, Istituto Superiore di Sanità, Rome, Italy
| | - M Martínez-Medina
- Laboratory of Molecular Microbiology, Department of Biology, University of Girona, Girona, Spain
| | - J Bosch
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Department of Clinical Microbiology, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - P Retamar
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospitales Universitarios Virgen Macarena y Virgen del Rocío, Departamento de Medicina, Universidad de Sevilla, Seville, Spain
| | - J Rodríguez-Baño
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospitales Universitarios Virgen Macarena y Virgen del Rocío, Departamento de Medicina, Universidad de Sevilla, Seville, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - F Baquero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - S M Soto
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Martini MC, Wibberg D, Lozano M, Torres Tejerizo G, Albicoro FJ, Jaenicke S, van Elsas JD, Petroni A, Garcillán-Barcia MP, de la Cruz F, Schlüter A, Pühler A, Pistorio M, Lagares A, Del Papa MF. Genomics of high molecular weight plasmids isolated from an on-farm biopurification system. Sci Rep 2016; 6:28284. [PMID: 27321040 PMCID: PMC4913263 DOI: 10.1038/srep28284] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/31/2016] [Indexed: 12/02/2022] Open
Abstract
The use of biopurification systems (BPS) constitutes an efficient strategy to eliminate pesticides from polluted wastewaters from farm activities. BPS environments contain a high microbial density and diversity facilitating the exchange of information among bacteria, mediated by mobile genetic elements (MGEs), which play a key role in bacterial adaptation and evolution in such environments. Here we sequenced and characterized high-molecular-weight plasmids from a bacterial collection of an on-farm BPS. The high-throughput-sequencing of the plasmid pool yielded a total of several Mb sequence information. Assembly of the sequence data resulted in six complete replicons. Using in silico analyses we identified plasmid replication genes whose encoding proteins represent 13 different Pfam families, as well as proteins involved in plasmid conjugation, indicating a large diversity of plasmid replicons and suggesting the occurrence of horizontal gene transfer (HGT) events within the habitat analyzed. In addition, genes conferring resistance to 10 classes of antimicrobial compounds and those encoding enzymes potentially involved in pesticide and aromatic hydrocarbon degradation were found. Global analysis of the plasmid pool suggest that the analyzed BPS represents a key environment for further studies addressing the dissemination of MGEs carrying catabolic genes and pathway assembly regarding degradation capabilities.
Collapse
Affiliation(s)
- María C Martini
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Institute for Genome Research and Systems Biology, D-33615 Bielefeld, Germany
| | - Mauricio Lozano
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Gonzalo Torres Tejerizo
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Francisco J Albicoro
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Sebastian Jaenicke
- Center for Biotechnology (CeBiTec), Bielefeld University, Institute for Genome Research and Systems Biology, D-33615 Bielefeld, Germany
| | | | - Alejandro Petroni
- Servicio Antimicrobianos, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-Consejo Superior de Investigaciones Científicas (CSIC), 39011 Santander, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-Consejo Superior de Investigaciones Científicas (CSIC), 39011 Santander, Spain
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Institute for Genome Research and Systems Biology, D-33615 Bielefeld, Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Institute for Genome Research and Systems Biology, D-33615 Bielefeld, Germany
| | - Mariano Pistorio
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Antonio Lagares
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - María F Del Papa
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| |
Collapse
|
10
|
Shi X, Lin Y, Qiu Y, Li Y, Jiang M, Chen Q, Jiang Y, Yuan J, Cao H, Hu Q, Huang S. Comparative Screening of Digestion Tract Toxic Genes in Proteus mirabilis. PLoS One 2016; 11:e0151873. [PMID: 27010388 PMCID: PMC4807080 DOI: 10.1371/journal.pone.0151873] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/04/2016] [Indexed: 11/18/2022] Open
Abstract
Proteus mirabilis is a common urinary tract pathogen, and may induce various inflammation symptoms. Its notorious ability to resist multiple antibiotics and to form urinary tract stones makes its treatment a long and painful process, which is further challenged by the frequent horizontal gene transferring events in P. mirabilis genomes. Three strains of P. mirabilis C02011/C04010/C04013 were isolated from a local outbreak of a food poisoning event in Shenzhen, China. Our hypothesis is that new genes may have been acquired horizontally to exert the digestion tract infection and toxicity. The functional characterization of these three genomes shows that each of them independently acquired dozens of virulent genes horizontally from the other microbial genomes. The representative strain C02011 induces the symptoms of both vomit and diarrhea, and has recently acquired a complete type IV secretion system and digestion tract toxic genes from the other bacteria.
Collapse
Affiliation(s)
- Xiaolu Shi
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yiman Lin
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yaqun Qiu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yinghui Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qiongcheng Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yixiang Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jianhui Yuan
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hong Cao
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qinghua Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- * E-mail: (QHH); (SHH)
| | - Shenghe Huang
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
- * E-mail: (QHH); (SHH)
| |
Collapse
|
11
|
Plasmid-Mediated Antibiotic Resistance and Virulence in Gram-negatives: the Klebsiella pneumoniae Paradigm. Microbiol Spectr 2014; 2:1-15. [PMID: 25705573 DOI: 10.1128/microbiolspec.plas-0016-2013] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Plasmids harbor genes coding for specific functions including virulence factors and antibiotic resistance that permit bacteria to survive the hostile environment found in the host and resist treatment. Together with other genetic elements such as integrons and transposons, and using a variety of mechanisms, plasmids participate in the dissemination of these traits resulting in the virtual elimination of barriers among different kinds of bacteria. In this article we review the current information about physiology and role in virulence and antibiotic resistance of plasmids from the gram-negative opportunistic pathogen Klebsiella pneumoniae. This bacterium has acquired multidrug resistance and is the causative agent of serious communityand hospital-acquired infections. It is also included in the recently defined ESKAPE group of bacteria that cause most of US hospital infections.
Collapse
|
12
|
Bellanger X, Payot S, Leblond-Bourget N, Guédon G. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev 2014; 38:720-60. [DOI: 10.1111/1574-6976.12058] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/15/2013] [Accepted: 12/19/2013] [Indexed: 11/28/2022] Open
|
13
|
Ramirez MS, Xie G, Johnson S, Davenport K, van Duin D, Perez F, Bonomo RA, Chain P, Tolmasky ME. Genome Sequences of Two Carbapenemase-Resistant Klebsiella pneumoniae ST258 Isolates. GENOME ANNOUNCEMENTS 2014; 2:e00558-14. [PMID: 24948759 PMCID: PMC4064024 DOI: 10.1128/genomea.00558-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/06/2014] [Indexed: 11/23/2022]
Abstract
Klebsiella pneumoniae, an ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen, has acquired multiple antibiotic resistance genes and is becoming a serious public health threat. Here, we report the genome sequences of two representative strains of K. pneumoniae from the emerging K. pneumoniae carbapenemase (KPC) outbreak in northeast Ohio belonging to sequence type 258 (ST258) (isolates Kb140 and Kb677, which were isolated from blood and urine, respectively). Both isolates harbor a blaKPC gene, and strain Kb140 carries blaKPC-2, while Kb677 carries blaKPC-3.
Collapse
Affiliation(s)
| | - Gang Xie
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | | | - David van Duin
- University of North Carolina, Chapel Hill, North Carolina, USA
| | - Federico Perez
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | | | - Patrick Chain
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University, Fullerton, Fullerton, California, USA
| |
Collapse
|
14
|
Załuga J, Stragier P, Baeyen S, Haegeman A, Van Vaerenbergh J, Maes M, De Vos P. Comparative genome analysis of pathogenic and non-pathogenic Clavibacter strains reveals adaptations to their lifestyle. BMC Genomics 2014; 15:392. [PMID: 24885539 PMCID: PMC4059874 DOI: 10.1186/1471-2164-15-392] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/09/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The genus Clavibacter harbors economically important plant pathogens infecting agricultural crops such as potato and tomato. Although the vast majority of Clavibacter strains are pathogenic, there is an increasing number of non-pathogenic isolates reported. Non-pathogenic Clavibacter strains isolated from tomato seeds are particularly problematic because they affect the current detection and identification tests for Clavibacter michiganensis subsp. michiganensis (Cmm), which is regulated with a zero tolerance in tomato seed. Their misidentification as pathogenic Cmm hampers a clear judgment on the seed quality and health. RESULTS To get more insight in the genetic features linked to the lifestyle of these bacteria, a whole-genome sequence of the tomato seed-borne non-pathogenic Clavibacter LMG 26808 was determined. To gain a better understanding of the molecular determinants of pathogenicity, the genome sequence of LMG 26808 was compared with that of the pathogenic Cmm strain (NCPPB 382). The comparative analysis revealed that LMG 26808 does not contain plasmids pCM1 and pCM2 and also lacks the majority of important virulence factors described so far for pathogenic Cmm. This explains its apparent non-pathogenic nature in tomato plants. Moreover, the genome analysis of LMG 26808 detected sequences from a plasmid originating from a member of Enterobacteriaceae/Klebsiella relative. Genes received that way and coding for antibiotic resistance may provide a competitive advantage for survival of LMG 26808 in its ecological niche. Genetically, LMG 26808 was the most similar to the pathogenic Cmm NCPPB 382 but contained more mobile genetic elements. The genome of this non-pathogenic Clavibacter strain contained also a high number of transporters and regulatory genes. CONCLUSIONS The genome sequence of the non-pathogenic Clavibacter strain LMG 26808 and the comparative analyses with other pathogenic Clavibacter strains provided a better understanding of the genetic bases of virulence and adaptation mechanisms present in the genus Clavibacter.
Collapse
Affiliation(s)
- Joanna Załuga
- />Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, Gent, B-9000 Belgium
| | - Pieter Stragier
- />Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, Gent, B-9000 Belgium
| | - Steve Baeyen
- />Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research - ILVO, Burg. Van Gansberghelaan 96, Merelbeke, B-9820 Belgium
| | - Annelies Haegeman
- />Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research - ILVO, Burg. Van Gansberghelaan 96, Merelbeke, B-9820 Belgium
| | - Johan Van Vaerenbergh
- />Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research - ILVO, Burg. Van Gansberghelaan 96, Merelbeke, B-9820 Belgium
| | - Martine Maes
- />Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research - ILVO, Burg. Van Gansberghelaan 96, Merelbeke, B-9820 Belgium
| | - Paul De Vos
- />Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, Gent, B-9000 Belgium
- />BCCM/LMG Bacteria collection - Laboratory of Microbiology Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, Gent, B-9000 Belgium
| |
Collapse
|
15
|
Inhibition of aminoglycoside 6'-N-acetyltransferase type Ib by zinc: reversal of amikacin resistance in Acinetobacter baumannii and Escherichia coli by a zinc ionophore. Antimicrob Agents Chemother 2014; 58:4238-41. [PMID: 24820083 DOI: 10.1128/aac.00129-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro activity of the aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib] was inhibited by ZnCl2 with a 50% inhibitory concentration (IC50) of 15 μM. Growth of Acinetobacter baumannii or Escherichia coli harboring aac(6')-Ib in cultures containing 8 μg/ml amikacin was significantly inhibited by the addition of 2 μM Zn(2+) in complex with the ionophore pyrithione (ZnPT).
Collapse
|
16
|
Ramirez MS, Nikolaidis N, Tolmasky ME. Rise and dissemination of aminoglycoside resistance: the aac(6')-Ib paradigm. Front Microbiol 2013; 4:121. [PMID: 23730301 PMCID: PMC3656343 DOI: 10.3389/fmicb.2013.00121] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/29/2013] [Indexed: 11/21/2022] Open
Abstract
Enzymatic modification is a prevalent mechanism by which bacteria defeat the action of antibiotics. Aminoglycosides are often inactivated by aminoglycoside modifying enzymes encoded by genes present in the chromosome, plasmids, and other genetic elements. The AAC(6′)-Ib (aminoglycoside 6′-N-acetyltransferase type Ib) is an enzyme of clinical importance found in a wide variety of gram-negative pathogens. The AAC(6′)-Ib enzyme is of interest not only because of his ubiquity but also because of other characteristics, it presents significant microheterogeneity at the N-termini and the aac(6′)-Ib gene is often present in integrons, transposons, plasmids, genomic islands, and other genetic structures. Excluding the highly heterogeneous N-termini, there are 45 non-identical AAC(6′)-Ib related entries in the NCBI database, 32 of which have identical name in spite of not having identical amino acid sequence. While some variants conserved similar properties, others show dramatic differences in specificity, including the case of AAC(6′)-Ib-cr that mediates acetylation of ciprofloxacin representing a rare case where a resistance enzyme acquires the ability to utilize an antibiotic of a different class as substrate. Efforts to utilize antisense technologies to turn off expression of the gene or to identify enzymatic inhibitors to induce phenotypic conversion to susceptibility are under way.
Collapse
Affiliation(s)
- María S Ramirez
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton, CA, USA
| | | | | |
Collapse
|
17
|
Characterization of pKP1433, a novel KPC-2-encoding plasmid from Klebsiella pneumoniae sequence type 340. Antimicrob Agents Chemother 2013; 57:3427-9. [PMID: 23629721 DOI: 10.1128/aac.00054-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleotide sequence of pKP1433 (55,417 bp), a blaKPC-2-carrying plasmid from Klebsiella pneumoniae sequence type 340, was determined. pKP1433 displayed extensive sequence and structural similarities with the IncN plasmids possessing the KPC-2-encoding Tn4401b isoform. However, the replication, partitioning, and stability of pKP1433 were determined by sequences related to diverse non-IncN plasmids.
Collapse
|
18
|
Bai J, Liu Q, Yang Y, Wang J, Yang Y, Li J, Li P, Li X, Xi Y, Ying J, Ren P, Yang L, Ni L, Wu J, Bao Q, Zhou T. Insights into the evolution of gene organization and multidrug resistance from Klebsiella pneumoniae plasmid pKF3-140. Gene 2013; 519:60-6. [PMID: 23402892 DOI: 10.1016/j.gene.2013.01.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 12/20/2012] [Accepted: 01/27/2013] [Indexed: 01/02/2023]
Abstract
Plasmid-mediated transfer of drug-resistance genes among various bacterial species is considered one of the most important mechanisms for the spread of multidrug resistance. To gain insights into the evolution of gene organization and antimicrobial resistance in clinical bacterial samples, a complete plasmid genome of Klebsiella pneumoniae pKF3-140 is determined, which has a circular chromosome of 147,416bp in length. Among the 203 predicted genes, 142 have function assignment and about 50 appear to be involved in plasmid replication, maintenance, conjugative transfer, iron acquisition and transport, and drug resistance. Extensive comparative genomic analyses revealed that pKF3-140 exhibits a rather low sequence similarity and structural conservation with other reported K. pneumoniae plasmids. In contrast, the overall organization of pKF3-140 is highly similar to Escherichia coli plasmids p1ESCUM and pUTI89, which indicates the possibility that K. pneumoniae pKF3-140 may have a potential origin in E. coli. Meanwhile, interestingly, several drug resistant genes show high similarity to the plasmid pU302L in Salmonella enterica serovar Typhimurium U302 strain G8430 and the plasmid pK245 in K. pneumoniae. This mosaic pattern of sequence similarities suggests that pKF3-140 might have arisen from E. coli and acquired the resistance genes from a variety of enteric bacteria and underscores the importance of a further understanding of horizontal gene transfer among enteric bacteria.
Collapse
Affiliation(s)
- Jie Bai
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, and The First Affiliated Hospital of Wenzhou Medical College, Wenzhou 325000, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ramirez MS, Xie G, Marshall SH, Hujer KM, Chain PSG, Bonomo RA, Tolmasky ME. Multidrug-resistant (MDR) Klebsiella pneumoniae clinical isolates: a zone of high heterogeneity (HHZ) as a tool for epidemiological studies. Clin Microbiol Infect 2012; 18:E254-8. [PMID: 22551038 DOI: 10.1111/j.1469-0691.2012.03886.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Comparison of genome-wide, high-resolution restriction maps of Klebsiella pneumoniae clinical isolates, including an NDM-1 producer, and in silico-generated restriction maps of sequenced genomes revealed a highly heterogeneous region we designated the 'high heterogeneity zone' (HHZ). The HHZ consists of several regions, including a 'hot spot' prone to insertions and other rearrangements. The HHZ is a characteristic genomic area that can be used in the identification and tracking of outbreak-causing strains.
Collapse
Affiliation(s)
- M S Ramirez
- Department of Biological Science, Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA 92831-3599, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Eppinger M, Radnedge L, Andersen G, Vietri N, Severson G, Mou S, Ravel J, Worsham PL. Novel plasmids and resistance phenotypes in Yersinia pestis: unique plasmid inventory of strain Java 9 mediates high levels of arsenic resistance. PLoS One 2012; 7:e32911. [PMID: 22479347 PMCID: PMC3316555 DOI: 10.1371/journal.pone.0032911] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 02/06/2012] [Indexed: 12/21/2022] Open
Abstract
Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium.
Collapse
Affiliation(s)
- Mark Eppinger
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Lyndsay Radnedge
- Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Gary Andersen
- Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Nicholas Vietri
- United States Army Medical Research Institute of Infectious Diseases, Bacteriology Division, Fort Detrick, Maryland, United States of America
| | - Grant Severson
- United States Army Medical Research Institute of Infectious Diseases, Bacteriology Division, Fort Detrick, Maryland, United States of America
| | - Sherry Mou
- United States Army Medical Research Institute of Infectious Diseases, Bacteriology Division, Fort Detrick, Maryland, United States of America
| | - Jacques Ravel
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Patricia L. Worsham
- United States Army Medical Research Institute of Infectious Diseases, Bacteriology Division, Fort Detrick, Maryland, United States of America
| |
Collapse
|
21
|
Alavi MR, Antonic V, Ravizee A, Weina PJ, Izadjoo M, Stojadinovic A. An Enterobacter plasmid as a new genetic background for the transposon Tn1331. Infect Drug Resist 2011; 4:209-13. [PMID: 22259249 PMCID: PMC3259689 DOI: 10.2147/idr.s25408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Genus Enterobacter includes important opportunistic nosocomial pathogens that could infect complex wounds. The presence of antibiotic resistance genes in these microorganisms represents a challenging clinical problem in the treatment of these wounds. In the authors’ screening of antibiotic-resistant bacteria from complex wounds, an Enterobacter species was isolated that harbors antibiotic-resistant plasmids conferring resistance to Escherichia coli. The aim of this study was to identify the resistance genes carried by one of these plasmids. Methods The plasmids from the Enterobacter isolate were propagated in E. coli and one of the plasmids, designated as pR23, was sequenced by the Sanger method using fluorescent dyeterminator chemistry on a genetic analyzer. The assembled sequence was annotated by search of the GenBank database. Results Plasmid pR23 is composed of the transposon Tn1331 and a backbone plasmid that is identical to the plasmid pPIGDM1 from Enterobacter agglomerans. The multidrug-resistance transposon Tn1331, which confers resistance to aminoglycoside and beta lactam antibiotics, has been previously isolated only from Klebsiella. The Enterobacter plasmid pPIGDM1, which carries a ColE1-like origin of replication and has no apparent selective marker, appears to provide a backbone for propagation of Tn1331 in Enterobacter. The recognition sequence of Tn1331 transposase for insertion into pPIGDM1 is the pentanucleotide TATTA, which occurs only once throughout the length of this plasmid. Conclusion Transposition of Tn1331 into the Enterobacter plasmid pPIGDM1 enables this transposon to propagate in this Enterobacter. Since Tn1331 was previously isolated only from Klebsiella, this report suggests horizontal transfer of this transposon between the two bacterial genera.
Collapse
Affiliation(s)
- Mohammad R Alavi
- Division of Wound Biology and Translational Research, Armed Forces Institute of Pathology and American Registry of Pathology, Washington DC
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Plasmids are key vectors of horizontal gene transfer and essential genetic engineering tools. They code for genes involved in many aspects of microbial biology, including detoxication, virulence, ecological interactions, and antibiotic resistance. While many studies have decorticated the mechanisms of mobility in model plasmids, the identification and characterization of plasmid mobility from genome data are unexplored. By reviewing the available data and literature, we established a computational protocol to identify and classify conjugation and mobilization genetic modules in 1,730 plasmids. This allowed the accurate classification of proteobacterial conjugative or mobilizable systems in a combination of four mating pair formation and six relaxase families. The available evidence suggests that half of the plasmids are nonmobilizable and that half of the remaining plasmids are conjugative. Some conjugative systems are much more abundant than others and preferably associated with some clades or plasmid sizes. Most very large plasmids are nonmobilizable, with evidence of ongoing domestication into secondary chromosomes. The evolution of conjugation elements shows ancient divergence between mobility systems, with relaxases and type IV coupling proteins (T4CPs) often following separate paths from type IV secretion systems. Phylogenetic patterns of mobility proteins are consistent with the phylogeny of the host prokaryotes, suggesting that plasmid mobility is in general circumscribed within large clades. Our survey suggests the existence of unsuspected new relaxases in archaea and new conjugation systems in cyanobacteria and actinobacteria. Few genes, e.g., T4CPs, relaxases, and VirB4, are at the core of plasmid conjugation, and together with accessory genes, they have evolved into specific systems adapted to specific physiological and ecological contexts.
Collapse
|
23
|
Abstract
Aminoglycosides have been an essential component of the armamentarium in the treatment of life-threatening infections. Unfortunately, their efficacy has been reduced by the surge and dissemination of resistance. In some cases the levels of resistance reached the point that rendered them virtually useless. Among many known mechanisms of resistance to aminoglycosides, enzymatic modification is the most prevalent in the clinical setting. Aminoglycoside modifying enzymes catalyze the modification at different -OH or -NH₂ groups of the 2-deoxystreptamine nucleus or the sugar moieties and can be nucleotidyltransferases, phosphotransferases, or acetyltransferases. The number of aminoglycoside modifying enzymes identified to date as well as the genetic environments where the coding genes are located is impressive and there is virtually no bacteria that is unable to support enzymatic resistance to aminoglycosides. Aside from the development of new aminoglycosides refractory to as many as possible modifying enzymes there are currently two main strategies being pursued to overcome the action of aminoglycoside modifying enzymes. Their successful development would extend the useful life of existing antibiotics that have proven effective in the treatment of infections. These strategies consist of the development of inhibitors of the enzymatic action or of the expression of the modifying enzymes.
Collapse
|
24
|
Genome dynamics and its impact on evolution of Escherichia coli. Med Microbiol Immunol 2010; 199:145-54. [PMID: 20445988 DOI: 10.1007/s00430-010-0161-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Indexed: 02/08/2023]
Abstract
The Escherichia coli genome consists of a conserved part, the so-called core genome, which encodes essential cellular functions and of a flexible, strain-specific part. Genes that belong to the flexible genome code for factors involved in bacterial fitness and adaptation to different environments. Adaptation includes increase in fitness and colonization capacity. Pathogenic as well as non-pathogenic bacteria carry mobile and accessory genetic elements such as plasmids, bacteriophages, genomic islands and others, which code for functions required for proper adaptation. Escherichia coli is a very good example to study the interdependency of genome architecture and lifestyle of bacteria. Thus, these species include pathogenic variants as well as commensal bacteria adapted to different host organisms. In Escherichia coli, various genetic elements encode for pathogenicity factors as well as factors, which increase the fitness of non-pathogenic bacteria. The processes of genome dynamics, such as gene transfer, genome reduction, rearrangements as well as point mutations contribute to the adaptation of the bacteria into particular environments. Using Escherichia coli model organisms, such as uropathogenic strain 536 or commensal strain Nissle 1917, we studied mechanisms of genome dynamics and discuss these processes in the light of the evolution of microbes.
Collapse
|
25
|
Zhao F, Bai J, Wu J, Liu J, Zhou M, Xia S, Wang S, Yao X, Yi H, Lin M, Gao S, Zhou T, Xu Z, Niu Y, Bao Q. Sequencing and genetic variation of multidrug resistance plasmids in Klebsiella pneumoniae. PLoS One 2010; 5:e10141. [PMID: 20405037 PMCID: PMC2853573 DOI: 10.1371/journal.pone.0010141] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 03/22/2010] [Indexed: 11/27/2022] Open
Abstract
Background The development of multidrug resistance is a major problem in the treatment of pathogenic microorganisms by distinct antimicrobial agents. Characterizing the genetic variation among plasmids from different bacterial species or strains is a key step towards understanding the mechanism of virulence and their evolution. Results We applied a deep sequencing approach to 206 clinical strains of Klebsiella pneumoniae collected from 2002 to 2008 to understand the genetic variation of multidrug resistance plasmids, and to reveal the dynamic change of drug resistance over time. First, we sequenced three plasmids (70 Kb, 94 Kb, and 147 Kb) from a clonal strain of K. pneumoniae using Sanger sequencing. Using the Illumina sequencing technology, we obtained more than 17 million of short reads from two pooled plasmid samples. We mapped these short reads to the three reference plasmid sequences, and identified a large number of single nucleotide polymorphisms (SNPs) in these pooled plasmids. Many of these SNPs are present in drug-resistance genes. We also found that a significant fraction of short reads could not be mapped to the reference sequences, indicating a high degree of genetic variation among the collection of K. pneumoniae isolates. Moreover, we identified that plasmid conjugative transfer genes and antibiotic resistance genes are more likely to suffer from positive selection, as indicated by the elevated rates of nonsynonymous substitution. Conclusion These data represent the first large-scale study of genetic variation in multidrug resistance plasmids and provide insight into the mechanisms of plasmid diversification and the genetic basis of antibiotic resistance.
Collapse
Affiliation(s)
- Fangqing Zhao
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
- Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jie Bai
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jinyu Wu
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Jing Liu
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Mingming Zhou
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Shilin Xia
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Shanjin Wang
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Xiaoding Yao
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Huiguang Yi
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Meili Lin
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Shengjie Gao
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Tieli Zhou
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Zuyuan Xu
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Yuxin Niu
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
- * E-mail: (YN); (QB)
| | - Qiyu Bao
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
- * E-mail: (YN); (QB)
| |
Collapse
|
26
|
Eppinger M, Worsham PL, Nikolich MP, Riley DR, Sebastian Y, Mou S, Achtman M, Lindler LE, Ravel J. Genome sequence of the deep-rooted Yersinia pestis strain Angola reveals new insights into the evolution and pangenome of the plague bacterium. J Bacteriol 2010; 192:1685-99. [PMID: 20061468 PMCID: PMC2832528 DOI: 10.1128/jb.01518-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 12/25/2009] [Indexed: 11/20/2022] Open
Abstract
To gain insights into the origin and genome evolution of the plague bacterium Yersinia pestis, we have sequenced the deep-rooted strain Angola, a virulent Pestoides isolate. Its ancient nature makes this atypical isolate of particular importance in understanding the evolution of plague pathogenicity. Its chromosome features a unique genetic make-up intermediate between modern Y. pestis isolates and its evolutionary ancestor, Y. pseudotuberculosis. Our genotypic and phenotypic analyses led us to conclude that Angola belongs to one of the most ancient Y. pestis lineages thus far sequenced. The mobilome carries the first reported chimeric plasmid combining the two species-specific virulence plasmids. Genomic findings were validated in virulence assays demonstrating that its pathogenic potential is distinct from modern Y. pestis isolates. Human infection with this particular isolate would not be diagnosed by the standard clinical tests, as Angola lacks the plasmid-borne capsule, and a possible emergence of this genotype raises major public health concerns. To assess the genomic plasticity in Y. pestis, we investigated the global gene reservoir and estimated the pangenome at 4,844 unique protein-coding genes. As shown by the genomic analysis of this evolutionary key isolate, we found that the genomic plasticity within Y. pestis clearly was not as limited as previously thought, which is strengthened by the detection of the largest number of isolate-specific single-nucleotide polymorphisms (SNPs) currently reported in the species. This study identified numerous novel genetic signatures, some of which seem to be intimately associated with plague virulence. These markers are valuable in the development of a robust typing system critical for forensic, diagnostic, and epidemiological studies.
Collapse
Affiliation(s)
- Mark Eppinger
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| | - Patricia L. Worsham
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| | - Mikeljon P. Nikolich
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| | - David R. Riley
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| | - Yinong Sebastian
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| | - Sherry Mou
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| | - Mark Achtman
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| | - Luther E. Lindler
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| | - Jacques Ravel
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| |
Collapse
|
27
|
Naturally competent Acinetobacter baumannii clinical isolate as a convenient model for genetic studies. J Clin Microbiol 2010; 48:1488-90. [PMID: 20181905 DOI: 10.1128/jcm.01264-09] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii A118 was isolated from a patient's blood culture. It is susceptible to several antibiotics, is naturally competent, and supports replication and stable maintenance of four plasmid replicons. A. baumannii A118 took up a fluorophore-labeled oligonucleotide analog. These characteristics make this isolate a convenient model for genetic studies.
Collapse
|
28
|
Yi H, Xi Y, Liu J, Wang J, Wu J, Xu T, Chen W, Chen B, Lin M, Wang H, Zhou M, Li J, Xu Z, Jin S, Bao Q. Sequence analysis of pKF3-70 in Klebsiella pneumoniae: probable origin from R100-like plasmid of Escherichia coli. PLoS One 2010; 5:e8601. [PMID: 20066042 PMCID: PMC2797631 DOI: 10.1371/journal.pone.0008601] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Accepted: 12/01/2009] [Indexed: 11/25/2022] Open
Abstract
Background Klebsiella pneumoniae is a clinically significant species of bacterium which causes a variety of diseases. Clinical treatment of this bacterial infection is greatly hindered by the emergence of multidrug-resistant strains. The resistance is largely due to the acquisition of plasmids carrying drug-resistant as well as pathogenic genes, and its conjugal transfer facilitates the spread of resistant phenotypes. Methodology/Principal Findings The 70,057 bp plasmid pKF3-70, commonly found in Klebsiella pneumoniae, is composed of five main functional modules, including regions involved in replication, partition, conjugation, transfer leading, and variable regions. This plasmid is more similar to several Escherichia coli plasmids than any previously reported K. pneumoniae plasmids and pKF3-70 like plasmids share a common and conserved backbone sequence. The replication system of the pKF3-70 is 100% identical to that of RepFII plasmid R100 from E. coli. A beta-lactamase gene ctx-m-14 with its surrounding insertion elements (ISEcp1, truncated IS903 and a 20 bp inverted repeat sequence) may compose an active transposon which is directly bordered by two putative target repeats “ATTAC.” Conclusions/Significance The K. pneumoniae plasmid pKF3-70 carries an extended-spectrum beta-lactamase gene, ctx-m-14. The conjugative characteristic makes it a widespread plasmid among genetically relevant genera which poses significant threat to public health.
Collapse
Affiliation(s)
- Huiguang Yi
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
- T-Life Research Center, Fudan University, Shanghai, China
| | - Yali Xi
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Jing Liu
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Junrong Wang
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Jinyu Wu
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Teng Xu
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Wei Chen
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Biaobang Chen
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Meili Lin
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Huan Wang
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Mingming Zhou
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Jinsong Li
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Zuyuan Xu
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Qiyu Bao
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
- * E-mail:
| |
Collapse
|
29
|
Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae. Infect Immun 2009; 77:4696-703. [PMID: 19720753 DOI: 10.1128/iai.00522-09] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A genomic island encoding the biosynthesis and secretion pathway of putative hybrid nonribosomal peptide-polyketide colibactin has been recently described in Escherichia coli. Colibactin acts as a cyclomodulin and blocks the eukaryotic cell cycle. The origin and prevalence of the colibactin island among enterobacteria are unknown. We therefore screened 1,565 isolates of different genera and species related to the Enterobacteriaceae by PCR for the presence of this DNA element. The island was detected not only in E. coli but also in Klebsiella pneumoniae, Enterobacter aerogenes, and Citrobacter koseri isolates. It was highly conserved among these species and was always associated with the yersiniabactin determinant. Structural variations between individual strains were only observed in an intergenic region containing variable numbers of tandem repeats. In E. coli, the colibactin island was usually restricted to isolates of phylogenetic group B2 and inserted at the asnW tRNA locus. Interestingly, in K. pneumoniae, E. aerogenes, C. koseri, and three E. coli strains of phylogenetic group B1, the functional colibactin determinant was associated with a genetic element similar to the integrative and conjugative elements ICEEc1 and ICEKp1 and to several enterobacterial plasmids. Different asn tRNA genes served as chromosomal insertion sites of the ICE-associated colibactin determinant: asnU in the three E. coli strains of ECOR group B1, and different asn tRNA loci in K. pneumoniae. The detection of the colibactin genes associated with an ICE-like element in several enterobacteria provides new insights into the spread of this gene cluster and its putative mode of transfer. Our results shed light on the mechanisms of genetic exchange between members of the family Enterobacteriaceae.
Collapse
|
30
|
A blaVEB-1 variant, blaVEB-6, associated with repeated elements in a complex genetic structure. Antimicrob Agents Chemother 2009; 53:1693-7. [PMID: 19139283 DOI: 10.1128/aac.01313-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
bla(VEB-6) was found on the Proteus mirabilis chromosome in a context similar to those of bla(VEB-1a) and bla(VEB-1b), in a truncated gene cassette flanked by 135-bp elements and duplications of the 3'-conserved segment of class 1 integrons. A linked aacA4-aadB-dfrA1-orfC cassette array includes components of Tn1331, illustrating the complex mosaicism of multiresistance regions.
Collapse
|
31
|
Ramirez MS, Parenteau TR, Centron D, Tolmasky ME. Functional characterization of Tn1331 gene cassettes. J Antimicrob Chemother 2008; 62:669-73. [PMID: 18632872 DOI: 10.1093/jac/dkn279] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES The transposon Tn1331 possesses a region including three antibiotic resistance genes with the structure aac(6')-Ib-attC-aadA1-attI1*-bla(OXA-9)-attC, which potentially includes four gene cassettes. Experimental data on the mobility of fusion cassettes as well as those on mobility of cassettes in a genetic environment such as Tn1331, which lacks an integrase gene, are limited. Therefore, experiments using pJHCMW1, a plasmid harbouring this transposon, in the presence of IntI1 supplied in trans were carried out to define which cassettes are mobile in vivo. METHODS In vivo excision of resistance genes was investigated in Escherichia coli cells harbouring pJHCMW1 and in a recombinant clone that included the intI1 gene under the control of the P(tac) promoter. Plasmid DNA was purified and subjected to PCR analysis, and DNA sequencing of PCR products was performed to determine whether excision had occurred. RESULTS AND CONCLUSIONS In vivo recombination experiments showed that the fused aadA1-attI1*-bla(OXA-9)-attC gene cassette was excised in the presence of IntI1. The excision of a DNA fragment including aadA1-attI1* was also detected but at a lower frequency. The analysis of the latter recombination reaction showed that, although attI1* includes only a small fraction of the complete attI1 sequence, it is still used as a substrate by IntI1, albeit in a very inefficient manner.
Collapse
Affiliation(s)
- Maria S Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850, USA
| | | | | | | |
Collapse
|