1
|
Englisch CN, Diebolt CM, Kirstein E, Wahl V, Wartenberg P, Schaudien D, Beckmann A, Laschke MW, Krasteva-Christ G, Gudermann T, Chubanov V, Boehm U, Tschernig T. TRPM6 in murine kidneys-of targets and antibodies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03951-0. [PMID: 40025338 DOI: 10.1007/s00210-025-03951-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Magnesium is the fourth most abundant cation in the human organism. As a key-player in many enzymatic reactions, magnesium homeostasis disbalance can cause severe disorders. In the early 2000s, the transient receptor potential melastatin channel 6 (TRPM6) was identified as a critical protein in renal Mg2+-reabsorption in the distal convoluted tubule (DCT). As the key-interface responsible for salt/water adaptation to environmental changes, the kidney is a highly dynamic system. Therefore, renal TRPM6 expression and Mg2+-reabsorption might not be restricted to the DCT, as previously indicated. To address this, protein targeting is mandatory since genomic detection is insufficient to conclude on functional expression. For this purpose, we used a polyclonal TRPM6 antibody from an established manufacturer and detected immunostaining in murine proximal and distal tubules. As a matter of fact, the specificity of most commercially available TRPM6 antibodies is insufficiently validated which relies on the lack of constitutive trpm6 knockouts. Therefore, conditional trpm6 knockout mice were used for control experiments. Similar signals were observed in the knockout tissue when compared to wildtype using the TRPM6 antibody. Overlaps with TRPM7 epitopes or other peptides are conceivable. Thus, TRPM6 immunohistochemistry and immunofluorescence results are difficult to interpret, and the spectrum of renal TRPM6 expression is not yet elucidated.
Collapse
Affiliation(s)
- Colya N Englisch
- Institute of Anatomy and Cell Biology, Saarland University, Kirrberger Strasse 100, 66421, Homburg/Saar, Germany
| | - Coline M Diebolt
- Institute of Anatomy and Cell Biology, Saarland University, Kirrberger Strasse 100, 66421, Homburg/Saar, Germany
| | - Emilie Kirstein
- Institute of Anatomy and Cell Biology, Saarland University, Kirrberger Strasse 100, 66421, Homburg/Saar, Germany
| | - Vanessa Wahl
- Institute of Pharmacology, Saarland University, 66421, Homburg/Saar, Germany
| | - Philipp Wartenberg
- Institute of Pharmacology, Saarland University, 66421, Homburg/Saar, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625, Hannover, Germany
| | - Anja Beckmann
- Institute of Anatomy and Cell Biology, Saarland University, Kirrberger Strasse 100, 66421, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Gabriela Krasteva-Christ
- Institute of Anatomy and Cell Biology, Saarland University, Kirrberger Strasse 100, 66421, Homburg/Saar, Germany
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University Munich, Munich, Germany
| | - Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University Munich, Munich, Germany
| | - Ulrich Boehm
- Institute of Pharmacology, Saarland University, 66421, Homburg/Saar, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, Kirrberger Strasse 100, 66421, Homburg/Saar, Germany.
| |
Collapse
|
2
|
Chubanov V, Köttgen M, Touyz RM, Gudermann T. TRPM channels in health and disease. Nat Rev Nephrol 2024; 20:175-187. [PMID: 37853091 DOI: 10.1038/s41581-023-00777-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
Different cell channels and transporters tightly regulate cytoplasmic levels and the intraorganelle distribution of cations. Perturbations in these processes lead to human diseases that are frequently associated with kidney impairment. The family of melastatin-related transient receptor potential (TRPM) channels, which has eight members in mammals (TRPM1-TRPM8), includes ion channels that are highly permeable to divalent cations, such as Ca2+, Mg2+ and Zn2+ (TRPM1, TRPM3, TRPM6 and TRPM7), non-selective cation channels (TRPM2 and TRPM8) and monovalent cation-selective channels (TRPM4 and TRPM5). Three family members contain an enzymatic protein moiety: TRPM6 and TRPM7 are fused to α-kinase domains, whereas TRPM2 is linked to an ADP-ribose-binding NUDT9 homology domain. TRPM channels also function as crucial cellular sensors involved in many physiological processes, including mineral homeostasis, blood pressure, cardiac rhythm and immunity, as well as photoreception, taste reception and thermoreception. TRPM channels are abundantly expressed in the kidney. Mutations in TRPM genes cause several inherited human diseases, and preclinical studies in animal models of human disease have highlighted TRPM channels as promising new therapeutic targets. Here, we provide an overview of this rapidly evolving research area and delineate the emerging role of TRPM channels in kidney pathophysiology.
Collapse
Affiliation(s)
- Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.
| | - Michael Köttgen
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, Freiburg, Germany
| | - Rhian M Touyz
- Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.
| |
Collapse
|
3
|
Suzuki S, Wakano C, Monteilh-Zoller MK, Cullen AJ, Fleig A, Penner R. Cannabigerolic Acid (CBGA) Inhibits the TRPM7 Ion Channel Through its Kinase Domain. FUNCTION 2023; 5:zqad069. [PMID: 38162115 PMCID: PMC10757070 DOI: 10.1093/function/zqad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Cannabinoids are a major class of compounds produced by the plant Cannabis sativa. Previous work has demonstrated that the main cannabinoids cannabidiol (CBD) and tetrahydrocannabinol (THC) can have some beneficial effects on pain, inflammation, epilepsy, and chemotherapy-induced nausea and vomiting. While CBD and THC represent the two major plant cannabinoids, some hemp varieties with enzymatic deficiencies produce mainly cannabigerolic acid (CBGA). We recently reported that CBGA has a potent inhibitory effect on both Store-Operated Calcium Entry (SOCE) via inhibition of Calcium Release-Activated Calcium (CRAC) channels as well as currents carried by the channel-kinase TRPM7. Importantly, CBGA prevented kidney damage and suppressed mRNA expression of inflammatory cytokines through inhibition of these mechanisms in an acute nephropathic mouse model. In the present study, we investigate the most common major and minor cannabinoids to determine their potential efficacy on TRPM7 channel function. We find that approximately half of the tested cannabinoids suppress TRPM7 currents to some degree, with CBGA having the strongest inhibitory effect on TRPM7. We determined that the CBGA-mediated inhibition of TRPM7 requires a functional kinase domain, is sensitized by both intracellular Mg⋅ATP and free Mg2+ and reduced by increases in intracellular Ca2+. Finally, we demonstrate that CBGA inhibits native TRPM7 channels in a B lymphocyte cell line. In conclusion, we demonstrate that CBGA is the most potent cannabinoid in suppressing TRPM7 activity and possesses therapeutic potential for diseases in which TRPM7 is known to play an important role such as cancer, stroke, and kidney disease.
Collapse
Affiliation(s)
- Sayuri Suzuki
- Center for Biomedical Research, The Queen’s Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
| | - Clay Wakano
- Center for Biomedical Research, The Queen’s Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
| | | | - Aaron J Cullen
- Center for Biomedical Research, The Queen’s Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
| | - Andrea Fleig
- Center for Biomedical Research, The Queen’s Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
- University of Hawaii Cancer Center, 651 Ilalo St., Honolulu, HI 96813, USA
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI 96813, USA
| | - Reinhold Penner
- Center for Biomedical Research, The Queen’s Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
- University of Hawaii Cancer Center, 651 Ilalo St., Honolulu, HI 96813, USA
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI 96813, USA
| |
Collapse
|
4
|
Vydra Bousova K, Zouharova M, Jiraskova K, Vetyskova V. Interaction of Calmodulin with TRPM: An Initiator of Channel Modulation. Int J Mol Sci 2023; 24:15162. [PMID: 37894842 PMCID: PMC10607381 DOI: 10.3390/ijms242015162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Transient receptor potential melastatin (TRPM) channels, a subfamily of the TRP superfamily, constitute a diverse group of ion channels involved in mediating crucial cellular processes like calcium homeostasis. These channels exhibit complex regulation, and one of the key regulatory mechanisms involves their interaction with calmodulin (CaM), a cytosol ubiquitous calcium-binding protein. The association between TRPM channels and CaM relies on the presence of specific CaM-binding domains in the channel structure. Upon CaM binding, the channel undergoes direct and/or allosteric structural changes and triggers down- or up-stream signaling pathways. According to current knowledge, ion channel members TRPM2, TRPM3, TRPM4, and TRPM6 are directly modulated by CaM, resulting in their activation or inhibition. This review specifically focuses on the interplay between TRPM channels and CaM and summarizes the current known effects of CaM interactions and modulations on TRPM channels in cellular physiology.
Collapse
|
5
|
Piciu F, Balas M, Badea MA, Cucu D. TRP Channels in Tumoral Processes Mediated by Oxidative Stress and Inflammation. Antioxidants (Basel) 2023; 12:1327. [PMID: 37507867 PMCID: PMC10376197 DOI: 10.3390/antiox12071327] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The channels from the superfamily of transient receptor potential (TRP) activated by reactive oxygen species (ROS) can be defined as redox channels. Those with the best exposure of the cysteine residues and, hence, the most sensitive to oxidative stress are TRPC4, TRPC5, TRPV1, TRPV4, and TRPA1, while others, such as TRPC3, TRPM2, and TRPM7, are indirectly activated by ROS. Furthermore, activation by ROS has different effects on the tumorigenic process: some TRP channels may, upon activation, stimulate proliferation, apoptosis, or migration of cancer cells, while others inhibit these processes, depending on the cancer type, tumoral microenvironment, and, finally, on the methods used for evaluation. Therefore, using these polymodal proteins as therapeutic targets is still an unmet need, despite their draggability and modulation by simple and mostly unharmful compounds. This review intended to create some cellular models of the interaction between oxidative stress, TRP channels, and inflammation. Although somewhat crosstalk between the three actors was rather theoretical, we intended to gather the recently published data and proposed pathways of cancer inhibition using modulators of TRP proteins, hoping that the experimental data corroborated clinical information may finally bring the results from the bench to the bedside.
Collapse
Affiliation(s)
- Florentina Piciu
- Department of Anatomy, Animal Physiology and Biophysics (DAFAB), Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Madalina Andreea Badea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 90-92 Sos. Panduri, 050663 Bucharest, Romania
| | - Dana Cucu
- Department of Anatomy, Animal Physiology and Biophysics (DAFAB), Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|
6
|
Liu Q, Li S, Qiu Y, Zhang J, Rios FJ, Zou Z, Touyz RM. Cardiovascular toxicity of tyrosine kinase inhibitors during cancer treatment: Potential involvement of TRPM7. Front Cardiovasc Med 2023; 10:1002438. [PMID: 36818331 PMCID: PMC9936099 DOI: 10.3389/fcvm.2023.1002438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) are a class of membrane spanning cell-surface receptors that transmit extracellular signals through the membrane to trigger diverse intracellular signaling through tyrosine kinases (TKs), and play important role in cancer development. Therapeutic approaches targeting RTKs such as vascular endothelial growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR), and platelet-derived growth factor receptor (PDGFR), and TKs, such as c-Src, ABL, JAK, are widely used to treat human cancers. Despite favorable benefits in cancer treatment that prolong survival, these tyrosine kinase inhibitors (TKIs) and monoclonal antibodies targeting RTKs are also accompanied by adverse effects, including cardiovascular toxicity. Mechanisms underlying TKI-induced cardiovascular toxicity remain unclear. The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed chanzyme consisting of a membrane-based ion channel and intracellular α-kinase. TRPM7 is a cation channel that regulates transmembrane Mg2+ and Ca2+ and is involved in a variety of (patho)physiological processes in the cardiovascular system, contributing to hypertension, cardiac fibrosis, inflammation, and atrial arrhythmias. Of importance, we and others demonstrated significant cross-talk between TRPM7, RTKs, and TK signaling in different cell types including vascular smooth muscle cells (VSMCs), which might be a link between TKIs and their cardiovascular effects. In this review, we summarize the implications of RTK inhibitors (RTKIs) and TKIs in cardiovascular toxicities during anti-cancer treatment, with a focus on the potential role of TRPM7/Mg2+ as a mediator of RTKI/TKI-induced cardiovascular toxicity. We also describe the important role of TRPM7 in cancer development and cardiovascular diseases, and the interaction between TRPM7 and RTKs, providing insights for possible mechanisms underlying cardiovascular disease in cancer patients treated with RTKI/TKIs.
Collapse
Affiliation(s)
- Qing Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Suyao Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuran Qiu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayu Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Francisco J. Rios
- Research Institute of McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Zhiguo Zou
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Zhiguo Zou ✉
| | - Rhian M. Touyz
- Research Institute of McGill University Health Centre, McGill University, Montreal, QC, Canada,*Correspondence: Rhian M. Touyz ✉
| |
Collapse
|
7
|
Kampuang N, Thongon N. Mass spectrometric analysis of TRPM6 and TRPM7 from small intestine of omeprazole-induced hypomagnesemic rats. Front Oncol 2022; 12:947899. [PMID: 36110961 PMCID: PMC9468766 DOI: 10.3389/fonc.2022.947899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Disruption of small intestinal Mg2+ absorption has been reported as the underlying mechanism of proton pump inhibitor-induced hypomagnesemia (PPIH); hence, this study evaluated the expression, localization, phosphorylation, and oxidation of transient receptor potential melastatin 6 (TRPM6) and TRPM7 in the small intestine of rats subjected to PPIH. The expression and localization of cyclin M4 (CNNM4) was also analyzed. We show that, compared to control rats, membrane expression of the TRPM6/7 heterodimer and TRPM7 was markedly lower in the duodenum and the jejunum of PPIH rats; in contrast, expression of membrane TRPM6 and CNNM4 was higher in these organs. Mass spectrometric analysis of TRPM6 demonstrated hyper-phosphorylation, especially T1851, and hyper-oxidation at M1755, both of which can suppress its channel permeability. Further, hypo-phosphorylation of S141 and the dimerization motif domain of TRPM6 in PPIH rats might be involved in lower TRPM6/7 heterodimer expression. Hypo-phosphorylation, especially at S138 and S1360 in TRPM7 from PPIH rats disrupted stability of TRPM7 at the cell membrane; hyper-oxidation of TRPM7 was also observed. These results help explain the mechanism underlying the disruption of small intestinal Mg2+ absorption in PPIH.
Collapse
|
8
|
Souza Bomfim GH, Niemeyer BA, Lacruz RS, Lis A. On the Connections between TRPM Channels and SOCE. Cells 2022; 11:1190. [PMID: 35406753 PMCID: PMC8997886 DOI: 10.3390/cells11071190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Plasma membrane protein channels provide a passageway for ions to access the intracellular milieu. Rapid entry of calcium ions into cells is controlled mostly by ion channels, while Ca2+-ATPases and Ca2+ exchangers ensure that cytosolic Ca2+ levels ([Ca2+]cyt) are maintained at low (~100 nM) concentrations. Some channels, such as the Ca2+-release-activated Ca2+ (CRAC) channels and voltage-dependent Ca2+ channels (CACNAs), are highly Ca2+-selective, while others, including the Transient Receptor Potential Melastatin (TRPM) family, have broader selectivity and are mostly permeable to monovalent and divalent cations. Activation of CRAC channels involves the coupling between ORAI1-3 channels with the endoplasmic reticulum (ER) located Ca2+ store sensor, Stromal Interaction Molecules 1-2 (STIM1/2), a pathway also termed store-operated Ca2+ entry (SOCE). The TRPM family is formed by 8 members (TRPM1-8) permeable to Mg2+, Ca2+, Zn2+ and Na+ cations, and is activated by multiple stimuli. Recent studies indicated that SOCE and TRPM structure-function are interlinked in some instances, although the molecular details of this interaction are only emerging. Here we review the role of TRPM and SOCE in Ca2+ handling and highlight the available evidence for this interaction.
Collapse
Affiliation(s)
- Guilherme H. Souza Bomfim
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Barbara A. Niemeyer
- Department of Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany;
| | - Rodrigo S. Lacruz
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Annette Lis
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
9
|
Abstract
Animals rely on their sensory systems to inform them of ecologically relevant environmental variation. In the Southern Ocean, the thermal environment has remained between −1.9 and 5 °C for 15 Myr, yet we have no knowledge of how an Antarctic marine organism might sense their thermal habitat as we have yet to discover a thermosensitive ion channel that gates (opens/closes) below 10 °C. Here, we investigate the evolutionary dynamics of transient receptor potential (TRP) channels, which are the primary thermosensors in animals, within cryonotothenioid fishes—the dominant fish fauna of the Southern Ocean. We found cryonotothenioids have a similar complement of TRP channels as other teleosts (∼28 genes). Previous work has shown that thermosensitive gating in a given channel is species specific, and multiple channels act together to sense the thermal environment. Therefore, we combined evidence of changes in selective pressure, gene gain/loss dynamics, and the first sensory ganglion transcriptome in this clade to identify the best candidate TRP channels that might have a functional dynamic range relevant for frigid Antarctic temperatures. We concluded that TRPV1a, TRPA1b, and TRPM4 are the likeliest putative thermosensors, and found evidence of diversifying selection at sites across these proteins. We also put forward hypotheses for molecular mechanisms of other cryonotothenioid adaptations, such as reduced skeletal calcium deposition, sensing oxidative stress, and unusual magnesium homeostasis. By completing a comprehensive and unbiased survey of these genes, we lay the groundwork for functional characterization and answering long-standing thermodynamic questions of thermosensitive gating and protein adaptation to low temperatures.
Collapse
Affiliation(s)
- Julia M York
- Department of Integrative Biology, University of Texas at Austin, USA
- Corresponding author: E-mail:
| | - Harold H Zakon
- Department of Integrative Biology, University of Texas at Austin, USA
| |
Collapse
|
10
|
Bousova K, Zouharova M, Herman P, Vetyskova V, Jiraskova K, Vondrasek J. TRPM7 N-terminal region forms complexes with calcium binding proteins CaM and S100A1. Heliyon 2021; 7:e08490. [PMID: 34917797 PMCID: PMC8645431 DOI: 10.1016/j.heliyon.2021.e08490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) represents melastatin TRP channel with two significant functions, cation permeability and kinase activity. TRPM7 is widely expressed among tissues and is therefore involved in a variety of cellular functions representing mainly Mg2+ homeostasis, cellular Ca2+ flickering, and the regulation of DNA transcription by a cleaved kinase domain translocated to the nucleus. TRPM7 participates in several important biological processes in the nervous and cardiovascular systems. Together with the necessary function of the TRPM7 in these tissues and its recently analyzed overall structure, this channel requires further studies leading to the development of potential therapeutic targets. Here we present the first study investigating the N-termini of TRPM7 with binding regions for important intracellular modulators calmodulin (CaM) and calcium-binding protein S1 (S100A1) using in vitro and in silico approaches. Molecular simulations of the discovered complexes reveal their potential binding interfaces with common interaction patterns and the important role of basic residues present in the N-terminal binding region of TRPM.
Collapse
Affiliation(s)
- Kristyna Bousova
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
- Corresponding author.
| | - Monika Zouharova
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
- Department of Biochemistry and Patobiochemistry, Second Faculty of Medicine, Charles University, 150 06 Prague 5, V Uvalu 84, Czech Republic
| | - Petr Herman
- Department Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague, Czech Republic
| | - Veronika Vetyskova
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Katerina Jiraskova
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
| | - Jiri Vondrasek
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
| |
Collapse
|
11
|
TRPM7 Ion Channel: Oncogenic Roles and Therapeutic Potential in Breast Cancer. Cancers (Basel) 2021; 13:cancers13246322. [PMID: 34944940 PMCID: PMC8699295 DOI: 10.3390/cancers13246322] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Breast cancer is the most frequently diagnosed malignant tumor and the second leading cause of cancer death in women worldwide. The risk of developing breast cancer is 12.8%, i.e., 1 in 8 people, and a woman’s risk of dying is approximately 1 in 39. Calcium signals play an important role in various cancers and transport calcium ions may have altered expression in breast cancer, such as the TRPM7 calcium permeant ion channel, where overexpression may be associated with a poor prognosis. This review focuses on the TRPM7 channel, and the oncogenic roles studied so far in breast cancer. The TRPM7 ion channel is suggested as a potential and prospective target in the diagnosis and treatment of breast cancer. Abstract The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a divalent cations permeant channel but also has intrinsic serine/threonine kinase activity. It is ubiquitously expressed in normal tissues and studies have indicated that it participates in important physiological and pharmacological processes through its channel-kinase activity, such as calcium/magnesium homeostasis, phosphorylation of proteins involved in embryogenesis or the cellular process. Accumulating evidence has shown that TRPM7 is overexpressed in human pathologies including breast cancer. Breast cancer is the second leading cause of cancer death in women with an incidence rate increase of around 0.5% per year since 2004. The overexpression of TRPM7 may be associated with a poor prognosis in breast cancer patients, so more efforts are needed to research a new therapeutic target. TRPM7 regulates the levels of Ca2+, which can alter the signaling pathways involved in survival, cell cycle progression, proliferation, growth, migration, invasion, epithelial-mesenchymal transition and thus determines cell behavior, promoting tumor development. This work provides a complete overview of the TRPM7 ion channel and its main involvements in breast cancer. Special consideration is given to the modulation of the channel as a potential target in breast cancer treatment by inhibition of proliferation, migration and invasion. Taken together, these data suggest the potential exploitation of TRPM7 channel-kinase as a therapeutic target and a diagnostic biomarker.
Collapse
|
12
|
Liang HY, Chen Y, Wei X, Ma GG, Ding J, Lu C, Zhou RP, Hu W. Immunomodulatory functions of TRPM7 and its implications in autoimmune diseases. Immunology 2021; 165:3-21. [PMID: 34558663 DOI: 10.1111/imm.13420] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/17/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
An autoimmune disease is an inappropriate response to one's tissues due to a break in immune tolerance and exposure to self-antigens. It often leads to structural and functional damage to organs and systemic disorders. To date, there are no effective interventions to prevent the progression of autoimmune diseases. Hence, there is an urgent need for new treatment targets. TRPM7 is an enzyme-coupled, transient receptor ion channel of the subfamily M that plays a vital role in pathologic and physiologic conditions. While TRPM7 is constitutively activated under certain conditions, it can regulate cell migration, polarization, proliferation and cytokine secretion. However, a growing body of evidence highlights the critical role of TRPM7 in autoimmune diseases, including rheumatoid arthritis, multiple sclerosis and diabetes. Herein, we present (a) a review of the channel kinase properties of TRPM7 and its pharmacological properties, (b) discuss the role of TRPM7 in immune cells (neutrophils, macrophages, lymphocytes and mast cells) and its upstream immunoreactive substances, and (c) highlight TRPM7 as a potential therapeutic target for autoimmune diseases.
Collapse
Affiliation(s)
- Hong-Yu Liang
- The Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xin Wei
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Gang-Gang Ma
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jie Ding
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Chao Lu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Shi R, Fu Y, Zhao D, Boczek T, Wang W, Guo F. Cell death modulation by transient receptor potential melastatin channels TRPM2 and TRPM7 and their underlying molecular mechanisms. Biochem Pharmacol 2021; 190:114664. [PMID: 34175300 DOI: 10.1016/j.bcp.2021.114664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Transient receptor potential melastatin (TRPM) channels are members of the transient receptor potential (TRP) channels, a family of evolutionarily conserved integral membrane proteins. TRPM channels are nonselective cation channels, mediating the influx of various ions including Ca2+, Na+ and Zn2+. The function of TRPM channels is vital for cell proliferation, cell development and cell death. Cell death is a key procedure during embryonic development, organism homeostasis, aging and disease. The category of cell death modalities, beyond the traditionally defined concepts of necrosis, autophagy, and apoptosis, were extended with the discovery of pyroptosis, necroptosis and ferroptosis. As upstream signaling regulators of cell death, TRPM channels have been involved inrelevant pathologies. In this review, we introduced several cell death modalities, then summarized the contribution of TRPM channels (especially TRPM2 and TRPM7) to different cell death modalities and discussed the underlying regulatory mechanisms. Our work highlighted the possibility of TRPM channels as potential therapeutic targets in cell death-related diseases.
Collapse
Affiliation(s)
- Ruixue Shi
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Fu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Dongyi Zhao
- The University of Tokyo, Department of Pharmaceutical Science, 1130033, Japan
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, 92215, Poland.
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China.
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
14
|
Stewart L, Turner NA. Channelling the Force to Reprogram the Matrix: Mechanosensitive Ion Channels in Cardiac Fibroblasts. Cells 2021; 10:990. [PMID: 33922466 PMCID: PMC8145896 DOI: 10.3390/cells10050990] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac fibroblasts (CF) play a pivotal role in preserving myocardial function and integrity of the heart tissue after injury, but also contribute to future susceptibility to heart failure. CF sense changes to the cardiac environment through chemical and mechanical cues that trigger changes in cellular function. In recent years, mechanosensitive ion channels have been implicated as key modulators of a range of CF functions that are important to fibrotic cardiac remodelling, including cell proliferation, myofibroblast differentiation, extracellular matrix turnover and paracrine signalling. To date, seven mechanosensitive ion channels are known to be functional in CF: the cation non-selective channels TRPC6, TRPM7, TRPV1, TRPV4 and Piezo1, and the potassium-selective channels TREK-1 and KATP. This review will outline current knowledge of these mechanosensitive ion channels in CF, discuss evidence of the mechanosensitivity of each channel, and detail the role that each channel plays in cardiac remodelling. By better understanding the role of mechanosensitive ion channels in CF, it is hoped that therapies may be developed for reducing pathological cardiac remodelling.
Collapse
Affiliation(s)
| | - Neil A. Turner
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
| |
Collapse
|
15
|
Meng S, Alanazi R, Ji D, Bandura J, Luo ZW, Fleig A, Feng ZP, Sun HS. Role of TRPM7 kinase in cancer. Cell Calcium 2021; 96:102400. [PMID: 33784560 DOI: 10.1016/j.ceca.2021.102400] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 01/09/2023]
Abstract
Cancer is the second leading cause of death worldwide and accounted for an estimated 9.6 million deaths, or 1 in 6 deaths, in 2018. Despite recent advances in cancer prevention, diagnosis, and treatment strategies, the burden of this disease continues to grow with each year, with dire physical, emotional, and economic consequences for all levels of society. Classic characteristics of cancer include rapid, uncontrolled cell proliferation and spread of cancerous cells to other parts of the body, a process known as metastasis. Transient receptor potential melastatin 7 (TRPM7), a Ca2+- and Mg2+-permeable nonselective divalent cation channel defined by the atypical presence of an α-kinase within its C-terminal domain, has been implicated, due to its modulation of Ca2+ and Mg2+ influx, in a wide variety of physiological and pathological processes, including cancer. TRPM7 is overexpressed in several cancer types and has been shown to variably increase cellular proliferation, migration, and invasion of tumour cells. However, the relative contribution of TRPM7 kinase domain activity to cancer as opposed to ion flux through its channel pore remains an area of active discovery. In this review, we describe the specific role of the TRPM7 kinase domain in cancer processes as well as mechanisms of regulation and inhibition of the kinase domain.
Collapse
Affiliation(s)
- Selena Meng
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Rahmah Alanazi
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Delphine Ji
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Julia Bandura
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Zheng-Wei Luo
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine and Cancer Center at the University of Hawaii, Honolulu, HI, 96720, USA
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| | - Hong-Shuo Sun
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Pharmacology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Beesetty P, Rockwood J, Kaitsuka T, Zhelay T, Hourani S, Matsushita M, Kozak JA. Phagocytic activity of splenic macrophages is enhanced and accompanied by cytosolic alkalinization in TRPM7 kinase-dead mice. FEBS J 2021; 288:3585-3601. [PMID: 33354894 DOI: 10.1111/febs.15683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/29/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022]
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a unique protein functioning as a cation channel as well as a serine/threonine kinase and is highly expressed in immune cells such as lymphocytes and macrophages. TRPM7 kinase-dead (KD) mouse model has been used to investigate the role of this protein in immune cells; these animals display moderate splenomegaly and ectopic hemopoiesis. The basal TRPM7 current magnitudes in peritoneal macrophages isolated from KD mice were higher; however, the maximum currents, achieved after cytoplasmic Mg2+ washout, were not different. In the present study, we investigated the consequences of TRPM7 kinase inactivation in splenic and peritoneal macrophages. We measured the basal phagocytic activity of splenic macrophages using fluorescent latex beads, pHrodo zymosan bioparticles, and opsonized red blood cells. KD macrophages phagocytized more efficiently and had slightly higher baseline calcium levels compared to WT cells. We found no obvious differences in store-operated Ca2+ entry between WT and KD macrophages. By contrast, the resting cytosolic pH in KD macrophages was significantly more alkaline than in WT. Pharmacological blockade of sodium hydrogen exchanger 1 (NHE1) reversed the cytosolic alkalinization and reduced phagocytosis in KD macrophages. Basal TRPM7 channel activity in KD macrophages was also reduced after NHE1 blockade. Cytosolic Mg2+ sensitivity of TRPM7 channels measured in peritoneal macrophages was similar in WT and KD mice. The higher basal TRPM7 channel activity in KD macrophages is likely due to alkalinization. Our results identify a novel role for TRPM7 kinase as a suppressor of basal phagocytosis and a regulator of cellular pH.
Collapse
Affiliation(s)
- Pavani Beesetty
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Jananie Rockwood
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Japan
| | - Tetyana Zhelay
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Siham Hourani
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - J Ashot Kozak
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| |
Collapse
|
17
|
Hu F, Li M, Han F, Zhang Q, Zeng Y, Zhang W, Cheng X. Role of TRPM7 in cardiac fibrosis: A potential therapeutic target (Review). Exp Ther Med 2020; 21:173. [PMID: 33456540 PMCID: PMC7792474 DOI: 10.3892/etm.2020.9604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiac fibrosis is a hallmark of cardiac remodeling associated with nearly all forms of heart disease. Clinically, no effective therapeutic drugs aim to inhibit cardiac fibrosis, owing to the complex etiological heterogeneity and pathogenesis of this disease. A two-in-one protein structure, a ubiquitous expression profile and unique biophysical characteristics enable the involvement of transient receptor potential melastatin-subfamily member 7 (TRPM7) in the pathogenesis and development of fibrosis-related cardiac diseases, such as heart failure (HF), cardiomyopathies, arrhythmia and hyperaldosteronism. In response to a variety of stimuli, multiple bioactive molecules can activate TRPM7 and related signaling pathways, leading to fibroblast proliferation, differentiation and extracellular matrix production in cardiac fibroblasts. TRPM7-mediated Ca2+ signaling and TGF-β1 signaling pathways are critical for the formation of fibrosis. Accumulating evidence has demonstrated that TRPM7 is a potential pharmacological target for halting the development of fibrotic cardiac diseases. Reliable drug-like molecules for further development of high-affinity in vivo drugs targeting TRPM7 are urgently needed. The present review discusses the widespread and significant role of TRPM7 in cardiac fibrosis and focuses on its potential as a therapeutic target for alleviating heart fibrogenesis.
Collapse
Affiliation(s)
- Feng Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Meiyong Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fengyu Han
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qing Zhang
- Department of Cardiology, The Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yuhao Zeng
- Department of Medical Education, The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Weifang Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaoshu Cheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
18
|
Jimenez I, Prado Y, Marchant F, Otero C, Eltit F, Cabello-Verrugio C, Cerda O, Simon F. TRPM Channels in Human Diseases. Cells 2020; 9:E2604. [PMID: 33291725 PMCID: PMC7761947 DOI: 10.3390/cells9122604] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential melastatin (TRPM) subfamily belongs to the TRP cation channels family. Since the first cloning of TRPM1 in 1989, tremendous progress has been made in identifying novel members of the TRPM subfamily and their functions. The TRPM subfamily is composed of eight members consisting of four six-transmembrane domain subunits, resulting in homomeric or heteromeric channels. From a structural point of view, based on the homology sequence of the coiled-coil in the C-terminus, the eight TRPM members are clustered into four groups: TRPM1/M3, M2/M8, M4/M5 and M6/M7. TRPM subfamily members have been involved in several physiological functions. However, they are also linked to diverse pathophysiological human processes. Alterations in the expression and function of TRPM subfamily ion channels might generate several human diseases including cardiovascular and neurodegenerative alterations, organ dysfunction, cancer and many other channelopathies. These effects position them as remarkable putative targets for novel diagnostic strategies, drug design and therapeutic approaches. Here, we review the current knowledge about the main characteristics of all members of the TRPM family, focusing on their actions in human diseases.
Collapse
Affiliation(s)
- Ivanka Jimenez
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Yolanda Prado
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Felipe Marchant
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Carolina Otero
- Faculty of Medicine, School of Chemistry and Pharmacy, Universidad Andrés Bello, Santiago 8370186, Chile;
| | - Felipe Eltit
- Vancouver Prostate Centre, Vancouver, BC V6Z 1Y6, Canada;
- Department of Urological Sciences, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Claudio Cabello-Verrugio
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 7560484, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
| | - Oscar Cerda
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Felipe Simon
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
| |
Collapse
|
19
|
Mapping TRPM7 Function by NS8593. Int J Mol Sci 2020; 21:ijms21197017. [PMID: 32977698 PMCID: PMC7582524 DOI: 10.3390/ijms21197017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential cation channel, subfamily M, member 7 (TRPM7) is a ubiquitously expressed membrane protein, which forms a channel linked to a cytosolic protein kinase. Genetic inactivation of TRPM7 in animal models uncovered the critical role of TRPM7 in early embryonic development, immune responses, and the organismal balance of Zn2+, Mg2+, and Ca2+. TRPM7 emerged as a new therapeutic target because malfunctions of TRPM7 have been associated with anoxic neuronal death, tissue fibrosis, tumour progression, and giant platelet disorder. Recently, several laboratories have identified pharmacological compounds allowing to modulate either channel or kinase activity of TRPM7. Among other small molecules, NS8593 has been defined as a potent negative gating regulator of the TRPM7 channel. Consequently, several groups applied NS8593 to investigate cellular pathways regulated by TRPM7. Here, we summarize the progress in this research area. In particular, two notable milestones have been reached in the assessment of TRPM7 druggability. Firstly, several laboratories demonstrated that NS8593 treatment reliably mirrors prominent phenotypes of cells manipulated by genetic inactivation of TRPM7. Secondly, it has been shown that NS8593 allows us to probe the therapeutic potential of TRPM7 in animal models of human diseases. Collectively, these studies employing NS8593 may serve as a blueprint for the preclinical assessment of TRPM7-targeting drugs.
Collapse
|
20
|
Wong KK, Banham AH, Yaacob NS, Nur Husna SM. The oncogenic roles of TRPM ion channels in cancer. J Cell Physiol 2019; 234:14556-14573. [PMID: 30710353 DOI: 10.1002/jcp.28168] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Transient receptor potential (TRP) proteins are a diverse family of ion channels present in multiple types of tissues. They function as gatekeepers for responses to sensory stimuli including temperature, vision, taste, and pain through their activities in conducting ion fluxes. The TRPM (melastatin) subfamily consists of eight members (i.e., TRPM1-8), which collectively regulate fluxes of various types of cations such as K+ , Na+ , Ca2+ , and Mg2+ . Growing evidence in the past two decades indicates that TRPM ion channels, their isoforms, or long noncoding RNAs encoded within the locus may be oncogenes involved in the regulation of cancer cell growth, proliferation, autophagy, invasion, and epithelial-mesenchymal transition, and their significant association with poor clinical outcomes of cancer patients. In this review, we describe and discuss recent findings implicating TRPM channels in different malignancies, their functions, mechanisms, and signaling pathways involved in cancers, as well as summarizing their normal physiological functions and the availability of ion channel pharmacological inhibitors.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Siti Muhamad Nur Husna
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
21
|
Nguyen TTA, Li W, Park TJ, Gong LW, Cologna SM. Investigating Phosphorylation Patterns of the Ion Channel TRPM7 Using Multiple Extraction and Enrichment Techniques Reveals New Phosphosites. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1359-1367. [PMID: 31140077 PMCID: PMC10026262 DOI: 10.1007/s13361-019-02223-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
The study of membrane proteins, and in particular ion channels, is crucial to understanding cellular function. Mass spectrometry-based approaches including bottom-up strategies to study membrane proteins have been successful yet still can remain challenging. In this study, we sought to evaluate the phosphorylation patterns of the ion channel TRPM7 which is involved in a range of critical physiological functions. To overcome extraction obstacles associated with analyzing membrane proteins, we incorporated the use of 5% SDS solubilization coupled with SCAD and S-Trap digestion methods to eliminate detergent interference in downstream LC-MS/MS analysis. We found that the SCAD method was more efficient, yielding 84% of the overall identified proteins; however, the variability was greater than the S-Trap method. Using both methods together with TiO2 and Fe-NTA phospho-enrichment protocols, we successfully observed the phosphorylation pattern of TRPM7 in a transfected cell line. An average of 22 ± 6% of the TRPM7 amino acid sequence was observed. In addition to several previously reported phosphorylation sites, we identified six new phosphosites (S5, S233, S554, S824, T1265, and S1401), providing new targets for further functional analyses of TRPM7.
Collapse
Affiliation(s)
- Thu T A Nguyen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Wenping Li
- Laboratory for Integrative Neuroscience, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Thomas J Park
- Laboratory for Integrative Neuroscience, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Liang-Wei Gong
- Laboratory for Integrative Neuroscience, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- Laboratory for Integrative Neuroscience, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
22
|
Zou ZG, Rios FJ, Montezano AC, Touyz RM. TRPM7, Magnesium, and Signaling. Int J Mol Sci 2019; 20:E1877. [PMID: 30995736 PMCID: PMC6515203 DOI: 10.3390/ijms20081877] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed chanzyme that possesses an ion channel permeable to the divalent cations Mg2+, Ca2+, and Zn2+, and an α-kinase that phosphorylates downstream substrates. TRPM7 and its homologue TRPM6 have been implicated in a variety of cellular functions and is critically associated with intracellular signaling, including receptor tyrosine kinase (RTK)-mediated pathways. Emerging evidence indicates that growth factors, such as EGF and VEGF, signal through their RTKs, which regulate activity of TRPM6 and TRPM7. TRPM6 is primarily an epithelial-associated channel, while TRPM7 is more ubiquitous. In this review we focus on TRPM7 and its association with growth factors, RTKs, and downstream kinase signaling. We also highlight how interplay between TRPM7, Mg2+ and signaling kinases influences cell function in physiological and pathological conditions, such as cancer and preeclampsia.
Collapse
Affiliation(s)
- Zhi-Guo Zou
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
23
|
Nadolni W, Zierler S. The Channel-Kinase TRPM7 as Novel Regulator of Immune System Homeostasis. Cells 2018; 7:cells7080109. [PMID: 30126133 PMCID: PMC6115979 DOI: 10.3390/cells7080109] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022] Open
Abstract
The enzyme-coupled transient receptor potential channel subfamily M member 7, TRPM7, has been associated with immunity and immune cell signalling. Here, we review the role of this remarkable signalling protein in lymphocyte proliferation, differentiation, activation and survival. We also discuss its role in mast cell, neutrophil and macrophage function and highlight the potential of TRPM7 to regulate immune system homeostasis. Further, we shed light on how the cellular signalling cascades involving TRPM7 channel and/or kinase activity culminate in pathologies as diverse as allergic hypersensitivity, arterial thrombosis and graft versus host disease (GVHD), stressing the need for TRPM7 specific pharmacological modulators.
Collapse
Affiliation(s)
- Wiebke Nadolni
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Goethestr. 33, 80336 Munich, Germany.
| | - Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Goethestr. 33, 80336 Munich, Germany.
| |
Collapse
|
24
|
Hantute-Ghesquier A, Haustrate A, Prevarskaya N, Lehen'kyi V. TRPM Family Channels in Cancer. Pharmaceuticals (Basel) 2018; 11:ph11020058. [PMID: 29875336 PMCID: PMC6027338 DOI: 10.3390/ph11020058] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/28/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
Members of the TRPM ("Melastatin") family fall into the subclass of the TRP channels having varying permeability to Ca2+ and Mg2+, with three members of the TRPM family being chanzymes, which contain C-terminal enzyme domains. The role of different TRPM members has been shown in various cancers such as prostate cancer for mostly TRPM8 and TRPM2, breast cancer for mostly TRPM2 and TRPM7, and pancreatic cancer for TRPM2/7/8 channels. The role of TRPM5 channels has been shown in lung cancer, TRPM1 in melanoma, and TRPM4 channel in prostate cancer as well. Thus, the TRPM family of channels may represent an appealing target for the anticancer therapy.
Collapse
Affiliation(s)
- Aline Hantute-Ghesquier
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d'Ascq, France.
| | - Aurélien Haustrate
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d'Ascq, France.
- FONDATION ARC, 9 rue Guy Môquet 94830 Villejuif, France.
| | - Natalia Prevarskaya
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d'Ascq, France.
| | - V'yacheslav Lehen'kyi
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d'Ascq, France.
- FONDATION ARC, 9 rue Guy Môquet 94830 Villejuif, France.
| |
Collapse
|
25
|
Cai N, Lou L, Al-Saadi N, Tetteh S, Runnels LW. The kinase activity of the channel-kinase protein TRPM7 regulates stability and localization of the TRPM7 channel in polarized epithelial cells. J Biol Chem 2018; 293:11491-11504. [PMID: 29866880 DOI: 10.1074/jbc.ra118.001925] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/25/2018] [Indexed: 12/13/2022] Open
Abstract
The channel-kinase transient receptor potential melastatin 7 (TRPM7) is a bifunctional protein with ion channel and kinase domains. The kinase activity of TRPM7 has been linked to the regulation of a broad range of cellular activities, but little is understood as to how the channel itself is regulated by its own kinase activity. Here, using several mammalian cell lines expressing WT TRPM7 or kinase-inactive variants, we discovered that compared with the cells expressing WT TRPM7, cells in which TRPM7's kinase activity was inactivated had faster degradation, elevated ubiquitination, and increased intracellular retention of the channel. Mutational analysis of TRPM7 autophosphorylation sites further revealed a role for Ser-1360 of TRPM7 as a key residue mediating both TRPM7 stability and intracellular trafficking. Additional trafficking roles were uncovered for Ser-1403 and Ser-1567, whose phosphorylation by TRPM7's kinase activity mediated the interaction of the channel with the signaling protein 14-3-3θ. In summary, our results point to a critical role for TRPM7's kinase activity in regulating proteasome-mediated turnover of the TRPM7 channel and controlling its cellular localization in polarized epithelial cells. Overall, these findings improve our understanding of the significance of TRPM7's kinase activity for functional regulation of its channel activity.
Collapse
Affiliation(s)
- Na Cai
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Liping Lou
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Namariq Al-Saadi
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854; University of Misan, Amarah 62001, Iraq
| | - Sandra Tetteh
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Loren W Runnels
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854.
| |
Collapse
|
26
|
|
27
|
Inactivation of TRPM7 kinase in mice results in enlarged spleens, reduced T-cell proliferation and diminished store-operated calcium entry. Sci Rep 2018; 8:3023. [PMID: 29445164 PMCID: PMC5813043 DOI: 10.1038/s41598-018-21004-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/29/2018] [Indexed: 12/20/2022] Open
Abstract
T lymphocytes enlarge (blast) and proliferate in response to antigens in a multistep program that involves obligatory cytosolic calcium elevations. Store-operated calcium entry (SOCE) pathway is the primary source of Ca2+ in these cells. Here, we describe a novel modulator of blastogenesis, proliferation and SOCE: the TRPM7 channel kinase. TRPM7 kinase-dead (KD) K1646R knock-in mice exhibited splenomegaly and impaired blastogenic responses elicited by PMA/ionomycin or anti-CD3/CD28 antibodies. Splenic T-cell proliferation in vitro was weaker in the mutant compared to wildtype littermates. TRPM7 current magnitudes in WT and KD mouse T cells were, however, similar. We tested the dependence of T-cell proliferation on external Ca2+ and Mg2+ concentrations. At a fixed [Mg2+o] of ~0.4 mM, Ca2+o stimulated proliferation with a steep concentration dependence and vice versa, at a fixed [Ca2+o] of ~0.4 mM, Mg2+o positively regulated proliferation but with a shallower dependence. Proliferation was significantly lower in KD mouse than in wildtype at all Ca2+ and Mg2+ concentrations. Ca2+ elevations elicited by anti-CD3 antibody were diminished in KD mutant T cells and SOCE measured in activated KD splenocytes was reduced. These results demonstrate that a functional TRPM7 kinase supports robust SOCE, blastogenesis and proliferation, whereas its inactivation suppresses these cellular events.
Collapse
|
28
|
Gotru SK, Chen W, Kraft P, Becker IC, Wolf K, Stritt S, Zierler S, Hermanns HM, Rao D, Perraud AL, Schmitz C, Zahedi RP, Noy PJ, Tomlinson MG, Dandekar T, Matsushita M, Chubanov V, Gudermann T, Stoll G, Nieswandt B, Braun A. TRPM7 Kinase Controls Calcium Responses in Arterial Thrombosis and Stroke in Mice. Arterioscler Thromb Vasc Biol 2018; 38:344-352. [DOI: 10.1161/atvbaha.117.310391] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/30/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Sanjeev K. Gotru
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Wenchun Chen
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Peter Kraft
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Isabelle C. Becker
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Karen Wolf
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Simon Stritt
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Susanna Zierler
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Heike M. Hermanns
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Deviyani Rao
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Anne-Laure Perraud
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Carsten Schmitz
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - René P. Zahedi
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Peter J. Noy
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Michael G. Tomlinson
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Thomas Dandekar
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Masayuki Matsushita
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Vladimir Chubanov
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Thomas Gudermann
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Guido Stoll
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Bernhard Nieswandt
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Attila Braun
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| |
Collapse
|
29
|
Assessment of TRPM7 functions by drug-like small molecules. Cell Calcium 2017; 67:166-173. [DOI: 10.1016/j.ceca.2017.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/28/2022]
|
30
|
Krapivinsky G, Krapivinsky L, Renthal NE, Santa-Cruz A, Manasian Y, Clapham DE. Histone phosphorylation by TRPM6's cleaved kinase attenuates adjacent arginine methylation to regulate gene expression. Proc Natl Acad Sci U S A 2017; 114:E7092-E7100. [PMID: 28784805 PMCID: PMC5576826 DOI: 10.1073/pnas.1708427114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
TRPM6 and TRPM7 are members of the melastatin-related transient receptor potential (TRPM) subfamily of ion channels. Deletion of either gene in mice is embryonically lethal. TRPM6/7 are the only known examples of single polypeptides containing both an ion channel pore and a serine/threonine kinase (chanzyme). Here we show that the C-terminal kinase domain of TRPM6 is cleaved from the channel domain in a cell type-specific fashion and is active. Cleavage requires that the channel conductance is functional. The cleaved kinase translocates to the nucleus, where it is strictly localized and phosphorylates specific histone serine and threonine (S/T) residues. TRPM6-cleaved kinases (M6CKs) bind subunits of the protein arginine methyltransferase 5 (PRMT5) molecular complex that make important epigenetic modifications by methylating histone arginine residues. Histone phosphorylation by M6CK results in a dramatic decrease in methylation of arginines adjacent to M6CK-phosphorylated amino acids. Knockout of TRPM6 or inactivation of its kinase results in global changes in histone S/T phosphorylation and changes the transcription of hundreds of genes. We hypothesize that M6CK associates with the PRMT5 molecular complex in the nucleus, directing M6CK to a specific genomic location and providing site-specific histone phosphorylation. M6CK histone phosphorylation, in turn, regulates transcription by attenuating the effect of local arginine methylation.
Collapse
Affiliation(s)
- Grigory Krapivinsky
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
- Department of Cardiology, Harvard Medical School, Boston, MA 02115
| | - Luba Krapivinsky
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
- Department of Cardiology, Harvard Medical School, Boston, MA 02115
| | - Nora E Renthal
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Ana Santa-Cruz
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
- Department of Cardiology, Harvard Medical School, Boston, MA 02115
| | - Yunona Manasian
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
- Department of Cardiology, Harvard Medical School, Boston, MA 02115
| | - David E Clapham
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115;
- Department of Cardiology, Harvard Medical School, Boston, MA 02115
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
31
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
32
|
Mass Spectrometric Analysis of TRPM6 and TRPM7 Phosphorylation Reveals Regulatory Mechanisms of the Channel-Kinases. Sci Rep 2017; 7:42739. [PMID: 28220887 PMCID: PMC5318989 DOI: 10.1038/srep42739] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/12/2017] [Indexed: 01/23/2023] Open
Abstract
TRPM7 and TRPM6 were the first identified bifunctional channels to contain their own kinase domains, but how these channel-kinases are regulated is poorly understood. Previous studies identified numerous phosphorylation sites on TRPM7, but very little is known about TRPM6 phosphorylation or sites on TRPM7 transphosphorylated by TRPM6. Our mass spectrometric analysis of homomeric and heteromeric TRPM7 and TRPM6 channels identified phosphorylation sites on both proteins, as well as several prominent sites on TRPM7 that are commonly modified through autophosphorylation and transphosphorylation by TRPM6. We conducted a series of amino acid substitution analyses and identified S1777, in TRPM7’s catalytic domain, and S1565, in TRPM7’s exchange domain that mediates kinase dimerization, as potential regulatory sites. The phosphomimetic S1777D substitution disrupted catalytic activity, most likely by causing an electrostatic perturbation at the active site. The S1565D phosphomimetic substitution also inactivated the kinase but did so without interfering with kinase dimerization. Molecular modeling indicates that phosphorylation of S1565 is predicted to structurally affect TRPM7’s functionally conserved N/D loop, which is thought to influence the access of substrate to the active site pocket. We propose that phosphorylation of S1565 within the exchange domain functions as a regulatory switch to control TRPM7 catalytic activity.
Collapse
|
33
|
Iordanov I, Mihályi C, Tóth B, Csanády L. The proposed channel-enzyme transient receptor potential melastatin 2 does not possess ADP ribose hydrolase activity. eLife 2016; 5. [PMID: 27383051 PMCID: PMC4974056 DOI: 10.7554/elife.17600] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/05/2016] [Indexed: 11/21/2022] Open
Abstract
Transient Receptor Potential Melastatin 2 (TRPM2) is a Ca2+-permeable cation channel essential for immunocyte activation, insulin secretion, and postischemic cell death. TRPM2 is activated by ADP ribose (ADPR) binding to its C-terminal cytosolic NUDT9-homology (NUDT9H) domain, homologous to the soluble mitochondrial ADPR pyrophosphatase (ADPRase) NUDT9. Reported ADPR hydrolysis classified TRPM2 as a channel-enzyme, but insolubility of isolated NUDT9H hampered further investigations. Here we developed a soluble NUDT9H model using chimeric proteins built from complementary polypeptide fragments of NUDT9H and NUDT9. When expressed in E.coli, chimeras containing up to ~90% NUDT9H sequence remained soluble and were affinity-purified. In ADPRase assays the conserved Nudix-box sequence of NUDT9 proved essential for activity (kcat~4-9s-1), that of NUDT9H did not support catalysis. Replacing NUDT9H in full-length TRPM2 with soluble chimeras retained ADPR-dependent channel gating (K1/2~1-5 μM), confirming functionality of chimeric domains. Thus, TRPM2 is not a 'chanzyme'. Chimeras provide convenient soluble NUDT9H models for structural/biochemical studies. DOI:http://dx.doi.org/10.7554/eLife.17600.001 Ion channels are proteins that allow specific charged particles to move across the membranes of cells – for example to travel in or out of a cell, or between different parts of the same cell. Almost all ion channels are gated, meaning that they can open and close in response to different signals. For instance, so-called ligand gated channels open in response to binding of some small molecule, known as the "ligand". A small number of channel proteins are also enzymes, meaning that they are able to catalyze chemical reactions, and these channel-enzymes are often referred to as “chanzymes”. TRPM2 is an ion channel found in humans that opens when a small molecule called ADPR binds to a portion of the channel inside the cell. This channel is also thought to be a chanzyme because the part that binds to ADPR is similar to an enzyme called NUDT9. The NUDT9 enzyme converts ADPR into two other chemicals. When studied in biochemical assays, the enzyme-like part of TRPM2 – which contains a segment called a “Nudix box” – appeared to act in the same way, although this activity was not linked to the opening and closing of the TRPM2 channel. Iordanov et al. set out to re-examine whether TRPM2 is actually an enzyme by comparing the activity of NUDT9 to the enzyme-like part of TRPM2. To test an enzyme’s activity, it typically needs to be dissolved in water. However, the enzyme-like part of TRPM2 does not dissolve, and so it could not be tested directly. Instead, Iordanov et al. identified which parts of TRPM2 make it insoluble and replaced them with the equivalent parts from NUDT9 to create several new proteins. For all the proteins tested, only those with the Nudix box from NUDT9 were active enzymes, while those with the Nudix box from TRPM2 were not. Iordanov et al. conclude that TRPM2 is a ligand gated channel and not a chanzyme, and that the experimental conditions used in previous biochemical assays, and not TRPM2 activity, led to the breakdown of ADPR. Finally, the TRPM2 channel is involved in cell damage following heart attacks or stroke and may contribute to Alzheimer’s disease, Parkinson’s disease and bipolar disorder as well. As such, knowing how TRMP2 behaves could guide efforts to develop new drugs for these illnesses. DOI:http://dx.doi.org/10.7554/eLife.17600.002
Collapse
Affiliation(s)
- Iordan Iordanov
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.,MTA-SE Ion Channel Research Group, Semmelweis University, Budapest, Hungary
| | - Csaba Mihályi
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.,MTA-SE Ion Channel Research Group, Semmelweis University, Budapest, Hungary
| | - Balázs Tóth
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.,MTA-SE Ion Channel Research Group, Semmelweis University, Budapest, Hungary
| | - László Csanády
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.,MTA-SE Ion Channel Research Group, Semmelweis University, Budapest, Hungary
| |
Collapse
|
34
|
Schäfer S, Ferioli S, Hofmann T, Zierler S, Gudermann T, Chubanov V. Mibefradil represents a new class of benzimidazole TRPM7 channel agonists. Pflugers Arch 2015; 468:623-34. [PMID: 26669310 DOI: 10.1007/s00424-015-1772-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/02/2015] [Accepted: 12/04/2015] [Indexed: 01/16/2023]
Abstract
Transient receptor potential cation channel, subfamily M, member 7 (TRPM7) is a bi-functional protein comprising an ion channel moiety covalently linked to a protein kinase domain. Currently, the prevailing view is that a decrease in the cytosolic Mg(2+) concentration leads to activation of divalent cation-selective TRPM7 currents. TRPM7 plays a role in immune responses, hypotension, tissue fibrosis, and tumor progression and, therefore, represents a new promising therapeutic target. Because of the dearth of pharmacological tools, our mechanistic understanding of the role of TRPM7 in physiology and pathophysiology still lags behind. Therefore, we have recently carried out a high throughput screen for small-molecule activators of TRPM7. We have characterized the phenanthrene naltriben as a first stimulatory agonist of the TRPM7 channel. Surprisingly, the effect of naltriben on TRPM7 was found to be unaffected by the physiological levels of cytosolic Mg(2+). Here, we demonstrate that mibefradil and NNC 50-0396, two benzimidazole relatives of the TRPM7 inhibitor NS8593, are positive modulators of TRPM7. Using Ca(2+) imaging and the patch-clamp technique, we show that mibefradil activates TRPM7-mediated Ca(2+) entry and whole-cell currents. The response to mibefradil was fast, reversible, and reproducible. In contrast to naltriben, mibefradil efficiently activates TRPM7 currents only at physiological intracellular Mg(2+) concentrations, and its stimulatory effect was fully abrogated by high internal Mg(2+) levels. Consequently, a TRPM7 variant harboring a gain-of-function mutation was insensitive to further mibefradil activation. Finally, we observed that the effect of mibefradil was selective for TRPM7 when various TRP channels were tested. Taken together, mibefradil acts as a Mg(2+)-regulated agonist of the TRPM7 channel and, hence, uncovers a new class of TRPM7 agonists.
Collapse
Affiliation(s)
- Sebastian Schäfer
- Walther-Straub-Institute of Pharmacology and Toxicology, University of Munich, Goethestrasse 33, 80336, Munich, Germany
| | - Silvia Ferioli
- Walther-Straub-Institute of Pharmacology and Toxicology, University of Munich, Goethestrasse 33, 80336, Munich, Germany
| | - Thomas Hofmann
- Walther-Straub-Institute of Pharmacology and Toxicology, University of Munich, Goethestrasse 33, 80336, Munich, Germany
| | - Susanna Zierler
- Walther-Straub-Institute of Pharmacology and Toxicology, University of Munich, Goethestrasse 33, 80336, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, University of Munich, Goethestrasse 33, 80336, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Vladimir Chubanov
- Walther-Straub-Institute of Pharmacology and Toxicology, University of Munich, Goethestrasse 33, 80336, Munich, Germany.
| |
Collapse
|
35
|
Hepatocystin is Essential for TRPM7 Function During Early Embryogenesis. Sci Rep 2015; 5:18395. [PMID: 26671672 PMCID: PMC4680877 DOI: 10.1038/srep18395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/17/2015] [Indexed: 01/04/2023] Open
Abstract
Mutations in protein kinase C substrate 80K-H (PRKCSH), which encodes for an 80 KDa protein named hepatocystin (80K-H, PRKCSH), gives rise to polycystic liver disease (PCLD). Hepatocystin functions as the noncatalytic beta subunit of Glucosidase II, an endoplasmic reticulum (ER)-resident enzyme involved in processing and quality control of newly synthesized glycoproteins. Patients harboring heterozygous germline mutations in PRKCSH are thought to develop renal cysts as a result of somatic loss of the second allele, which subsequently interferes with expression of the TRP channel polycystin-2 (PKD2). Deletion of both alleles of PRKCSH in mice results in embryonic lethality before embryonic day E11.5. Here, we investigated the function of hepatocystin during Xenopus laevis embryogenesis and identified hepatocystin as a binding partner of the TRPM7 ion channel, whose function is required for vertebrate gastrulation. We find that TRPM7 functions synergistically with hepatocystin. Although other N-glycosylated proteins are critical to early development, overexpression of TRPM7 in Xenopus laevis embryos was sufficient to fully rescue the gastrulation defect caused by loss of hepatocystin. We observed that depletion of hepatocystin in Xenopus laevis embryos decreased TRPM7 expression, indicating that the early embryonic lethality caused by loss of hepatocystin is mainly due to impairment of TRPM7 protein expression.
Collapse
|
36
|
Blanchard MG, Kittikulsuth W, Nair AV, de Baaij JHF, Latta F, Genzen JR, Kohan DE, Bindels RJM, Hoenderop JGJ. Regulation of Mg2+ Reabsorption and Transient Receptor Potential Melastatin Type 6 Activity by cAMP Signaling. J Am Soc Nephrol 2015; 27:804-13. [PMID: 26150606 DOI: 10.1681/asn.2014121228] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/21/2015] [Indexed: 01/14/2023] Open
Abstract
The transient receptor potential melastatin type 6 (TRPM6) epithelial Mg(2+) channels participate in transcellular Mg(2+) transport in the kidney and intestine. Previous reports suggested a hormonal cAMP-dependent regulation of Mg(2+) reabsorption in the kidney. The molecular details of this process are, however, unknown. Adenylate cyclase 3 (Adcy3) has been shown to colocalize with the Na(+)/Cl(-) cotransporter, a marker of the distal convoluted segment of the kidney, the principal site of TRPM6 expression. Given the critical role of TRPM6 in Mg(2+) reabsorption, an inducible kidney-specific Adcy3 deletion mouse model was characterized for blood and urinary electrolyte disturbances under a normal--and low--Mg(2+) diet. Increased urinary Mg(2+) wasting and Trpm6 mRNA levels were observed in the urine and kidney of Adcy3-deleted animals compared with wild-type controls. Serum Mg(2+) concentration was significantly lower in Adcy3-deleted animals at day 7 on the low Mg(2+) diet. Using patch clamp electrophysiology, cell surface biotinylation, and total internal reflection fluorescence live cell imaging of transfected HEK293 cells, we demonstrated that cAMP signaling rapidly potentiates TRPM6 activity by promoting TRPM6 accumulation at the plasma membrane and increasing its single-channel conductance. Comparison of electrophysiological data from cells expressing the phosphorylation-deficient S1252A or phosphomimetic S1252D TRPM6 mutants suggests that phosphorylation at this intracellular residue participates in the observed stimulation of channel activity. Altogether, these data support a physiologically relevant magnesiotropic role of cAMP signaling in the kidney by a direct stimulatory action of protein kinase A on the plasma membrane trafficking and function of TRPM6 ion channels.
Collapse
Affiliation(s)
- Maxime G Blanchard
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Anil V Nair
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands; Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Femke Latta
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jonathan R Genzen
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah; and
| | | | - René J M Bindels
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands;
| |
Collapse
|
37
|
Abstract
The distal convoluted tubule (DCT) is a short nephron segment, interposed between the macula densa and collecting duct. Even though it is short, it plays a key role in regulating extracellular fluid volume and electrolyte homeostasis. DCT cells are rich in mitochondria, and possess the highest density of Na+/K+-ATPase along the nephron, where it is expressed on the highly amplified basolateral membranes. DCT cells are largely water impermeable, and reabsorb sodium and chloride across the apical membrane via electroneurtral pathways. Prominent among this is the thiazide-sensitive sodium chloride cotransporter, target of widely used diuretic drugs. These cells also play a key role in magnesium reabsorption, which occurs predominantly, via a transient receptor potential channel (TRPM6). Human genetic diseases in which DCT function is perturbed have provided critical insights into the physiological role of the DCT, and how transport is regulated. These include Familial Hyperkalemic Hypertension, the salt-wasting diseases Gitelman syndrome and EAST syndrome, and hereditary hypomagnesemias. The DCT is also established as an important target for the hormones angiotensin II and aldosterone; it also appears to respond to sympathetic-nerve stimulation and changes in plasma potassium. Here, we discuss what is currently known about DCT physiology. Early studies that determined transport rates of ions by the DCT are described, as are the channels and transporters expressed along the DCT with the advent of molecular cloning. Regulation of expression and activity of these channels and transporters is also described; particular emphasis is placed on the contribution of genetic forms of DCT dysregulation to our understanding.
Collapse
Affiliation(s)
- James A McCormick
- Division of Nephrology & Hypertension, Oregon Health & Science University, & VA Medical Center, Portland, Oregon, United States
| | | |
Collapse
|
38
|
Elucidating the role of the TRPM7 alpha-kinase: TRPM7 kinase inactivation leads to magnesium deprivation resistance phenotype in mice. Sci Rep 2014; 4:7599. [PMID: 25534891 PMCID: PMC4274504 DOI: 10.1038/srep07599] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022] Open
Abstract
TRPM7 is an unusual bi-functional protein containing an ion channel covalently linked to a protein kinase domain. TRPM7 is implicated in regulating cellular and systemic magnesium homeostasis. While the biophysical properties of TRPM7 ion channel and its function are relatively well characterized, the function of the TRPM7 enzymatically active kinase domain is not understood yet. To investigate the physiological role of TRPM7 kinase activity, we constructed mice carrying an inactive TRPM7 kinase. We found that these mice were resistant to dietary magnesium deprivation, surviving three times longer than wild type mice; also they displayed decreased chemically induced allergic reaction. Interestingly, mutant mice have lower magnesium bone content compared to wild type mice when fed regular diet; unlike wild type mice, mutant mice placed on magnesium-depleted diet did not alter their bone magnesium content. Furthermore, mouse embryonic fibroblasts isolated from TRPM7 kinase-dead animals exhibited increased resistance to magnesium deprivation and oxidative stress. Finally, electrophysiological data revealed that the activity of the kinase-dead TRPM7 channel was not significantly altered. Together, our results suggest that TRPM7 kinase is a sensor of magnesium status and provides coordination of cellular and systemic responses to magnesium deprivation.
Collapse
|
39
|
Natural and Synthetic Modulators of the TRPM7 Channel. Cells 2014; 3:1089-101. [PMID: 25437439 PMCID: PMC4276914 DOI: 10.3390/cells3041089] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 11/16/2022] Open
Abstract
Transient receptor potential cation channel subfamily M member 7 (TRPM7) is a bi-functional protein comprising a TRP ion channel segment linked to an α-type protein kinase domain. Genetic inactivation of TRPM7 revealed its central role in magnesium metabolism, cell motility, proliferation and differentiation. TRPM7 is associated with anoxic neuronal death, cardiac fibrosis and tumor progression highlighting TRPM7 as a new drug target. Recently, several laboratories have independently identified pharmacological compounds inhibiting or activating the TRPM7 channel. The recently found TRPM7 modulators were used as new experimental tools to unravel cellular functions of the TRPM7 channel. Here, we provide a concise overview of this emerging field.
Collapse
|
40
|
Chen JP, Wang J, Luan Y, Wang CX, Li WH, Zhang JB, Sha D, Shen R, Cui YG, Zhang Z, Zhang LM, Wang WB. TRPM7 promotes the metastatic process in human nasopharyngeal carcinoma. Cancer Lett 2014; 356:483-90. [PMID: 25304381 DOI: 10.1016/j.canlet.2014.09.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/06/2014] [Accepted: 09/24/2014] [Indexed: 12/30/2022]
Abstract
Our study observed the relationship between transient receptor potential melastatin 7 (TRPM7) expression and the metastatic process of nasopharyngeal carcinoma (NPC). We found that TRPM7 was overexpressed in 102 out of 206 (49.5%) human NPC cases and was significantly associated with clinical stage and lymphatic and distant metastasis. The results suggested that TRPM7 promotes NPC cell migration and invasion in vitro. Further, TRPM7 was correlated with poor clinical outcome and was an independent predictor for 5-year overall survival rate (HR, 1.832; 95% CI, 1.237-4.146 [P = 0.041]). In conclusion, TRPM7 promotes the metastasis of NPC and may serve as a prognostic marker in NPC patients.
Collapse
Affiliation(s)
- Jian-Peng Chen
- Department of Oncology, Provincial Hospital affiliated to Shandong University, Jinan, 250021, China.
| | - Jun Wang
- Department of Oncology, General Hospital, Jinan Command of the People's Liberation Army, Jinan, 250031, China
| | - Yi Luan
- Center for Disease Control, Jinan Command of the People's Liberation Army, Jinan, 250014, China
| | - Cai-Xia Wang
- Department of Oncology, Provincial Hospital affiliated to Shandong University, Jinan, 250021, China
| | - Wen-Huan Li
- Department of Oncology, Provincial Hospital affiliated to Shandong University, Jinan, 250021, China
| | - Jin-Biao Zhang
- Department of Oncology, the 148th Hospital, Jinan Command of the People's Liberation Army, Zibo, 255300, China
| | - Dan Sha
- Department of Oncology, Provincial Hospital affiliated to Shandong University, Jinan, 250021, China
| | - Rong Shen
- Department of Oncology, Provincial Hospital affiliated to Shandong University, Jinan, 250021, China
| | - Yan-Gang Cui
- Department of Oncology, Provincial Hospital affiliated to Shandong University, Jinan, 250021, China
| | - Zheng Zhang
- Department of Oncology, Provincial Hospital affiliated to Shandong University, Jinan, 250021, China
| | - Li-Ming Zhang
- Department of Rheumatology, Provincial Hospital affiliated to Shandong University, Jinan, 250021, China
| | - Wei-Bo Wang
- Department of Oncology, Provincial Hospital affiliated to Shandong University, Jinan, 250021, China
| |
Collapse
|
41
|
Visser D, Middelbeek J, van Leeuwen FN, Jalink K. Function and regulation of the channel-kinase TRPM7 in health and disease. Eur J Cell Biol 2014; 93:455-65. [DOI: 10.1016/j.ejcb.2014.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/24/2014] [Accepted: 07/01/2014] [Indexed: 11/30/2022] Open
|
42
|
Yee NS, Kazi AA, Yee RK. Cellular and Developmental Biology of TRPM7 Channel-Kinase: Implicated Roles in Cancer. Cells 2014; 3:751-777. [PMID: 25079291 PMCID: PMC4197629 DOI: 10.3390/cells3030751] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/15/2014] [Accepted: 07/15/2014] [Indexed: 12/29/2022] Open
Abstract
The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed cation-permeable ion channel with intrinsic kinase activity that plays important roles in various physiological functions. Biochemical and electrophysiological studies, in combination with molecular analyses of TRPM7, have generated insights into its functions as a cellular sensor and transducer of physicochemical stimuli. Accumulating evidence indicates that TRPM7 channel-kinase is essential for cellular processes, such as proliferation, survival, differentiation, growth, and migration. Experimental studies in model organisms, such as zebrafish, mouse, and frog, have begun to elucidate the pleiotropic roles of TRPM7 during embryonic development from gastrulation to organogenesis. Aberrant expression and/or activity of the TRPM7 channel-kinase have been implicated in human diseases including a variety of cancer. Studying the functional roles of TRPM7 and the underlying mechanisms in normal cells and developmental processes is expected to help understand how TRPM7 channel-kinase contributes to pathogenesis, such as malignant neoplasia. On the other hand, studies of TRPM7 in diseases, particularly cancer, will help shed new light in the normal functions of TRPM7 under physiological conditions. In this article, we will provide an updated review of the structural features and biological functions of TRPM7, present a summary of current knowledge of its roles in development and cancer, and discuss the potential of TRPM7 as a clinical biomarker and therapeutic target in malignant diseases.
Collapse
Affiliation(s)
- Nelson S Yee
- Division of Hematology-Oncology, Department of Medicine, Penn State College of Medicine, Program of Experimental Therapeutics, Penn State Hershey Cancer Institute, Penn State Milton S, Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033, USA.
| | - Abid A Kazi
- Division of Hematology-Oncology, Department of Medicine, Penn State College of Medicine, Program of Experimental Therapeutics, Penn State Hershey Cancer Institute, Penn State Milton S, Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033, USA.
| | - Rosemary K Yee
- Schreyer Honors College, Pennsylvania State University, University Park, PA 16802, USA; Penn State Harrisburg School of Humanities, Pennsylvania State University, Middletown, PA 17057, USA.
| |
Collapse
|
43
|
Krapivinsky G, Krapivinsky L, Manasian Y, Clapham DE. The TRPM7 chanzyme is cleaved to release a chromatin-modifying kinase. Cell 2014; 157:1061-72. [PMID: 24855944 DOI: 10.1016/j.cell.2014.03.046] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/13/2014] [Accepted: 03/12/2014] [Indexed: 02/05/2023]
Abstract
TRPM7 is a ubiquitous ion channel and kinase, a unique "chanzyme," required for proper early embryonic development. It conducts Zn(2+), Mg(2+), and Ca(2+) as well as monovalent cations and contains a functional serine/threonine kinase at its carboxyl terminus. Here, we show that in normal tissues and cell lines, the kinase is proteolytically cleaved from the channel domain in a cell-type-specific manner. These TRPM7 cleaved kinase fragments (M7CKs) translocate to the nucleus and bind multiple components of chromatin-remodeling complexes, including Polycomb group proteins. In the nucleus, the kinase phosphorylates specific serines/threonines of histones. M7CK-dependent phosphorylation of H3Ser10 at promoters of TRPM7-dependent genes correlates with their activity. We also demonstrate that cytosolic free [Zn(2+)] is TRPM7 dependent and regulates M7CK binding to transcription factors containing zinc-finger domains. These findings suggest that TRPM7-mediated modulation of intracellular Zn(2+) concentration couples ion-channel signaling to epigenetic chromatin covalent modifications that affect gene expression patterns. PAPERCLIP:
Collapse
Affiliation(s)
- Grigory Krapivinsky
- Howard Hughes Medical Institute, Department of Cardiology, Boston Children's Hospital, Enders Building 1309, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Luba Krapivinsky
- Howard Hughes Medical Institute, Department of Cardiology, Boston Children's Hospital, Enders Building 1309, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Yunona Manasian
- Howard Hughes Medical Institute, Department of Cardiology, Boston Children's Hospital, Enders Building 1309, 320 Longwood Avenue, Boston, MA 02115, USA
| | - David E Clapham
- Howard Hughes Medical Institute, Department of Cardiology, Boston Children's Hospital, Enders Building 1309, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Kinase and channel activity of TRPM6 are co-ordinated by a dimerization motif and pocket interaction. Biochem J 2014; 460:165-75. [PMID: 24650431 PMCID: PMC4019984 DOI: 10.1042/bj20131639] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mutations in the gene that encodes the atypical channel-kinase TRPM6 (transient receptor potential melastatin 6) cause HSH (hypomagnesaemia with secondary hypocalcaemia), a disorder characterized by defective intestinal Mg2+ transport and impaired renal Mg2+ reabsorption. TRPM6, together with its homologue TRPM7, are unique proteins as they combine an ion channel domain with a C-terminally fused protein kinase domain. How TRPM6 channel and kinase activity are linked is unknown. Previous structural analysis revealed that TRPM7 possesses a non-catalytic dimerization motif preceding the kinase domain. This interacts with a dimerization pocket lying within the kinase domain. In the present study, we provide evidence that the dimerization motif in TRPM6 plays a critical role in regulating kinase activity as well as ion channel activity. We identify mutations within the TRPM6 dimerization motif (Leu1718 and Leu1721) or dimerization pocket (L1743A, Q1832K, A1836N, L1840A and L1919Q) that abolish dimerization and establish that these mutations inhibit protein kinase activity. We also demonstrate that kinase activity of a dimerization motif mutant can be restored by addition of a peptide encompassing the dimerization motif. Moreover, we observe that mutations that disrupt the dimerization motif and dimerization pocket interaction greatly diminish TRPM6 ion channel activity, in a manner that is independent of kinase activity. Finally, we analyse the impact on kinase activity of ten disease-causing missense mutations that lie outwith the protein kinase domain of TRPM6. This revealed that one mutation lying nearby the dimerization motif (S1754N), found previously to inhibit channel activity, abolished kinase activity. These results provide the first evidence that there is structural co-ordination between channel and kinase activity, which is mediated by the dimerization motif and pocket interaction. We discuss that modulation of this interaction could comprise a major regulatory mechanism by which TRPM6 function is controlled. We show that TRPM6 kinase activity is linked to channel activity. This occurs through a kinase-independent mechanism involving the dimerization motif binding to a pocket within the kinase domain. A disease-causing mutation (S1754N) lying nearby the dimerization pocket inactivates kinase activity.
Collapse
|
45
|
Following OGD/R, annexin 1 nuclear translocation and subsequent induction of apoptosis in neurons are assisted by myosin IIA in a TRPM7 kinase-dependent manner. Mol Neurobiol 2014; 51:729-42. [PMID: 24939696 DOI: 10.1007/s12035-014-8781-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
Abstract
Transient receptor potential cation channel, subfamily M, member 7 (TRPM7) is a bifunctional channel protein that contains an α-kinase domain at its C-terminal. Previous studies have indicated that oxygen-glucose deprivation/reoxygenation (OGD/R) induces neuronal apoptosis via TRPM7. Annexin 1 and myosin IIA have been identified as TRPM7 kinase substrates; however, the role of annexin 1 in OGD/R-induced neuron apoptosis remains unclear. Here, we report that OGD/R induces nuclear translocation of annexin 1 in primary cultured neurons. Interestingly, ablation of the TRPM7 kinase or a point mutation in Ser(5) interferes with TRPM7 kinase-annexin 1 binding, decreasing annexin 1 nuclear translocation, and thereby reducing neuronal apoptosis. Furthermore, mutation of Arg(205), which intercepts annexin 1-formyl peptide receptor binding, also decreased annexin 1 nuclear translocation. Coimmunoprecipitation indicated that annexin 1 is moved as cargo through the cytoplasm by myosin IIA. However, inhibiting myosin IIA can decrease annexin 1 nuclear translocation. Moreover, blocking myosin IIA function by antagonist injection into the lateral ventricle was found to improve learning and memory in rats after middle cerebral artery occlusion and could also improve cell viability after OGD/R. Last, we determined that the annexin 1-myosin IIA complex is recognized and translocated by the importin α/β heterodimer. Therefore, TRPM7 kinase modulates OGD/R-induced neuronal apoptosis via annexin 1 carried by myosin IIA, while nuclear formyl peptide receptor (FPR)-annexin 1 binding and importin β are involved in nuclear translocation.
Collapse
|
46
|
Brandao K, Deason-Towne F, Zhao X, Perraud AL, Schmitz C. TRPM6 kinase activity regulates TRPM7 trafficking and inhibits cellular growth under hypomagnesic conditions. Cell Mol Life Sci 2014; 71:4853-67. [PMID: 24858416 DOI: 10.1007/s00018-014-1647-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 04/14/2014] [Accepted: 05/05/2014] [Indexed: 11/29/2022]
Abstract
The channel kinases TRPM6 and TRPM7 are both members of the melastatin-related transient receptor potential (TRPM) subfamily of ion channels and the only known fusions of an ion channel pore with a kinase domain. TRPM6 and TRPM7 form functional, tetrameric channel complexes at the plasma membrane by heteromerization. TRPM6 was previously shown to cross-phosphorylate TRPM7 on threonine residues, but not vice versa. Genetic studies demonstrated that TRPM6 and TRPM7 fulfill non-redundant functions and that each channel contributes uniquely to the regulation of Mg(2+) homeostasis. Although there are indications that TRPM6 and TRPM7 can influence each other's cellular distribution and activity, little is known about the functional relationship between these two channel-kinases. In the present study, we examined how TRPM6 kinase activity influences TRPM7 serine phosphorylation, intracellular trafficking, and cell surface expression of TRPM7, as well as Mg(2+)-dependent cellular growth. We found TRPM7 serine phosphorylation via the TRPM6 kinase, but no TRPM6 serine phosphorylation via the TRPM7 kinase. Intracellular trafficking of TRPM7 was altered in HEK-293 epithelial kidney cells and DT40 B cells in the presence of TRPM6 with intact kinase activity, independently of the availability of extracellular Mg(2+), but TRPM6/7 surface labeling experiments indicate comparable levels of the TRPM6/7 channels at the plasma membrane. Furthermore, using a complementation approach in TRPM7-deficient DT40 B-cells, we demonstrated that wild-type TRPM6 inhibited cell growth under hypomagnesic cell culture conditions in cells co-expressing TRPM6 and TRPM7; however, co-expression of a TRPM6 kinase dead mutant had no effect-a similar phenotype was also observed in TRPM6/7 co-expressing HEK-293 cells. Our results provide first clues about how heteromer formation between TRPM6 and TRPM7 influences the biological activity of these ion channels. We show that TRPM6 regulates TRPM7 intracellular trafficking and TRPM7-dependent cell growth. All these effects are dependent upon the presence of an active TRPM6 kinase domain. Dysregulated Mg(2+)-homeostasis causes or exacerbates many pathologies. As TRPM6 and TRPM7 are expressed simultaneously in numerous cell types, understanding how their relationship impacts regulation of Mg(2+)-uptake is thus important knowledge.
Collapse
Affiliation(s)
- Katherine Brandao
- Integrated Department of Immunology, University of Colorado School of Medicine, 1400 Jackson Street, Denver, CO, 80206, USA
| | | | | | | | | |
Collapse
|
47
|
A conserved loop in the catalytic domain of eukaryotic elongation factor 2 kinase plays a key role in its substrate specificity. Mol Cell Biol 2014; 34:2294-307. [PMID: 24732796 DOI: 10.1128/mcb.00388-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) is the best-characterized member of the α-kinase family. Within this group, only eEF2K and myosin heavy chain kinases (MHCKs) have known substrates. Here we have studied the roles of specific residues, selected on the basis of structural data for MHCK A and TRPM7, in the function of eEF2K. Our data provide the first information regarding the basis of the substrate specificity of α-kinases, in particular the roles of residues in the so-called N/D loop, which appears to occupy a position in the structure of α-kinases similar to that of the activation loop in other kinases. Several mutations in the EEF2K gene occur in tumors, one of which (Arg303Cys) is at a highly conserved residue in the N/D loop. This mutation greatly enhances eEF2K activity and may be cytoprotective. Our data support the concept that the major autophosphorylation site (Thr348 in eEF2K) docks into a binding pocket to help create the kinase-competent conformation. This is similar to the situation for MHCK A and is consistent with this being a common feature of α-kinases.
Collapse
|
48
|
Post-Translational Modifications of TRP Channels. Cells 2014; 3:258-87. [PMID: 24717323 PMCID: PMC4092855 DOI: 10.3390/cells3020258] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 01/07/2023] Open
Abstract
Transient receptor potential (TRP) channels constitute an ancient family of cation channels that have been found in many eukaryotic organisms from yeast to human. TRP channels exert a multitude of physiological functions ranging from Ca2+ homeostasis in the kidney to pain reception and vision. These channels are activated by a wide range of stimuli and undergo covalent post-translational modifications that affect and modulate their subcellular targeting, their biophysical properties, or channel gating. These modifications include N-linked glycosylation, protein phosphorylation, and covalent attachment of chemicals that reversibly bind to specific cysteine residues. The latter modification represents an unusual activation mechanism of ligand-gated ion channels that is in contrast to the lock-and-key paradigm of receptor activation by its agonists. In this review, we summarize the post-translational modifications identified on TRP channels and, when available, explain their physiological role.
Collapse
|
49
|
Hofmann T, Schäfer S, Linseisen M, Sytik L, Gudermann T, Chubanov V. Activation of TRPM7 channels by small molecules under physiological conditions. Pflugers Arch 2014; 466:2177-89. [PMID: 24633576 DOI: 10.1007/s00424-014-1488-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 01/07/2023]
Abstract
Transient receptor potential cation channel, subfamily M, member 7 (TRPM7) is a cation channel covalently linked to a protein kinase domain. TRPM7 is ubiquitously expressed and regulates key cellular processes such as Mg(2+) homeostasis, motility, and proliferation. TRPM7 is involved in anoxic neuronal death, cardiac fibrosis, and tumor growth. The goal of this work was to identify small molecule activators of the TRPM7 channel and investigate their mechanism of action. We used an aequorin bioluminescence-based assay to screen for activators of the TRPM7 channel. Valid candidates were further characterized using patch clamp electrophysiology. We identified 20 drug-like compounds with various structural backbones that can activate the TRPM7 channel. Among them, the δ opioid antagonist naltriben was studied in greater detail. Naltriben's action was selective among the TRP channels tested. Naltriben activates TRPM7 currents without prior depletion of intracellular Mg(2+) even under conditions of low PIP2. Moreover, naltriben interfered with the effect of the TRPM7 inhibitor NS8593. Finally, our experiments with TRPM7 variants carrying mutations in the pore, TRP, and kinase domains indicate that the site of TRPM7 activation by this small-molecule ligand is most likely located in or near the TRP domain. In conclusion, we identified the first organic small-molecule activators of TRPM7 channels, thus providing new experimental tools to study TRPM7 function in native cellular environments.
Collapse
Affiliation(s)
- T Hofmann
- Philipps-Universität Marburg, Klinik für Innere Medizin/Nephrologie, Baldingerstraße 1, 35043, Marburg, Germany,
| | | | | | | | | | | |
Collapse
|
50
|
P2X4 receptor regulation of transient receptor potential melastatin type 6 (TRPM6) Mg2+ channels. Pflugers Arch 2014; 466:1941-52. [DOI: 10.1007/s00424-014-1440-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/13/2013] [Accepted: 01/03/2014] [Indexed: 12/27/2022]
|