1
|
Rose EM, Haakenson CM, Patel A, Gaind S, Shank BD, Ball GF. Song system neuroanatomy, and immediate early gene expression in a finch species with extensive male and female song. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:735-749. [PMID: 37436439 DOI: 10.1007/s00359-023-01651-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/13/2023]
Abstract
Birdsong is a relatively well-studied behavior, both due to its importance as a model for vocal production learning and as an intriguing complex social behavior. Until the last few decades, work on birdsong focused almost exclusively on males. However, it is now widely accepted that female song not only exists, but is fairly common throughout the oscine passerines. Despite this, and the large number of researchers who have begun exploring female song in the field, researchers in the lab have been slow to adopt model species with female song. Studying female song in the lab is critical for our understanding of sex-specific factors in the physiology controlling this fascinating behavior. Additionally, as a model for vocal production learning in humans, understanding the mechanistic and neuroendocrine control of female song is clearly important. In this study, we examined the red-cheeked cordon bleu (RCCB), an Estrildid finch species with extensive female song. Specifically, we found that there were no significant sex differences in circulating levels of testosterone and progesterone, nor in song production rate. There were no significant differences in cell densities in the three nuclei of the song control system we examined. Additionally, the volume of the robust nucleus of the arcopallium was not significantly different and we report the smallest sex difference in HVC yet published in a songbird. Finally, we demonstrated similar levels of motor driven immediate early gene expression in both males and females after song production.
Collapse
Affiliation(s)
- Evangeline M Rose
- Department of Psychology, University of Maryland, College Park, MD, USA.
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA.
| | - Chelsea M Haakenson
- Department of Psychology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Aliyah Patel
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Shivika Gaind
- Department of Psychology, University of Maryland, College Park, MD, USA
| | | | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
2
|
Seki Y. Examining the capability for rhythmic synchronization and music production in vocal learning parrot species. Front Psychol 2023; 14:1271552. [PMID: 38023035 PMCID: PMC10646413 DOI: 10.3389/fpsyg.2023.1271552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Vocal production learning and beat perception and synchronization (BPS) share some common characteristics, which makes the vocal learning and rhythmic synchronization hypothesis (VLH) a reasonable explanation for the evolution of the capability for rhythmic synchronization. However, even in vocal learners, it is rare to see non-human animals demonstrate BPS to human music. Therefore, the first objective of this article is to propose some possible reasons why we do not see BPS in budgerigars, an excellent vocal learning species, while presenting some of my own findings. The second objective of this article is to propose a seamless bridge to connect the capability for vocal learning and BPS in locomotion. For this purpose, I present my own findings, wherein cockatiels spontaneously sang in synchrony with a melody of human music. This behavior can be considered a vocal version of BPS. Therefore, it can establish a connection between these two capabilities. This article agrees with the possibility that some mechanisms other than the vocal learning system may enable BPS, contrary to the original idea of VLH. Nevertheless, it is still reasonable to connect the capability for vocal learning and that for BPS. At the very least, the capability for vocal learning may contribute to the evolution of BPS. From these arguments, this article also proposes a scenario which includes vocalizing in synchrony as a driving force for the evolution of BPS and the capability for music production.
Collapse
Affiliation(s)
- Yoshimasa Seki
- Department of Psychology, Aichi University, Toyohashi, Japan
| |
Collapse
|
3
|
Anderson AP, Falk JJ. Cross-sexual Transfer Revisited. Integr Comp Biol 2023; 63:936-945. [PMID: 37147027 DOI: 10.1093/icb/icad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023] Open
Abstract
In her influential book "Developmental Plasticity and Evolution," Mary Jane West-Eberhard introduced the concept of cross-sexual transfer, where traits expressed in one sex in an ancestral species become expressed in the other sex. Despite its potential ubiquity, we find that cross-sexual transfer has been under-studied and under-cited in the literature, with only a few experimental papers that have invoked the concept. Here, we aim to reintroduce cross-sexual transfer as a powerful framework for explaining sex variation and highlight its relevance in current studies on the evolution of sexual heteromorphism (different means or modes in trait values between the sexes). We discuss several exemplary studies of cross-sexual transfer that have been published in the past two decades, further building on West-Eberhard's extensive review. We emphasize two scenarios as potential avenues of study, within-sex polymorphic and sex-role reversed species, and discuss the evolutionary and adaptive implications. Lastly, we propose future questions to expand our understanding of cross-sexual transfer, from nonhormonal mechanisms to the identification of broad taxonomic patterns. As evolutionary biologists increasingly recognize the nonbinary and often continuous nature of sexual heteromorphism, the cross-sexual framework has important utility for generating novel insights and perspectives on the evolution of sexual phenotypes across diverse taxa.
Collapse
Affiliation(s)
| | - Jay Jinsing Falk
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
4
|
Anderson AP, Renn SCP. The Ancestral Modulation Hypothesis: Predicting Mechanistic Control of Sexually Heteromorphic Traits Using Evolutionary History. Am Nat 2023; 202:241-259. [PMID: 37606950 DOI: 10.1086/725438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
AbstractAcross the animal kingdom there are myriad forms within a sex across, and even within, species, rendering concepts of universal sex traits moot. The mechanisms that regulate the development of these trait differences are varied, although in vertebrates, common pathways involve gonadal steroid hormones. Gonadal steroids are often associated with heteromorphic trait development, where the steroid found at higher circulating levels is the one involved in trait development for that sex. Occasionally, there are situations in which a gonadal steroid associated with heteromorphic trait development in one sex is involved in heteromorphic or monomorphic trait development in another sex. We propose a verbal hypothesis, the ancestral modulation hypothesis (AMH), that uses the evolutionary history of the trait-particularly which sex ancestrally possessed higher trait values-to predict the regulatory pathway that governs trait expression. The AMH predicts that the genomic architecture appears first to resolve sexual conflict in an initially monomorphic trait. This architecture takes advantage of existing sex-biased signals, the gonadal steroid pathway, to generate trait heteromorphism. In cases where the other sex experiences evolutionary pressure for the new phenotype, that sex will co-opt the existing architecture by altering its signal to match that of the original high-trait-value sex. We describe the integrated levels needed to produce this pattern and what the expected outcomes will be given the evolutionary history of the trait. We present this framework as a testable hypothesis for the scientific community to investigate and to create further engagement and analysis of both ultimate and proximate approaches to sexual heteromorphism.
Collapse
|
5
|
Krieg CA, Wade J. Sex Differences in the Neural Song Circuit and Its Relationship to Song Acoustic Complexity in House Wrens (Troglodytes aedon). BRAIN, BEHAVIOR AND EVOLUTION 2023; 98:231-244. [PMID: 37487484 DOI: 10.1159/000531959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
The song circuit in passerine birds is an outstanding model system for understanding the relationship between brain morphology and behavior, in part due to varying degrees of sex differences in structure and function across species. House wrens (Troglodytes aedon) offer a unique opportunity to advance our understanding of this relationship. Intermediate sex differences in song rate and complexity exist in this species compared to other passerines, and, among individual females, song complexity varies dramatically. Acoustic complexity in wild house wrens was quantified using a new machine learning approach. Volume, cell number, cell density, and neuron soma size were then measured for three song circuit regions, Area X, HVC (used as a proper name), and the robust nucleus of the arcopallium (RA), and one control region, the nucleus rotundus (Rt). For each song control area, males had a larger volume with more cells, larger somas, and lower cell density. Male songs had greater acoustic complexity than female songs, but these distributions overlapped. In females, increased acoustic complexity was correlated with larger volumes of and more cells in Area X and RA, as well as larger soma size in RA. In males, song complexity was unrelated to morphology, although our methods may underestimate male song complexity. This is the first study to identify song control regions in house wrens and one of few examining individual variation in both sexes. Parallels between morphology and the striking variability in female song in this species provide a new model for understanding relationships between neural structure and function.
Collapse
Affiliation(s)
- Cara A Krieg
- Departments of Psychology and Integrative Biology and Program in Neuroscience, Michigan State University, East Lansing, Michigan, USA
- Department of Biology, The University of Scranton, Scranton, Pennsylvania, USA
| | - Juli Wade
- Departments of Psychology and Integrative Biology and Program in Neuroscience, Michigan State University, East Lansing, Michigan, USA
- Department of Psychology and School of Arts and Sciences, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
6
|
Rose EM, Haakenson CM, Ball GF. Sex differences in seasonal brain plasticity and the neuroendocrine regulation of vocal behavior in songbirds. Horm Behav 2022; 142:105160. [PMID: 35366412 DOI: 10.1016/j.yhbeh.2022.105160] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/20/2022]
Abstract
Birdsong is controlled in part by a discrete network of interconnected brain nuclei regulated in turn by steroid hormones and environmental stimuli. This complex interaction results in neural changes that occur seasonally as the environment varies (e.g., photoperiod, food/water availability, etc.). Variation in environment, vocal behavior, and neuroendocrine control has been primarily studied in male songbirds in both laboratory studies of captive birds and field studies of wild caught birds. The bias toward studying seasonality in the neuroendocrine regulation of song in male birds comes from a historic focus on sexually selected male behaviors. In fact, given that male song is often loud and accompanied by somewhat extravagant courtship behaviors, female song has long been overlooked. To compound this bias, the primary model songbird species for studies in the lab, zebra finches (Taeniopygia guttata) and canaries (Serinus canaria), exhibit little or no female song. Therefore, understanding the degree of variation and neuroendocrine control of seasonality in female songbirds is a major gap in our knowledge. In this review, we discuss the importance of studying sex differences in seasonal plasticity and the song control system. Specifically, we discuss sex differences in 1) the neuroanatomy of the song control system, 2) the distribution of receptors for androgens and estrogens and 3) the seasonal neuroplasticity of the hypothalamo-pituitary-gonadal axis as well as in the neural and cellular mechanisms mediating song system changes. We also discuss how these neuroendocrine mechanisms drive sex differences in seasonal behavior. Finally, we highlight specific gaps in our knowledge and suggest experiments critical for filling these gaps.
Collapse
Affiliation(s)
- Evangeline M Rose
- Department of Psychology, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA.
| | - Chelsea M Haakenson
- Department of Psychology, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
7
|
Seki Y. Cockatiels sing human music in synchrony with a playback of the melody. PLoS One 2021; 16:e0256613. [PMID: 34478436 PMCID: PMC8415583 DOI: 10.1371/journal.pone.0256613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022] Open
Abstract
It is known among aviculturists that cockatiels imitate human music with their whistle-like vocal sounds. The present study examined whether cockatiels are also able to sing “in unison”, or, line up their vocalizations with a musical melody so that they occur at the same time. Three hand-raised cockatiels were exposed to a musical melody of human whistling produced by an experimenter. All the birds learned to sing the melody. Then, two out of these three birds spontaneously joined in singing during an ongoing melody, so that the singing by the bird and the whistling by the human were nearly perfectly synchronous. Further experiments revealed that the birds actively adjusted their vocal timing to playback of a recording of the same melody. This means cockatiels have a remarkable ability for flexible vocal control similar to what is seen in human singing. The proximate/ultimate factors for this behavior and implications for musicality in humans are discussed.
Collapse
Affiliation(s)
- Yoshimasa Seki
- Department of Psychology, Aichi University, Toyohashi, Japan
- * E-mail:
| |
Collapse
|
8
|
Ko MC, Frankl-Vilches C, Bakker A, Gahr M. The Gene Expression Profile of the Song Control Nucleus HVC Shows Sex Specificity, Hormone Responsiveness, and Species Specificity Among Songbirds. Front Neurosci 2021; 15:680530. [PMID: 34135731 PMCID: PMC8200640 DOI: 10.3389/fnins.2021.680530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
Singing occurs in songbirds of both sexes, but some species show typical degrees of sex-specific performance. We studied the transcriptional sex differences in the HVC, a brain nucleus critical for song pattern generation, of the forest weaver (Ploceus bicolor), the blue-capped cordon-bleu (Uraeginthus cyanocephalus), and the canary (Serinus canaria), which are species that show low, medium, and high levels of sex-specific singing, respectively. We observed persistent sex differences in gene expression levels regardless of the species-specific sexual singing phenotypes. We further studied the HVC transcriptomes of defined phenotypes of canary, known for its testosterone-sensitive seasonal singing. By studying both sexes of canaries during both breeding and non-breeding seasons, non-breeding canaries treated with testosterone, and spontaneously singing females, we found that the circulating androgen levels and sex were the predominant variables associated with the variations in the HVC transcriptomes. The comparison of natural singing with testosterone-induced singing in canaries of the same sex revealed considerable differences in the HVC transcriptomes. Strong transcriptional changes in the HVC were detected during the transition from non-singing to singing in canaries of both sexes. Although the sex-specific genes of singing females shared little resemblance with those of males, our analysis showed potential functional convergences. Thus, male and female songbirds achieve comparable singing behaviours with sex-specific transcriptomes.
Collapse
Affiliation(s)
- Meng-Ching Ko
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Carolina Frankl-Vilches
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Antje Bakker
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
9
|
Austin VI, Dalziell AH, Langmore NE, Welbergen JA. Avian vocalisations: the female perspective. Biol Rev Camb Philos Soc 2021; 96:1484-1503. [PMID: 33797176 DOI: 10.1111/brv.12713] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/04/2023]
Abstract
Research on avian vocalisations has traditionally focused on male song produced by oscine passerines. However, accumulating evidence indicates that complex vocalisations can readily evolve outside the traditional contexts of mate attraction and territory defence by male birds, and yet the previous bias towards male song has shaped - and continues to shape - our understanding of avian communication as a whole. Accordingly, in this review we seek to address this imbalance by synthesising studies on female vocalisations from across signalling contexts throughout the Aves, and discuss the implications of recent empirical advances for our understanding of vocalisations in both sexes. This review reveals great structural and functional diversity among female vocalisations and highlights the important roles that vocalisations can play in mediating female-specific behaviours. However, fundamental gaps remain. While there are now several case studies that identify the function of female vocalisations, few quantify the associated fitness benefits. Additionally, very little is known about the role of vocal learning in the development of female vocalisations. Thus, there remains a pressing need to examine the function and development of all forms of vocalisations in female birds. In the light of what we now know about the functions and mechanisms of female vocalisations, we suggest that conventional male-biased definitions of songs and calls are inadequate for furthering our understanding of avian vocal communication more generally. Therefore, we propose two simple alternatives, both emancipated from the sex of the singer. The first distinguishes song from calls functionally as a sexually selected vocal signal, whilst the second distinguishes them mechanistically in terms of their underlying neurological processes. It is clear that more investigations are needed into the ultimate and proximate causes of female vocalisations; however, these are essential if we are to develop a holistic epistemology of avian vocal communication in both sexes, across ecological contexts and taxonomic divides.
Collapse
Affiliation(s)
- Victoria I Austin
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Ground Floor, Building R2, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Anastasia H Dalziell
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Ground Floor, Building R2, Locked Bag 1797, Penrith, NSW, 2751, Australia.,Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia.,Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Rd., Ithaca, NY, 14850, U.S.A
| | - Naomi E Langmore
- Research School of Biology, The Australian National University, 46 Sullivan's Creek Road, Acton, Canberra, ACT, 2601, Australia
| | - Justin A Welbergen
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Ground Floor, Building R2, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
10
|
Sex differences and similarities in the neural circuit regulating song and other reproductive behaviors in songbirds. Neurosci Biobehav Rev 2020; 118:258-269. [PMID: 32735803 DOI: 10.1016/j.neubiorev.2020.07.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/14/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
In the 1970s, Nottebohm and Arnold reported marked male-biased sex differences in the volume of three song control nuclei in songbirds. Subsequently a series of studies on several songbird species suggested that there is a positive correlation between the degree to which there is a sex difference in the volume of these song control nuclei and in song behavior. This correlation has been questioned in recent years. Furthermore, it has become clear that the song circuit is fully integrated into a more comprehensive neural circuit that regulates multiple courtship and reproductive behaviors including song. Sex differences in songbirds should be evaluated in the context of the full complement of behaviors produced by both sexes in relation to reproduction and based on the entire circuit in order to understand the functional significance of variation between males and females in brain and behavior. Variation in brain and behavior exhibited among living songbird species provides an excellent opportunity to understand the functional significance of sex differences related to social behaviors.
Collapse
|
11
|
Testosterone or Estradiol When Implanted in the Medial Preoptic Nucleus Trigger Short Low-Amplitude Songs in Female Canaries. eNeuro 2019; 6:ENEURO.0502-18.2019. [PMID: 31068363 PMCID: PMC6506820 DOI: 10.1523/eneuro.0502-18.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 11/21/2022] Open
Abstract
In male songbirds, the motivation to sing is largely regulated by testosterone (T) action in the medial preoptic area, whereas T acts on song control nuclei to modulate aspects of song quality. Stereotaxic implantation of T in the medial preoptic nucleus (POM) of castrated male canaries activates a high rate of singing activity, albeit with a longer latency than after systemic T treatment. Systemic T also increases the occurrence of male-like song in female canaries. We hypothesized that this effect is also mediated by T action in the POM. Females were stereotaxically implanted with either T or with 17β-estradiol (E2) targeted at the POM and their singing activity was recorded daily during 2 h for 28 d until brains were collected for histological analyses. Following identification of implant localizations, three groups of subjects were constituted that had either T or E2 implanted in the POM or had an implant that had missed the POM (Out). T and E2 in POM significantly increased the number of songs produced and the percentage of time spent singing as compared with the Out group. The songs produced were in general of a short duration and of poor quality. This effect was not associated with an increase in HVC volume as observed in males, but T in POM enhanced neurogenesis in HVC, as reflected by an increased density of doublecortin-immunoreactive (DCX-ir) multipolar neurons. These data indicate that, in female canaries, T acting in the POM plays a significant role in hormone-induced increases in the motivation to sing.
Collapse
|
12
|
Bell BA, Phan ML, Meillère A, Evans JK, Leitner S, Vicario DS, Buchanan KL. Influence of early-life nutritional stress on songbird memory formation. Proc Biol Sci 2018; 285:rspb.2018.1270. [PMID: 30257911 DOI: 10.1098/rspb.2018.1270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/31/2018] [Indexed: 11/12/2022] Open
Abstract
In birds, vocal learning enables the production of sexually selected complex songs, dialects and song copy matching. But stressful conditions during development have been shown to affect song production and complexity, mediated by changes in neural development. However, to date, no studies have tested whether early-life stress affects the neural processes underlying vocal learning, in contrast to song production. Here, we hypothesized that developmental stress alters auditory memory formation and neural processing of song stimuli. We experimentally stressed male nestling zebra finches and, in two separate experiments, tested their neural responses to song playbacks as adults, using either immediate early gene (IEG) expression or electrophysiological response. Once adult, nutritionally stressed males exhibited a reduced response to tutor song playback, as demonstrated by reduced expressions of two IEGs (Arc and ZENK) and reduced neuronal response, in both the caudomedial nidopallium (NCM) and mesopallium (CMM). Furthermore, nutritionally stressed males also showed impaired neuronal memory for novel songs heard in adulthood. These findings demonstrate, for the first time, that developmental conditions affect auditory memories that subserve vocal learning. Although the fitness consequences of such memory impairments remain to be determined, this study highlights the lasting impact early-life experiences can have on cognitive abilities.
Collapse
Affiliation(s)
- B A Bell
- Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - M L Phan
- Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - A Meillère
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - J K Evans
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - S Leitner
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - D S Vicario
- Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - K L Buchanan
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
13
|
Frankl-Vilches C, Gahr M. Androgen and estrogen sensitivity of bird song: a comparative view on gene regulatory levels. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:113-126. [PMID: 29209770 PMCID: PMC5790841 DOI: 10.1007/s00359-017-1236-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/02/2017] [Accepted: 11/09/2017] [Indexed: 12/16/2022]
Abstract
Singing of songbirds is sensitive to testosterone and its androgenic and estrogenic metabolites in a species-specific way. The hormonal effects on song pattern are likely mediated by androgen receptors (AR) and estrogen receptor alpha (ERα), ligand activated transcription factors that are expressed in neurons of various areas of the songbirds' vocal control circuit. The distribution of AR in this circuit is rather similar between species while that of ERα is species variant and concerns a key vocal control area, the HVC (proper name). We discuss the regulation of the expression of the cognate AR and ERα and putative splice variants. In particular, we suggest that transcription factor binding sites in the promoter of these receptors differ between bird species. Further, we suggest that AR- and ERα-dependent gene regulation in vocal areas differs between species due to species-specific DNA binding sites of putative target genes that are required for the transcriptional activity of the receptors. We suggest that species differences in the distribution of AR and ERα in vocal areas and in the genomic sensitivity to these receptors contribute to species-specific hormonal regulation of the song.
Collapse
Affiliation(s)
- Carolina Frankl-Vilches
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany.
| |
Collapse
|
14
|
Ball GF. Species variation in the degree of sex differences in brain and behaviour related to birdsong: adaptations and constraints. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150117. [PMID: 26833837 DOI: 10.1098/rstb.2015.0117] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2015] [Indexed: 12/23/2022] Open
Abstract
The song-control system, a neural circuit that controls the learning and production of birdsong, provided the first example in vertebrates of prominent macro-morphological sex differences in the brain. Forebrain nuclei HVC, robust nucleus of the arcopallium (RA) and area X all exhibit prominent male-biased sex differences in volume in zebra finches and canaries. Subsequent studies compared species that exhibited different degrees of a sex difference in song behaviour and revealed an overall positive correlation between male biases in song behaviour and male biases in the volume of the song nuclei. However, several exceptions have been described in which male biases in HVC and RA are observed even though song behaviour is equal or even female-biased. Other phenotypic measures exhibit lability in both sexes. In the duetting plain-tailed wren (Pheugopedius euophrys), males and females have auditory cells in the song system that are tuned to the joint song the two sexes produce rather than just male or female components. These findings suggest that there may be constraints on the adaptive response of the song system to ecological conditions as assessed by nucleus volume but that other critical variables regulating song can respond so that each sex can modify its song behaviour as needed.
Collapse
Affiliation(s)
- Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
15
|
Sexually antagonistic selection during parental care is not generated by a testosterone-related intralocus sexual conflict-insights from full-sib comparisons. Sci Rep 2015; 5:17715. [PMID: 26625951 PMCID: PMC4667218 DOI: 10.1038/srep17715] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/04/2015] [Indexed: 01/05/2023] Open
Abstract
The evolution of shared male and female traits can be hampered if selection favours sex-specific optima. However, such genomic conflicts can be resolved when independent male and female mechanisms evolve. The existence, extent and consequences of conflict and/or conflict resolution are currently debated. Endocrinological traits like plasma testosterone (T) are suitable test cases, given their important role in mediating correlated traits, plus their opposing sex-specific fitness effects. We compared full-sibling (brother/sister) captive canaries to test for (1) sexually antagonistic selection characterized by contrasting fitness patterns within pairs of relatives, (2) intersexual genetic correlation of plasma T (h(²) = 0.41 ± 0.31) and (3) intralocus sexual conflict over T levels featured by distinct sex-specific fitness optima. We found potential for sexually antagonistic selection, since high fledgling mass was reached by either brothers or sisters, but not by both. We report a positive intersexual correlation for T, as a requirement for intralocus sexual conflict. However, high levels of T were associated with increased female and decreased male fitness (fledgling mass), which contrasts our expectations and challenges the hypothesis of intralocus sexual conflict driven by T. We hypothesize that behavioural and physiological trade-offs differ between sexes when raising offspring, driving T levels towards a state of monomorphism.
Collapse
|
16
|
Giret N, Menardy F, Del Negro C. Sex differences in the representation of call stimuli in a songbird secondary auditory area. Front Behav Neurosci 2015; 9:290. [PMID: 26578918 PMCID: PMC4623205 DOI: 10.3389/fnbeh.2015.00290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/12/2015] [Indexed: 02/03/2023] Open
Abstract
Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM), while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer, and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird's own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of information about the bird's auditory experience in females.
Collapse
Affiliation(s)
- Nicolas Giret
- Department Cognition and Behaviors, Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique UMR 9197, Paris-Sud University Orsay, France
| | - Fabien Menardy
- Department Cognition and Behaviors, Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique UMR 9197, Paris-Sud University Orsay, France
| | - Catherine Del Negro
- Department Cognition and Behaviors, Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique UMR 9197, Paris-Sud University Orsay, France
| |
Collapse
|
17
|
Lobato M, Vellema M, Gahr C, Leitão A, de Lima SMA, Geberzahn N, Gahr M. Mismatch in sexual dimorphism of developing song and song control system in blue-capped cordon-bleus, a songbird species with singing females and males. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
18
|
Schwabl H, Dowling J, Baldassarre DT, Gahr M, Lindsay WR, Webster MS. Variation in song system anatomy and androgen levels does not correspond to song characteristics in a tropical songbird. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2015.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Krilow JM, Iwaniuk AN. Seasonal Variation in Forebrain Region Sizes in Male Ruffed Grouse (Bonasa umbellus). BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:189-202. [PMID: 25997574 DOI: 10.1159/000381277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/26/2015] [Indexed: 11/19/2022]
Abstract
The song system of songbirds has provided significant insight into the underlying mechanisms and behavioural consequences of seasonal neuroplasticity. The extent to which seasonal changes in brain region volumes occur in non-songbird species has, however, remained largely untested. Here, we tested whether brain region volumes varied with season in the ruffed grouse (Bonasa umbellus), a gallinaceous bird that produces a unique wing-beating display known as 'drumming' as its primary form of courtship behaviour. Using unbiased stereology, we measured the sizes of the cerebellum, nucleus rotundus, telencephalon, mesopallium, hippocampal formation, striatopallidal complex and arcopallium across spring males, fall males and fall females. The majority of these brain regions did not vary significantly across these three groups. The two exceptions were the striatopallidal complex and arcopallium, both of which were significantly larger in spring males that are actively drumming. These seasonal changes in volume strongly implicate the striatopallidal complex and arcopallium as key structures in the production and/or modulation of the ruffed grouse drumming display and represent the first evidence of seasonal plasticity in the telencephalon underlying a non-vocal courtship behaviour. Our findings also suggest that seasonal plasticity in the striatopallidal complex and arcopallium might be a trait that is shared across many bird species and that both structures are related to the production of multiple forms of courtship and not just learned song.
Collapse
Affiliation(s)
- Justin M Krilow
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alta., Canada
| | | |
Collapse
|
20
|
Goymann W, Wingfield JC. Male-to-female testosterone ratios, dimorphism, and life history—what does it really tell us? Behav Ecol 2014. [DOI: 10.1093/beheco/aru019] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Voigt C, Leitner S. Testosterone-dependency of male solo song in a duetting songbird--evidence from females. Horm Behav 2013; 63:122-7. [PMID: 23085444 DOI: 10.1016/j.yhbeh.2012.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 09/04/2012] [Accepted: 10/10/2012] [Indexed: 12/24/2022]
Abstract
For male songbirds of the temperate zone there is a tight link between seasonal song behaviour and circulating testosterone levels. Such a relationship does not seem to hold for tropical species where singing can occur year-round and breeding seasons are often extended. White-browed sparrow weavers (Plocepasser mahali) are cooperatively breeding songbirds with a dominant breeding pair and male and female subordinates found in eastern and southern Africa. Each group defends an all-purpose territory year-round. While all group members sing duets and choruses, the most dominant male additionally sings a solo song that comprises a distinct and large syllable repertoire. Previous studies suggested this type of song being associated with reproduction but failed to support a relationship with males' circulating testosterone levels. The present study aimed to investigate the steroid hormone sensitivity of the solo song in more detail. We found that dominant males had significantly higher circulating testosterone levels than subordinates during the early and late breeding seasons. No changes in solo song characteristics were found between both time points. Further, experimental implantation of captive adult females with exogenous testosterone induced solo singing within one week of treatment. Such females produced male-typical song regarding overall structure and syllable composition. Sex differences existed, however, concerning singing activity, repertoire size and temporal organisation of song. These results suggest that solo singing in white-browed sparrow weavers is under the control of gonadal steroid hormones. Moreover, the behaviour is not male-specific but can be activated in females under certain conditions.
Collapse
Affiliation(s)
- Cornelia Voigt
- Max Planck Institute for Ornithology, Department of Behavioural Neurobiology, Eberhard-Gwinner-Strasse, D-82319 Seewiesen, Germany.
| | | |
Collapse
|
22
|
MacDougall-Shackleton SA. The levels of analysis revisited. Philos Trans R Soc Lond B Biol Sci 2011; 366:2076-85. [PMID: 21690126 DOI: 10.1098/rstb.2010.0363] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The term levels of analysis has been used in several ways: to distinguish between ultimate and proximate levels, to categorize different kinds of research questions and to differentiate levels of reductionism. Because questions regarding ultimate function and proximate mechanisms are logically distinct, I suggest that distinguishing between these two levels is the best use of the term. Integrating across levels in research has potential risks, but many benefits. Consideration at one level can help generate novel hypotheses at the other, define categories of behaviour and set criteria that must be addressed. Taking an adaptationist stance thus strengthens research on proximate mechanisms. Similarly, it is critical for researchers studying adaptation and function to have detailed knowledge of proximate mechanisms that may constrain or modulate evolutionary processes. Despite the benefits of integrating across ultimate and proximate levels, failure to clearly identify levels of analysis, and whether or not hypotheses are exclusive alternatives, can create false debates. Such non-alternative hypotheses may occur between or within levels, and are not limited to integrative approaches. In this review, I survey different uses of the term levels of analysis and the benefits of integration, and highlight examples of false debate within and between levels. The best integrative biology reciprocally uses ultimate and proximate hypotheses to generate a more complete understanding of behaviour.
Collapse
Affiliation(s)
- Scott A MacDougall-Shackleton
- Advanced Facility for Avian Research, Department of Psychology, University of Western Ontario, London, Ontario, Canada, N6A 5C2.
| |
Collapse
|
23
|
Geberzahn N, Gahr M. Undirected (solitary) birdsong in female and male blue-capped cordon-bleus (Uraeginthus cyanocephalus) and its endocrine correlates. PLoS One 2011; 6:e26485. [PMID: 22039498 PMCID: PMC3198478 DOI: 10.1371/journal.pone.0026485] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 09/28/2011] [Indexed: 11/25/2022] Open
Abstract
Background Birdsong is a popular model system in research areas such as vocal communication, neuroethology or neuroendocrinology of behaviour. As most research has been conducted on species with male-only song production, the hormone-dependency of male song is well established. However, female singing and its mechanisms are poorly understood. Methodology/Principal Findings We characterised the song and its endocrine correlates of blue-capped cordon-bleus (Uraeginthus cyanocephalus), a species in which both sexes sing. Like other estrildids, they produce directed song during courtship and undirected (or solitary) song in isolation, i.e. when the mate is not visible or absent. We compare solitary song of blue-capped cordon-bleus to published descriptions of the song of its relative, the zebra finch (Taeniopygia guttata). Solitary song of cordon-bleus shared some overall song features with that of zebra finches but differed in spectro-temporal song features, sequential stereotypy and sequential organisation. The song of cordon-bleus was dimorphic with respect to the larger size of syllable repertoires, the higher song duration and the lower variability of pitch goodness (measuring the pureness of harmonic sounds) in males. However, in both sexes the overall plasma testosterone concentrations were low (ca. 300 pg/ml) and did not correlate with the sexually dimorphic song motor pattern. Despite such low concentrations, the increase in the rate of solitary song coincided with an increase in the level of testosterone. Furthermore, the latency to start singing after the separation from the mate was related to hormone levels. Conclusions/Significance Our findings suggest that the occurrence of solitary song but not its motor pattern might be under the control of testosterone in female and male cordon-bleus.
Collapse
Affiliation(s)
- Nicole Geberzahn
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany.
| | | |
Collapse
|
24
|
Motor pathway convergence predicts syllable repertoire size in oscine birds. Proc Natl Acad Sci U S A 2011; 108:16440-5. [PMID: 21918109 DOI: 10.1073/pnas.1102077108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Behavioral specializations are frequently associated with expansions of the brain regions controlling them. This principle of proper mass spans sensory, motor, and cognitive abilities and has been observed in a wide variety of vertebrate species. Yet, it is unknown if this concept extrapolates to entire neural pathways or how selection on a behavioral capacity might otherwise shape circuit structure. We investigate these questions by comparing the songs and neuroanatomy of 49 species from 17 families of songbirds, which vary immensely in the number of unique song components they produce and possess a conserved neural network dedicated to this behavior. We find that syllable repertoire size is strongly related to the degree of song motor pathway convergence. Repertoire size is more accurately predicted by the number of neurons in higher motor areas relative to that in their downstream targets than by the overall number of neurons in the song motor pathway. Additionally, the convergence values along serial premotor and primary motor projections account for distinct portions of the behavioral variation. These findings suggest that selection on song has independently shaped different components of this hierarchical pathway, and they elucidate how changes in pathway structure could have underlain elaborations of this learned motor behavior.
Collapse
|
25
|
Voigt C, Gahr M. Social status affects the degree of sex difference in the songbird brain. PLoS One 2011; 6:e20723. [PMID: 21687671 PMCID: PMC3110770 DOI: 10.1371/journal.pone.0020723] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 05/11/2011] [Indexed: 01/08/2023] Open
Abstract
It is thought that neural sex differences are functionally related to sex differences in the behaviour of vertebrates. A prominent example is the song control system of songbirds. Inter-specific comparisons have led to the hypothesis that sex differences in song nuclei size correlate with sex differences in song behaviour. However, only few species with similar song behaviour in both sexes have been investigated and not all data fit the hypothesis. We investigated the proposed structure – function relationship in a cooperatively breeding and duetting songbird, the white-browed sparrow weaver (Plocepasser mahali). This species lives in groups of 2–10 individuals, with a dominant breeding pair and male and female subordinates. While all male and female group members sing duet and chorus song, a male, once it has reached the dominant position in the group, sings an additional type of song that comprises a distinct and large syllable repertoire. Here we show for both types of male – female comparisons a male-biased sex difference in neuroanatomy of areas of the song production pathway (HVC and RA) that does not correlate with the observed polymorphism in song behaviour. In contrast, in situ hybridisation of mRNA of selected genes expressed in the song nucleus HVC reveals a gene expression pattern that is either similar between sexes in female – subordinate male comparisons or female-biased in female – dominant male comparisons. Thus, the polymorphic gene expression pattern would fit the sex- and status-related song behaviour. However, this implies that once a male has become dominant it produces the duetting song with a different neural phenotype than subordinate males.
Collapse
Affiliation(s)
- Cornelia Voigt
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany.
| | | |
Collapse
|
26
|
Day LB, Fusani L, Kim C, Schlinger BA. Sexually dimorphic neural phenotypes in golden-collared manakins (Manacus vitellinus). BRAIN, BEHAVIOR AND EVOLUTION 2011; 77:206-18. [PMID: 21576936 DOI: 10.1159/000327046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 03/02/2011] [Indexed: 01/03/2023]
Abstract
Male golden-collared manakins (Manacus vitellinus) perform a high-speed acrobatic courtship display punctuated by loud 'snaps' produced by the wings. Females join males on display courts to select individuals for copulation; females follow displaying males but do not perform acrobatics or make wing snaps. Sexually dimorphic courtship displays such as those performed by manakins are the result of intense sexual selection and suggest that differences between sexes exist at neural levels as well. We examined sex differences in the volume of brain areas that might be involved in the male manakin courtship display and in the female assessment of this display. We found that males had a larger hippocampus (HP, spatial learning) and arcopallium (AP, motor and limbic areas) than females when adjusted for the size of the telencephalon (TELE) minus the target area. Females had a larger ventrolateral mesopallium (MVL) both when adjusting for the size of the remaining TELE and by direct comparison. The entopallium (E) was not sexually dimorphic. The E is part of the avian tectofugal pathway and the MVL is linked to this pathway by reciprocal connections. The MVL likely modulates visually guided behavior via descending brainstem pathways. We found no sex differences in the volume of the cerebellum or cerebellar nuclei. We speculate that the HP is important to males for cross-season site fidelity and for local spatial memory, the AP for sexually driven motor patterns that are complex in males, and that the MVL facilitates female visual processing in selecting male display traits. These results are consistent with the idea that sexual selection has acted to select sex-specific behaviors in manakins that have neural correlates in the brain.
Collapse
Affiliation(s)
- Lainy B Day
- Department of Biology, University of Mississippi, Oxford, USA.
| | | | | | | |
Collapse
|
27
|
Spencer KA, MacDougall-Shackleton SA. Indicators of development as sexually selected traits: the developmental stress hypothesis in context. Behav Ecol 2011. [DOI: 10.1093/beheco/arq068] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
28
|
Hall ZJ, MacDougall-Shackleton SA, Osorio-Beristain M, Murphy TG. Male bias in the song control system despite female bias in song rate in streak-backed orioles (Icterus pustulatus). BRAIN, BEHAVIOR AND EVOLUTION 2010; 76:168-75. [PMID: 20980725 DOI: 10.1159/000320971] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 09/03/2010] [Indexed: 12/25/2022]
Abstract
The song control system is a group of discrete interconnected nuclei found in the brains of all songbirds (suborder Passeri). Previous studies have reported a positive relationship between sex differences in song nucleus volumes and sex differences in song behavior across numerous songbird species, with species exhibiting greater sex differences in behavior also exhibiting greater sex differences in the brain. This body of comparative research, however, has failed to incorporate data from a bird species in which females sing more than males. In this study, we examine song nucleus volumes in both sexes of the streak-backed oriole (Icterus pustulatus), a New World blackbird with a female bias in song rate and similar song complexity between the sexes. Results from this neuroanatomical analysis are contrary to what was to be expected from previous research: despite the female bias in song rate, males have a significantly larger HVC and area X song nucleus volumes. Specifically, male HVC was 75% larger than that of females, and male area X was 64% larger than that of females. There was no significant sex difference in the size of the nucleus robustus arcopallialis. The lack of a positive relationship between song nuclei and singing behavior in these orioles demonstrates that our current understanding of song modulation via the song control system may be overly reliant on basic measures such as total volumes.
Collapse
Affiliation(s)
- Zachary J Hall
- Department of Biology, University of Western Ontario, London, Canada.
| | | | | | | |
Collapse
|
29
|
Lemaître JF, Ramm SA, Barton RA, Stockley P. Sperm competition and brain size evolution in mammals. J Evol Biol 2010; 22:2215-21. [PMID: 20069724 DOI: 10.1111/j.1420-9101.2009.01837.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 'expensive tissue hypothesis' predicts a size trade-off between the brain and other energetically costly organs. A specific version of this hypothesis, the 'expensive sexual tissue hypothesis', argues that selection for larger testes under sperm competition constrains brain size evolution. We show here that there is no general evolutionary trade-off between brain and testis mass in mammals. The predicted negative relationship between these traits is not found for rodents, ungulates, primates, carnivores, or across combined mammalian orders, and neither does total brain mass vary according to the level of sperm competition as determined by mating system classifications. Although we are able to confirm previous reports of a negative relationship between brain and testis mass in echolocating bats, our results suggest that mating system may be a better predictor of brain size in this group. We conclude that the expensive sexual tissue hypothesis accounts for little or none of the variance in brain size in mammals, and suggest that a broader framework is required to understand the costs of brain size evolution and how these are met.
Collapse
Affiliation(s)
- J-F Lemaître
- Mammalian Behaviour & Evolution Group, Faculty of Veterinary Science, University of Liverpool, Neston, UK.
| | | | | | | |
Collapse
|
30
|
Salwiczek LH. Singing in the Brain. Science 2009. [DOI: 10.1126/science.1168935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Neuroscience of Birdsong
.
H. Philip Zeigler and Peter Marler, Eds.
. Cambridge University Press, Cambridge, 2008. 568 pp. $160, £80. ISBN 9780521869157.
The contributors offer advanced graduates and researchers a thorough survey of our current understanding of birdsong neurobiology.
Collapse
Affiliation(s)
- Lucie H. Salwiczek
- The reviewer is in the Sub-Department of Animal Behaviour and the Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| |
Collapse
|