1
|
Seabolt MH, Roellig DM, Konstantinidis KT. Spliceosomal introns in the diplomonad parasite Giardia duodenalis revisited. Microb Genom 2023; 9. [PMID: 37934076 DOI: 10.1099/mgen.0.001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Complete reference genomes, including correct feature annotations, are a fundamental aspect of genomic biology. In the case of protozoan species such as Giardia duodenalis, a major human and animal parasite worldwide, accurate genome annotation can deepen our understanding of the evolution of parasitism and pathogenicity by identifying genes underlying key traits and clinically relevant cellular mechanisms, and by extension, the development of improved prevention strategies and treatments. This study used bioinformatics analyses of Giardia mRNA libraries to characterize known introns and identify new intron candidates, working towards completion of the G. duodenalis assemblage A strain 'WB' genome and further elucidating Giardia's gene expression. By using a set of experimentally validated positive control loci to calibrate our intron detection pipeline, we were able to detect evidence of previously missed candidate splice junctions directly from expressed transcript data. These intron candidates were further studied in silico using NMDS (non-metric multidimensional scaling) clustering to determine shared characteristics and their relative importance such as secondary structure, splicing efficiency and motif conservation, and thus to refine intron models. Results from this study identified 34 new intron candidates, with several potential introns showing evidence that secondary structure of the mRNA molecule might play a more significant role in splicing than previously reported eukaryotic splicing activity mediated by a reduced spliceosome present in G. duodenalis.
Collapse
Affiliation(s)
- Matthew H Seabolt
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Leidos Inc., Reston, VA 20190, USA
| | - Dawn M Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Konstantinos T Konstantinidis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
González-Blanco G, García-Rivera G, Talmás-Rohana P, Orozco E, Galindo-Rosales JM, Vélez C, Salucedo-Cárdenas O, Azuara-Liceaga E, Rodríguez-Rodríguez MA, Nozaki T, Valdés J. An Unusual U2AF2 Inhibits Splicing and Attenuates the Virulence of the Human Protozoan Parasite Entamoeba histolytica. Front Cell Infect Microbiol 2022; 12:888428. [PMID: 35782149 PMCID: PMC9247205 DOI: 10.3389/fcimb.2022.888428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
E. histolytica is the etiological agent of intestinal amebiasis and liver abscesses, which still poses public health threat globally. Metronidazole is the drug of choice against amebiasis. However, metronidazole-resistant amoebic clinical isolates and strains have been reported recently, challenging the efforts for amebiasis eradication. In search of alternative treatments, E. histolytica transcriptomes have shown the association of genes involved in RNA metabolism with the virulence of the parasite. Among the upregulated genes in amoebic liver abscesses are the splicing factors EhU2AF2 and a paralog of EhSF3B1. For this reason and because EhU2AF2 contains unusual KH-QUA2 (84KQ) motifs in its lengthened C-terminus domain, here we investigated how the role of EhU2AF2 in pre-mRNA processing impacts the virulence of the parasite. We found that 84KQ is involved in splicing inhibition/intron retention of several virulence and non-virulence-related genes. The 84KQ domain interacts with the same domain of the constitutive splicing factor SF1 (SF1KQ), both in solution and when SF1KQ is bound to branchpoint signal RNA probes. The 84KQ–SF1KQ interaction prevents splicing complex E to A transition, thus inhibiting splicing. Surprisingly, the deletion of the 84KQ domain in EhU2AF2 amoeba transformants increased splicing and enhanced the in vitro and in vivo virulence phenotypes. We conclude that the interaction of the 84KQ and SF1KQ domains, probably involving additional factors, tunes down Entamoeba virulence by favoring intron retention.
Collapse
Affiliation(s)
- Gretter González-Blanco
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Patricia Talmás-Rohana
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Ester Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - José Manuel Galindo-Rosales
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Cristina Vélez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Odila Salucedo-Cárdenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX, Mexico
| | - Mario Alberto Rodríguez-Rodríguez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Tomoyoshi Nozaki
- Laboratory of Biomedical Chemistry, Department of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jesús Valdés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
- *Correspondence: Jesús Valdés,
| |
Collapse
|
3
|
Schmidt D, Reuter H, Hüttner K, Ruhe L, Rabert F, Seebeck F, Irimia M, Solana J, Bartscherer K. The Integrator complex regulates differential snRNA processing and fate of adult stem cells in the highly regenerative planarian Schmidtea mediterranea. PLoS Genet 2018; 14:e1007828. [PMID: 30557303 PMCID: PMC6312358 DOI: 10.1371/journal.pgen.1007828] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/31/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023] Open
Abstract
In multicellular organisms, cell type diversity and fate depend on specific sets of transcript isoforms generated by post-transcriptional RNA processing. Here, we used Schmidtea mediterranea, a flatworm with extraordinary regenerative abilities and a large pool of adult stem cells, as an in vivo model to study the role of Uridyl-rich small nuclear RNAs (UsnRNAs), which participate in multiple RNA processing reactions including splicing, in stem cell regulation. We characterized the planarian UsnRNA repertoire, identified stem cell-enriched variants and obtained strong evidence for an increased rate of UsnRNA 3'-processing in stem cells compared to their differentiated counterparts. Consistently, components of the Integrator complex showed stem cell-enriched expression and their depletion by RNAi disrupted UsnRNA processing resulting in global changes of splicing patterns and reduced processing of histone mRNAs. Interestingly, loss of Integrator complex function disrupted both stem cell maintenance and regeneration of tissues. Our data show that the function of the Integrator complex in UsnRNA 3'-processing is conserved in planarians and essential for maintaining their stem cell pool. We propose that cell type-specific modulation of UsnRNA composition and maturation contributes to in vivo cell fate choices, such as stem cell self-renewal in planarians.
Collapse
Affiliation(s)
- David Schmidt
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Medical Faculty, University of Münster, Münster, Germany
- * E-mail: (DS); (KB)
| | - Hanna Reuter
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Medical Faculty, University of Münster, Münster, Germany
| | - Katja Hüttner
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Medical Faculty, University of Münster, Münster, Germany
| | - Larissa Ruhe
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Medical Faculty, University of Münster, Münster, Germany
| | - Franziska Rabert
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Medical Faculty, University of Münster, Münster, Germany
| | - Florian Seebeck
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Medical Faculty, University of Münster, Münster, Germany
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Jordi Solana
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Kerstin Bartscherer
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Medical Faculty, University of Münster, Münster, Germany
- Hubrecht Institute for Developmental Biology and Stem Cell Research, CT Utrecht, The Netherlands
- * E-mail: (DS); (KB)
| |
Collapse
|
4
|
Xue M, Chen B, Ye Q, Shao J, Lyu Z, Wen J. Sense-antisense gene overlap is probably a cause for retaining the few introns in Giardia genome and the implications. Biol Direct 2018; 13:23. [PMID: 30621773 PMCID: PMC6545626 DOI: 10.1186/s13062-018-0226-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/02/2018] [Indexed: 12/22/2022] Open
Abstract
Background It is widely accepted that the last eukaryotic common ancestor and early eukaryotes were intron-rich and intron loss dominated subsequent evolution, thus the presence of only very few introns in some modern eukaryotes must be the consequence of massive loss. But it is striking that few eukaryotes were found to have completely lost introns. Despite extensive research, the causes of massive intron losses remain elusive. Actually the reverse question -- how the few introns can be retained under the evolutionary selection pressure of intron loss -- is equally significant but was rarely studied, except that it was conjectured that the essential functions of some introns prevent their loss. The situation that extremely few (eight) spliceosome-mediated cis-spliced introns present in the relatively simple genome of Giardia lamblia provides an excellent opportunity to explore this question. Results Our investigation found three types of distribution patterns of the few introns in the intron-containing genes: ancient intron in ancient gene, later-evolved intron in ancient gene, and later-evolved intron in later-evolved gene, which can reflect to some extent the dynamic evolution of introns in Giardia. Without finding any special features or functional importance of these introns responsible for their retention, we noticed and experimentally verified that some intron-containing genes form sense-antisense gene pairs with transcribable genes on their complementary strands, and that the introns just reside in the overlapping regions. Conclusions In Giardia’s evolution, despite constant evolutionary selection pressure of intron loss, intron gain can still occur in both ancient and later-evolved genes, but only a few introns are retained; at least the evolutionary retention of some of the introns might not be due to the functional constraint of the introns themselves but the causes outside of introns, such as the constraints imposed by other genomic functional elements overlapping with the introns. These findings can not only provide some clues to find new genomic functional elements -- in the areas overlapping with introns, but suggest that “functional constraint” of introns may not be necessarily directly associated with intron loss and gain, and that the real functions are probably still outside of our current knowledge. Reviewers This article was reviewed by Mikhail Gelfand, Michael Gray, and Igor Rogozin. Electronic supplementary material The online version of this article (10.1186/s13062-018-0226-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min Xue
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Bing Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Qingqing Ye
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Jingru Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Zhangxia Lyu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Jianfan Wen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
5
|
Cardinal Epigenetic Role of non-coding Regulatory RNAs in Circadian Rhythm. Mol Neurobiol 2017; 55:3564-3576. [PMID: 28516429 DOI: 10.1007/s12035-017-0573-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
Circadian rhythm which governs basic physiological activities like sleeping, feeding and energy consumption is regulated by light-controlled central clock genes in the pacemaker neuron. The timekeeping machinery with unique transcriptional and post-transcriptional feedback loops is controlled by different small regulatory RNAs in the brain. Roles of the multiple neuronal genes, especially post-transcriptional regulation, splicing, polyadenylation, mature mRNA editing, and stability of translation products, are controlled by epigenetic activities orchestrated via small RNAs. Collectively, these mechanisms regulate clock and light-controlled genes for effecting pacemaker activity and entrainment. Regulatory small RNAs of the circadian circuit, timekeeping mechanism, synchronization of regular entrainment, oscillation, and rhythmicity are regulated by diversified RNA molecules. Regulatory small RNAs operate critical roles in brain activities including the neuronal clock activity. In this report, we propose the emergence of the earlier unexpected small RNAs for a historic perspective of epigenetic regulation of the brain clock system.
Collapse
|
6
|
Interactions between Giardia duodenalis Sm proteins and their association with spliceosomal snRNAs. Parasitol Res 2016; 116:617-626. [DOI: 10.1007/s00436-016-5326-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/08/2016] [Indexed: 12/16/2022]
|
7
|
Reconstruction of Sugar Metabolic Pathways of Giardia lamblia. INTERNATIONAL JOURNAL OF PROTEOMICS 2012; 2012:980829. [PMID: 23119161 PMCID: PMC3483818 DOI: 10.1155/2012/980829] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/18/2012] [Accepted: 09/23/2012] [Indexed: 11/20/2022]
Abstract
Giardia lamblia is an “important” pathogen of humans, but as a diplomonad excavate it is evolutionarily distant from other eukaryotes and relatively little is known about its core metabolic pathways. KEGG, the widely referenced site for providing information of metabolism, does not yet include many enzymes from Giardia species. Here we identify Giardia's core sugar metabolism using standard bioinformatic approaches. By comparing Giardia proteomes with known enzymes from other species, we have identified enzymes in the glycolysis pathway, as well as some enzymes involved in the TCA cycle and oxidative phosphorylation. However, the majority of enzymes from the latter two pathways were not identifiable, indicating the likely absence of these functionalities. We have also found enzymes from the Giardia glycolysis pathway that appear more similar to those from bacteria. Because these enzymes are different from those found in mammals, the host organisms for Giardia, we raise the possibility that these bacteria-like enzymes could be novel drug targets for treating Giardia infections.
Collapse
|
8
|
Hudson AJ, Moore AN, Elniski D, Joseph J, Yee J, Russell AG. Evolutionarily divergent spliceosomal snRNAs and a conserved non-coding RNA processing motif in Giardia lamblia. Nucleic Acids Res 2012; 40:10995-1008. [PMID: 23019220 PMCID: PMC3510501 DOI: 10.1093/nar/gks887] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have diverse essential biological functions in all organisms, and in eukaryotes, two such classes of ncRNAs are the small nucleolar (sno) and small nuclear (sn) RNAs. In this study, we have identified and characterized a collection of sno and snRNAs in Giardia lamblia, by exploiting our discovery of a conserved 12 nt RNA processing sequence motif found in the 3' end regions of a large number of G. lamblia ncRNA genes. RNA end mapping and other experiments indicate the motif serves to mediate ncRNA 3' end formation from mono- and di-cistronic RNA precursor transcripts. Remarkably, we find the motif is also utilized in the processing pathway of all four previously identified trans-spliced G. lamblia introns, revealing a common RNA processing pathway for ncRNAs and trans-spliced introns in this organism. Motif sequence conservation then allowed for the bioinformatic and experimental identification of additional G. lamblia ncRNAs, including new U1 and U6 spliceosomal snRNA candidates. The U6 snRNA candidate was then used as a tool to identity novel U2 and U4 snRNAs, based on predicted phylogenetically conserved snRNA-snRNA base-pairing interactions, from a set of previously identified G. lamblia ncRNAs without assigned function. The Giardia snRNAs retain the core features of spliceosomal snRNAs but are sufficiently evolutionarily divergent to explain the difficulties in their identification. Most intriguingly, all of these snRNAs show structural features diagnostic of U2-dependent/major and U12-dependent/minor spliceosomal snRNAs.
Collapse
Affiliation(s)
- Andrew J Hudson
- Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Collins LJ. Characterizing ncRNAs in Human Pathogenic Protists Using High-Throughput Sequencing Technology. Front Genet 2011; 2:96. [PMID: 22303390 PMCID: PMC3268645 DOI: 10.3389/fgene.2011.00096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 12/07/2011] [Indexed: 11/16/2022] Open
Abstract
ncRNAs are key genes in many human diseases including cancer and viral infection, as well as providing critical functions in pathogenic organisms such as fungi, bacteria, viruses, and protists. Until now the identification and characterization of ncRNAs associated with disease has been slow or inaccurate requiring many years of testing to understand complicated RNA and protein gene relationships. High-throughput sequencing now offers the opportunity to characterize miRNAs, siRNAs, small nucleolar RNAs (snoRNAs), and long ncRNAs on a genomic scale, making it faster and easier to clarify how these ncRNAs contribute to the disease state. However, this technology is still relatively new, and ncRNA discovery is not an application of high priority for streamlined bioinformatics. Here we summarize background concepts and practical approaches for ncRNA analysis using high-throughput sequencing, and how it relates to understanding human disease. As a case study, we focus on the parasitic protists Giardia lamblia and Trichomonas vaginalis, where large evolutionary distance has meant difficulties in comparing ncRNAs with those from model eukaryotes. A combination of biological, computational, and sequencing approaches has enabled easier classification of ncRNA classes such as snoRNAs, but has also aided the identification of novel classes. It is hoped that a higher level of understanding of ncRNA expression and interaction may aid in the development of less harsh treatment for protist-based diseases.
Collapse
Affiliation(s)
- Lesley Joan Collins
- Institute of Fundamental Sciences, Massey University Palmerston North, New Zealand
| |
Collapse
|
10
|
MARZ MANJA, VANZO NATHALIE, STADLER PETERF. TEMPERATURE-DEPENDENT STRUCTURAL VARIABILITY OF RNAs: SPLICED LEADER RNAs AND THEIR EVOLUTIONARY HISTORY. J Bioinform Comput Biol 2011; 8:1-17. [DOI: 10.1142/s0219720010004525] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 08/16/2009] [Accepted: 09/14/2009] [Indexed: 11/18/2022]
Abstract
The structures attained by RNA molecules depend not only on their sequence but also on environmental parameters such as their temperature. So far, this effect has been largely neglected in bioinformatics studies. Here, we show that structural comparisons can be facilitated and more coherent structural models can be obtained when differences in environmental parameters are taken into account. We re-evaluate the secondary structures of the spliced leader (SL) RNAs from the seven eukaryotic phyla in which SL RNA trans-splicing has been described. Adjusting structure prediction to the natural growth temperatures and considering energetically similar secondary structures, we observe striking similarities among Euglenida, Kinetoplastida, Dinophyceae, Cnidaria, Rotifera, Nematoda, Platyhelminthes, and Tunicata that cannot be explained easily by the independent innovation of SL RNAs in each of these phyla. Supplementary Table is available at .
Collapse
Affiliation(s)
- MANJA MARZ
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | - NATHALIE VANZO
- Centre de Biologie du Développement, UMR 5547 C. N. R. S. Université Paul Sabatier, F-31062 Toulouse Cedex, France
| | - PETER F. STADLER
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
- Fraunhofer Institut für Zelltherapie und Immunologie – IZI, Perlickstraße 1, D-04103 Leipzig, Germany
- Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| |
Collapse
|
11
|
Chen XS, Penny D, Collins LJ. Characterization of RNase MRP RNA and novel snoRNAs from Giardia intestinalis and Trichomonas vaginalis. BMC Genomics 2011; 12:550. [PMID: 22053856 PMCID: PMC3228867 DOI: 10.1186/1471-2164-12-550] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 11/06/2011] [Indexed: 12/02/2022] Open
Abstract
Background Eukaryotic cells possess a complex network of RNA machineries which function in RNA-processing and cellular regulation which includes transcription, translation, silencing, editing and epigenetic control. Studies of model organisms have shown that many ncRNAs of the RNA-infrastructure are highly conserved, but little is known from non-model protists. In this study we have conducted a genome-scale survey of medium-length ncRNAs from the protozoan parasites Giardia intestinalis and Trichomonas vaginalis. Results We have identified the previously 'missing' Giardia RNase MRP RNA, which is a key ribozyme involved in pre-rRNA processing. We have also uncovered 18 new H/ACA box snoRNAs, expanding our knowledge of the H/ACA family of snoRNAs. Conclusions Results indicate that Giardia intestinalis and Trichomonas vaginalis, like their distant multicellular relatives, contain a rich infrastructure of RNA-based processing. From here we can investigate the evolution of RNA processing networks in eukaryotes.
Collapse
Affiliation(s)
- Xiaowei S Chen
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
12
|
The short non-coding transcriptome of the protozoan parasite Trypanosoma cruzi. PLoS Negl Trop Dis 2011; 5:e1283. [PMID: 21912713 PMCID: PMC3166047 DOI: 10.1371/journal.pntd.0001283] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 07/04/2011] [Indexed: 11/19/2022] Open
Abstract
The pathway for RNA interference is widespread in metazoans and participates in numerous cellular tasks, from gene silencing to chromatin remodeling and protection against retrotransposition. The unicellular eukaryote Trypanosoma cruzi is missing the canonical RNAi pathway and is unable to induce RNAi-related processes. To further understand alternative RNA pathways operating in this organism, we have performed deep sequencing and genome-wide analyses of a size-fractioned cDNA library (16–61 nt) from the epimastigote life stage. Deep sequencing generated 582,243 short sequences of which 91% could be aligned with the genome sequence. About 95–98% of the aligned data (depending on the haplotype) corresponded to small RNAs derived from tRNAs, rRNAs, snRNAs and snoRNAs. The largest class consisted of tRNA-derived small RNAs which primarily originated from the 3′ end of tRNAs, followed by small RNAs derived from rRNA. The remaining sequences revealed the presence of 92 novel transcribed loci, of which 79 did not show homology to known RNA classes. Chagas' disease is a major health problem in Latin America and is caused by the protozoan parasite Trypanosoma cruzi. T. cruzi lacks the pathway for RNA interference, which is widespread among eukaryotes, and is therefore unable to induce RNAi-related processes. In many organisms, small RNAs play an important role in regulating gene expression and other cellular processes. In order to understand if other small RNA pathways are operating in this organism, we performed high throughput sequencing and genome-wide analyses of the short transcriptome. We identified an abundance of small RNAs derived from non-coding RNA genes, including transfer RNAs, ribosomal RNAs as well as small nucleolar RNAs and small nuclear RNAs. Certain tRNA types were overrepresented as precursors for small RNAs. Further, we identified 79 novel small non-coding RNAs, not previously reported. We did not identify canonical small RNAs, like microRNAs and small interfering RNAs, and concluded that these do not exist in T. cruzi. This study has provided insights into the short transcriptome of a major human pathogen and provided starting points for further functional investigation of small RNAs and their biological roles.
Collapse
|
13
|
Roy SW, Hudson AJ, Joseph J, Yee J, Russell AG. Numerous fragmented spliceosomal introns, AT-AC splicing, and an unusual dynein gene expression pathway in Giardia lamblia. Mol Biol Evol 2011; 29:43-9. [PMID: 21482665 DOI: 10.1093/molbev/msr063] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spliceosomal introns are hallmarks of eukaryotic genomes, dividing coding regions into separate exons, which are joined during mRNA intron removal catalyzed by the spliceosome. With few known exceptions, spliceosomal introns are cis-spliced, that is, removed from one contiguous pre-mRNA transcript. The protistan intestinal parasite Giardia lamblia exhibits one of the most reduced eukaryotic genomes known, with short intergenic regions and only four known spliceosomal introns. Our genome-wide search for additional introns revealed four unusual cases of spliceosomal intron fragmentation, with consecutive exons of conserved protein-coding genes being dispersed to distant genomic sites. Independent transcripts are trans-spliced to yield contiguous mature mRNAs. Most strikingly, a dynein heavy chain subunit is both interrupted by two fragmented introns and also predicted to be assembled as two separately translated polypeptides, a remarkably complex expression pathway for a nuclear-encoded sequence. For each case, we observe extensive base-pairing potential between intron halves. This base pairing provides both a rationale for the in vivo association of independently transcribed mRNAs transcripts and the apparent specificity of splicing. Similar base-pairing potential in two cis-spliced G. lamblia introns suggests an evolutionary pathway whereby intron fragmentation of cis-spliced introns is permissible and a preliminary evolutionary step to complete gene fission. These results reveal remarkably complex genome dynamics in a severely genomically reduced parasite.
Collapse
Affiliation(s)
- Scott W Roy
- Department of Biology, Stanford University, USA
| | | | | | | | | |
Collapse
|
14
|
Copeland CS, Marz M, Rose D, Hertel J, Brindley PJ, Santana CB, Kehr S, Attolini CSO, Stadler PF. Homology-based annotation of non-coding RNAs in the genomes of Schistosoma mansoni and Schistosoma japonicum. BMC Genomics 2009; 10:464. [PMID: 19814823 PMCID: PMC2770079 DOI: 10.1186/1471-2164-10-464] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 10/08/2009] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Schistosomes are trematode parasites of the phylum Platyhelminthes. They are considered the most important of the human helminth parasites in terms of morbidity and mortality. Draft genome sequences are now available for Schistosoma mansoni and Schistosoma japonicum. Non-coding RNA (ncRNA) plays a crucial role in gene expression regulation, cellular function and defense, homeostasis, and pathogenesis. The genome-wide annotation of ncRNAs is a non-trivial task unless well-annotated genomes of closely related species are already available. RESULTS A homology search for structured ncRNA in the genome of S. mansoni resulted in 23 types of ncRNAs with conserved primary and secondary structure. Among these, we identified rRNA, snRNA, SL RNA, SRP, tRNAs and RNase P, and also possibly MRP and 7SK RNAs. In addition, we confirmed five miRNAs that have recently been reported in S. japonicum and found two additional homologs of known miRNAs. The tRNA complement of S. mansoni is comparable to that of the free-living planarian Schmidtea mediterranea, although for some amino acids differences of more than a factor of two are observed: Leu, Ser, and His are overrepresented, while Cys, Meth, and Ile are underrepresented in S. mansoni. On the other hand, the number of tRNAs in the genome of S. japonicum is reduced by more than a factor of four. Both schistosomes have a complete set of minor spliceosomal snRNAs. Several ncRNAs that are expected to exist in the S. mansoni genome were not found, among them the telomerase RNA, vault RNAs, and Y RNAs. CONCLUSION The ncRNA sequences and structures presented here represent the most complete dataset of ncRNA from any lophotrochozoan reported so far. This data set provides an important reference for further analysis of the genomes of schistosomes and indeed eukaryotic genomes at large.
Collapse
Affiliation(s)
- Claudia S Copeland
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Franzén O, Jerlström-Hultqvist J, Castro E, Sherwood E, Ankarklev J, Reiner DS, Palm D, Andersson JO, Andersson B, Svärd SG. Draft genome sequencing of giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species? PLoS Pathog 2009; 5:e1000560. [PMID: 19696920 PMCID: PMC2723961 DOI: 10.1371/journal.ppat.1000560] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 07/27/2009] [Indexed: 01/05/2023] Open
Abstract
Giardia intestinalis is a major cause of diarrheal disease worldwide and two major Giardia genotypes, assemblages A and B, infect humans. The genome of assemblage A parasite WB was recently sequenced, and the structurally compact 11.7 Mbp genome contains simplified basic cellular machineries and metabolism. We here performed 454 sequencing to 16× coverage of the assemblage B isolate GS, the only Giardia isolate successfully used to experimentally infect animals and humans. The two genomes show 77% nucleotide and 78% amino-acid identity in protein coding regions. Comparative analysis identified 28 unique GS and 3 unique WB protein coding genes, and the variable surface protein (VSP) repertoires of the two isolates are completely different. The promoters of several enzymes involved in the synthesis of the cyst-wall lack binding sites for encystation-specific transcription factors in GS. Several synteny-breaks were detected and verified. The tetraploid GS genome shows higher levels of overall allelic sequence polymorphism (0.5 versus <0.01% in WB). The genomic differences between WB and GS may explain some of the observed biological and clinical differences between the two isolates, and it suggests that assemblage A and B Giardia can be two different species. Giardia intestinalis is a major contributor to the enormous burden of diarrheal diseases with 250 million symptomatic infections per year, and it is part of the WHO neglected disease initiative. Nonetheless, there is poor insight into how Giardia causes disease; it is not invasive, secretes no known toxin and both the duration and symptoms of giardiasis are highly variable. Currently, there are seven defined variants (assemblages) of G. intestinalis, with only assemblages A and B being known to infect humans. Although assemblage B is the most prevalent worldwide, it is inconclusive whether the various genotypes are associated with different disease outcomes. We have used the 454 sequencing technology to sequence the first assemblage B isolate, and the genome was compared to the earlier sequenced assemblage A isolate. Large genetic differences were detected in genes involved in survival of the parasite during infections. The genomic differences between assemblage A and B can explain some of the observed biological and clinical differences between the two assemblages. Our data suggest that assemblage A and B Giardia can be two different species. The identification of genomic differences between assemblages is indeed very important for further studies of the disease and in the development of new methods for diagnosis and treatment of giardiasis.
Collapse
Affiliation(s)
- Oscar Franzén
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Elsie Castro
- Centre for Microbiological Preparedness, Swedish Institute for Infectious Disease Control, Solna, Sweden
| | - Ellen Sherwood
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Ankarklev
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
| | - David S. Reiner
- The Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Daniel Palm
- Centre for Microbiological Preparedness, Swedish Institute for Infectious Disease Control, Solna, Sweden
| | - Jan O. Andersson
- Department of Evolution, Genomics and Systematics, EBC, Uppsala University, Uppsala, Sweden
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Staffan G. Svärd
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
16
|
Chen XS, Collins LJ, Biggs PJ, Penny D. High throughput genome-wide survey of small RNAs from the parasitic protists Giardia intestinalis and Trichomonas vaginalis. Genome Biol Evol 2009; 1:165-75. [PMID: 20333187 PMCID: PMC2817412 DOI: 10.1093/gbe/evp017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2009] [Indexed: 12/26/2022] Open
Abstract
RNA interference (RNAi) is a set of mechanisms which regulate gene expression in eukaryotes. Key elements of RNAi are small sense and antisense RNAs from 19 to 26 nt generated from double-stranded RNAs. MicroRNAs (miRNAs) are a major type of RNAi-associated small RNAs and are found in most eukaryotes studied to date. To investigate whether small RNAs associated with RNAi appear to be present in all eukaryotic lineages, and therefore present in the ancestral eukaryote, we studied two deep-branching protozoan parasites, Giardia intestinalis and Trichomonas vaginalis. Little is known about endogenous small RNAs involved in RNAi of these organisms. Using Illumina Solexa sequencing and genome-wide analysis of small RNAs from these distantly related deep-branching eukaryotes, we identified 10 strong miRNA candidates from Giardia and 11 from Trichomonas. We also found evidence of Giardia short-interfering RNAs potentially involved in the expression of variant-specific surface proteins. In addition, eight new small nucleolar RNAs from Trichomonas are identified. Our results indicate that miRNAs are likely to be general in ancestral eukaryotes and therefore are likely to be a universal feature of eukaryotes.
Collapse
Affiliation(s)
- Xiaowei Sylvia Chen
- Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand.
| | | | | | | |
Collapse
|
17
|
Collins LJ, Penny D. The RNA infrastructure: dark matter of the eukaryotic cell? Trends Genet 2009; 25:120-8. [PMID: 19171405 DOI: 10.1016/j.tig.2008.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 11/29/2022]
Abstract
Eukaryotes express many functional non-protein-coding RNAs (ncRNAs) that participate in the processing and regulation of other RNA molecules. By focusing on connections between RNA-based processes, common patterns emerge that form a network-like RNA infrastructure. Owing to the intracellular movement of RNA during its processing (both between nuclear compartments and between the nucleus and cytoplasm), the RNA infrastructure contains both spatial and temporal connections. As research moves away from being protein-centric and focuses more on genomics, it is timely to explore these often 'hidden' aspects of the eukaryotic cell. The general and ancestral nature of most basic RNA-processing steps places a new focus on the generality of the spatial and temporal steps in RNA processing.
Collapse
Affiliation(s)
- Lesley J Collins
- Allan Wilson Centre for Molecular Ecology and Evolution and Institute of Molecular BioSciences, Private Bag 11222, Massey University, 4442 Palmerston North, New Zealand.
| | | |
Collapse
|