1
|
Bangbo Z, Cheng Q, Zeru L, Tianyu L, Yutong Z, Weibin W, Yupei Z. RNA binding protein Pumilio2 promotes chemoresistance of pancreatic cancer via focal adhesion pathway and interacting with transcription factor EGR1. Cell Mol Life Sci 2025; 82:78. [PMID: 39961821 PMCID: PMC11832970 DOI: 10.1007/s00018-025-05599-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/20/2025]
Abstract
Pancreatic cancer (PCa) has insidious onset, high malignancy and poor prognosis. Gemcitabine (GEM) is one of the first-line chemotherapy drugs for PCa. However, GEM resistance has always been a bottleneck problem leading to recurrence and death of PCa patients. RNA-binding proteins (RBPs) are important proteins that regulate transportation, splicing, stability and translation of RNA. Abnormal expression of RBPs often lead to a series of abnormal accumulation or degradation of downstream RNA resulting in various diseases. In our study, we utilized RIP seq, RIP-qPCR, in vitro and in vivo experiments and found that pumilio2 (PUM2) was high expression in PCa, and promoted GEM resistance of PCa by regulating mRNA stability of integrin Alpha 3 (ITGA3) and other genes in focal adhesion pathway, and there was positive feedback regulation between PUM2 and transcription factor early growth response gene 1 (EGR1), that is PUM2 binding to 3'UTR region of EGR1 mRNA, and EGR1 binding to promoter region of PUM2 gene. The discovery of EGR1/PUM2/ITGA3 axis provided a solid experimental basis for the selection of chemotherapy regiments for PCa patients and exploration of combined regimens to reverse GEM resistance in the future.
Collapse
Affiliation(s)
- Zhao Bangbo
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qin Cheng
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Li Zeru
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Li Tianyu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhao Yutong
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wang Weibin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Zhao Yupei
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
2
|
Angelo M, Bhargava Y, Kierzek E, Kierzek R, Hayes RL, Zhang W, Vilseck JZ, Aoki ST. Accurate in silico predictions of modified RNA interactions to a prototypical RNA-binding protein with λ-dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627848. [PMID: 39713306 PMCID: PMC11661408 DOI: 10.1101/2024.12.10.627848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
RNA-binding proteins shape biology through their widespread functions in RNA biochemistry. Their function requires the recognition of specific RNA motifs for targeted binding. These RNA binding elements can be composed of both unmodified and chemically modified RNAs, of which over 170 chemical modifications have been identified in biology. Unmodified RNA sequence preferences for RNA-binding proteins have been widely studied, with numerous methods available to identify their preferred sequence motifs. However, only a few techniques can detect preferred RNA modifications, and no current method can comprehensively screen the vast array of hundreds of natural RNA modifications. Prior work demonstrated that λ-dynamics is an accurate in silico method to predict RNA base binding preferences of an RNA-binding antibody. This work extends that effort by using λ-dynamics to predict unmodified and modified RNA binding preferences of human Pumilio, a prototypical RNA binding protein. A library of RNA modifications was screened at eight nucleotide positions along the RNA to identify modifications predicted to affect Pumilio binding. Computed binding affinities were compared with experimental data to reveal high predictive accuracy. In silico force field accuracies were also evaluated between CHARMM and Amber RNA force fields to determine the best parameter set to use in binding calculations. This work demonstrates that λ-dynamics can predict RNA interactions to a bona fide RNA-binding protein without the requirements of chemical reagents or new methods to experimentally test binding at the bench. Advancing in silico methods like λ-dynamics will unlock new frontiers in understanding how RNA modifications shape RNA biochemistry.
Collapse
Affiliation(s)
- Murphy Angelo
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yash Bhargava
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Ryan L. Hayes
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jonah Z. Vilseck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Scott Takeo Aoki
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Arrías PN, Osmanli Z, Peralta E, Chinestrad PM, Monzon AM, Tosatto SCE. Diversity and structural-functional insights of alpha-solenoid proteins. Protein Sci 2024; 33:e5189. [PMID: 39465903 PMCID: PMC11514114 DOI: 10.1002/pro.5189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/29/2024]
Abstract
Alpha-solenoids are a significant and diverse subset of structured tandem repeat proteins (STRPs) that are important in various domains of life. This review examines their structural and functional diversity and highlights their role in critical cellular processes such as signaling, apoptosis, and transcriptional regulation. Alpha-solenoids can be classified into three geometric folds: low curvature, high curvature, and corkscrew, as well as eight subfolds: ankyrin repeats; Huntingtin, elongation factor 3, protein phosphatase 2A, and target of rapamycin; armadillo repeats; tetratricopeptide repeats; pentatricopeptide repeats; Pumilio repeats; transcription activator-like; and Sel-1 and Sel-1-like repeats. These subfolds represent distinct protein families with unique structural properties and functions, highlighting the versatility of alpha-solenoids. The review also discusses their association with disease, highlighting their potential as therapeutic targets and their role in protein design. Advances in state-of-the-art structure prediction methods provide new opportunities and challenges in the functional characterization and classification of this kind of fold, emphasizing the need for continued development of methods for their identification and proper data curation and deposition in the main databases.
Collapse
Affiliation(s)
- Paula Nazarena Arrías
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Department of Protein ScienceKTH Royal Institute of TechnologyStockholmSweden
| | - Zarifa Osmanli
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Estefanía Peralta
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
| | | | | | - Silvio C. E. Tosatto
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Institute of Biomembranes, Bioenergetics and Molecular BiotechnologiesNational Research Council (CNR‐IBIOM)BariItaly
| |
Collapse
|
4
|
Haugen RJ, Barnier C, Elrod ND, Luo H, Jensen MK, Ji P, Smibert CA, Lipshitz HD, Wagner EJ, Freddolino PL, Goldstrohm AC. Regulation of the Drosophila transcriptome by Pumilio and the CCR4-NOT deadenylase complex. RNA (NEW YORK, N.Y.) 2024; 30:866-890. [PMID: 38627019 PMCID: PMC11182014 DOI: 10.1261/rna.079813.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
The sequence-specific RNA-binding protein Pumilio (Pum) controls Drosophila development; however, the network of mRNAs that it regulates remains incompletely characterized. In this study, we use knockdown and knockout approaches coupled with RNA-seq to measure the impact of Pum on the transcriptome of Drosophila cells in culture. We also use an improved RNA coimmunoprecipitation method to identify Pum-bound mRNAs in Drosophila embryos. Integration of these data sets with the locations of Pum-binding motifs across the transcriptome reveals novel direct Pum target genes involved in neural, muscle, wing, and germ cell development and in cellular proliferation. These genes include components of Wnt, TGF-β, MAPK/ERK, and Notch signaling pathways, DNA replication, and lipid metabolism. We identify the mRNAs regulated by the CCR4-NOT deadenylase complex, a key factor in Pum-mediated repression, and observe concordant regulation of Pum:CCR4-NOT target mRNAs. Computational modeling reveals that Pum binding, binding site number, clustering, and sequence context are important determinants of regulation. In contrast, we show that the responses of direct mRNA targets to Pum-mediated repression are not influenced by the content of optimal synonymous codons. Moreover, contrary to a prevailing model, we do not detect a role for CCR4-NOT in the degradation of mRNAs with low codon optimality. Together, the results of this work provide new insights into the Pum regulatory network and mechanisms and the parameters that influence the efficacy of Pum-mediated regulation.
Collapse
Affiliation(s)
- Rebecca J Haugen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Catherine Barnier
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nathan D Elrod
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77550, USA
| | - Hua Luo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Madeline K Jensen
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Ping Ji
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Craig A Smibert
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Eric J Wagner
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - P Lydia Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
5
|
Lee YH, Hass EP, Campodonico W, Lee YK, Lasda E, Shah J, Rinn J, Hwang T. Massively parallel dissection of RNA in RNA-protein interactions in vivo. Nucleic Acids Res 2024; 52:e48. [PMID: 38726866 PMCID: PMC11162807 DOI: 10.1093/nar/gkae334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 06/11/2024] Open
Abstract
Many of the biological functions performed by RNA are mediated by RNA-binding proteins (RBPs), and understanding the molecular basis of these interactions is fundamental to biology. Here, we present massively parallel RNA assay combined with immunoprecipitation (MPRNA-IP) for in vivo high-throughput dissection of RNA-protein interactions and describe statistical models for identifying RNA domains and parsing the structural contributions of RNA. By using custom pools of tens of thousands of RNA sequences containing systematically designed truncations and mutations, MPRNA-IP is able to identify RNA domains, sequences, and secondary structures necessary and sufficient for protein binding in a single experiment. We show that this approach is successful for multiple RNAs of interest, including the long noncoding RNA NORAD, bacteriophage MS2 RNA, and human telomerase RNA, and we use it to interrogate the hitherto unknown sequence or structural RNA-binding preferences of the DNA-looping factor CTCF. By integrating systematic mutation analysis with crosslinking immunoprecipitation, MPRNA-IP provides a novel high-throughput way to elucidate RNA-based mechanisms behind RNA-protein interactions in vivo.
Collapse
Affiliation(s)
- Yu Hsuan Lee
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Evan P Hass
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Will Campodonico
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Yong Kyu Lee
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Erika Lasda
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Jaynish S Shah
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - John L Rinn
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Taeyoung Hwang
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Chen S, Collart MA. Membrane-associated mRNAs: A Post-transcriptional Pathway for Fine-turning Gene Expression. J Mol Biol 2024; 436:168579. [PMID: 38648968 DOI: 10.1016/j.jmb.2024.168579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Gene expression is a fundamental and highly regulated process involving a series of tightly coordinated steps, including transcription, post-transcriptional processing, translation, and post-translational modifications. A growing number of studies have revealed an additional layer of complexity in gene expression through the phenomenon of mRNA subcellular localization. mRNAs can be organized into membraneless subcellular structures within both the cytoplasm and the nucleus, but they can also targeted to membranes. In this review, we will summarize in particular our knowledge on localization of mRNAs to organelles, focusing on important regulators and available techniques for studying organellar localization, and significance of this localization in the broader context of gene expression regulation.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.
| | - Martine A Collart
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.
| |
Collapse
|
7
|
Zhukova M, Schedl P, Shidlovskii YV. The role of secondary structures in the functioning of 3' untranslated regions of mRNA: A review of functions of 3' UTRs' secondary structures and hypothetical involvement of secondary structures in cytoplasmic polyadenylation in Drosophila. Bioessays 2024; 46:e2300099. [PMID: 38161240 PMCID: PMC11337203 DOI: 10.1002/bies.202300099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
3' untranslated regions (3' UTRs) of mRNAs have many functions, including mRNA processing and transport, translational regulation, and mRNA degradation and stability. These different functions require cis-elements in 3' UTRs that can be either sequence motifs or RNA structures. Here we review the role of secondary structures in the functioning of 3' UTRs and discuss some of the trans-acting factors that interact with these secondary structures in eukaryotic organisms. We propose potential participation of 3'-UTR secondary structures in cytoplasmic polyadenylation in the model organism Drosophila melanogaster. Because the secondary structures of 3' UTRs are essential for post-transcriptional regulation of gene expression, their disruption leads to a wide range of disorders, including cancer and cardiovascular diseases. Trans-acting factors, such as STAU1 and nucleolin, which interact with 3'-UTR secondary structures of target transcripts, influence the pathogenesis of neurodegenerative diseases and tumor metastasis, suggesting that they are possible therapeutic targets.
Collapse
Affiliation(s)
- Mariya Zhukova
- Laboratory of Gene Expression Regulation in Development, Russian Academy of Sciences, Institute of Gene Biology, Moscow, Russia
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Russian Academy of Sciences, Institute of Gene Biology, Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Russian Academy of Sciences, Institute of Gene Biology, Moscow, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
8
|
Feng W, Zhang H, Cao Y, Yang C, Khalid MHB, Yang Q, Li W, Wang Y, Fu F, Yu H. Comprehensive Identification of the Pum Gene Family and Its Involvement in Kernel Development in Maize. Int J Mol Sci 2023; 24:14036. [PMID: 37762337 PMCID: PMC10530998 DOI: 10.3390/ijms241814036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The Pumilio (Pum) RNA-binding protein family regulates post-transcription and plays crucial roles in stress response and growth. However, little is known about Pum in plants. In this study, a total of 19 ZmPum genes were identified and classified into two groups in maize. Although each ZmPum contains the conserved Pum domain, the ZmPum members show diversity in the gene and protein architectures, physicochemical properties, chromosomal location, collinearity, cis-elements, and expression patterns. The typical ZmPum proteins have eight α-helices repeats, except for ZmPum2, 3, 5, 7, and 14, which have fewer α-helices. Moreover, we examined the expression profiles of ZmPum genes and found their involvement in kernel development. Except for ZmPum2, ZmPum genes are expressed in maize embryos, endosperms, or whole seeds. Notably, ZmPum4, 7, and 13 exhibited dramatically high expression levels during seed development. The study not only contributes valuable information for further validating the functions of ZmPum genes but also provides insights for improvement and enhancing maize yield.
Collapse
Affiliation(s)
- Wenqi Feng
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongwanjun Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Cao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Cheng Yang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Hayder Bin Khalid
- National Research Centre of Intercropping, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Qingqing Yang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wanchen Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yingge Wang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Fengling Fu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoqiang Yu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
9
|
Haugen RJ, Barnier C, Elrod ND, Luo H, Jensen MK, Ji P, Smibert CA, Lipshitz HD, Wagner EJ, Lydia Freddolino P, Goldstrohm AC. Regulation of the Drosophila transcriptome by Pumilio and CCR4-NOT deadenylase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555372. [PMID: 37693497 PMCID: PMC10491259 DOI: 10.1101/2023.08.29.555372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The sequence-specific RNA-binding protein Pumilio controls development of Drosophila; however, the network of mRNAs that it regulates remains incompletely characterized. In this study, we utilize knockdown and knockout approaches coupled with RNA-Seq to measure the impact of Pumilio on the transcriptome of Drosophila cells. We also used an improved RNA co-immunoprecipitation method to identify Pumilio bound mRNAs in Drosophila embryos. Integration of these datasets with the content of Pumilio binding motifs across the transcriptome revealed novel direct Pumilio target genes involved in neural, muscle, wing, and germ cell development, and cellular proliferation. These genes include components of Wnt, TGF-beta, MAPK/ERK, and Notch signaling pathways, DNA replication, and lipid metabolism. Additionally, we identified the mRNAs regulated by the CCR4-NOT deadenylase complex, a key factor in Pumilio-mediated repression, and observed concordant regulation of Pumilio:CCR4-NOT target mRNAs. Computational modeling revealed that Pumilio binding, binding site number, density, and sequence context are important determinants of regulation. Moreover, the content of optimal synonymous codons in target mRNAs exhibits a striking functional relationship to Pumilio and CCR4-NOT regulation, indicating that the inherent translation efficiency and stability of the mRNA modulates their response to these trans-acting regulatory factors. Together, the results of this work provide new insights into the Pumilio regulatory network and mechanisms, and the parameters that influence the efficacy of Pumilio-mediated regulation.
Collapse
Affiliation(s)
- Rebecca J. Haugen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Catherine Barnier
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 48109
| | - Nathan D. Elrod
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77550, USA
| | - Hua Luo
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Madeline K. Jensen
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642
| | - Ping Ji
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642
| | - Craig A. Smibert
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Howard D. Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Eric J. Wagner
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642
| | - P. Lydia Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Aaron C. Goldstrohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
10
|
Dey A. Structural Modifications and Novel Protein-Binding Sites in Pre-miR-675-Explaining Its Regulatory Mechanism in Carcinogenesis. Noncoding RNA 2023; 9:45. [PMID: 37624037 PMCID: PMC10457854 DOI: 10.3390/ncrna9040045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Pre-miR-675 is a microRNA expressed from the exon 1 of H19 long noncoding RNA, and the atypical expression of pre-miR-675 has been linked with several diseases and disorders including cancer. To execute its function inside the cell, pre-miR-675 is folded into a particular conformation, which aids in its interaction with several other biological molecules. However, the exact folding dynamics of pre-miR-675 and its protein-binding motifs are currently unknown. Moreover, how H19 lncRNA and pre-miR-675 crosstalk and modulate each other's activities is also unclear. The detailed structural analysis of pre-miR-675 in this study determines its earlier unknown conformation and identifies novel protein-binding sites on pre-miR-675, thus making it an excellent therapeutic target against cancer. Co-folding analysis between H19 lncRNA and pre-miR-675 determine structural transformations in pre-miR-675, thus describing the earlier unknown mechanism of interaction between these two molecules. Comprehensively, this study details the conformation of pre-miR-675 and its protein-binding sites and explains its relationship with H19 lncRNA, which can be interpreted to understand the role of pre-miR-675 in the development and progression of tumorigenesis and designing new therapeutics against cancers.
Collapse
Affiliation(s)
- Abhishek Dey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER-R)-Raebareli, Lucknow 226002, India
| |
Collapse
|
11
|
Katsantoni M, van Nimwegen E, Zavolan M. Improved analysis of (e)CLIP data with RCRUNCH yields a compendium of RNA-binding protein binding sites and motifs. Genome Biol 2023; 24:77. [PMID: 37069586 PMCID: PMC10108518 DOI: 10.1186/s13059-023-02913-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/29/2023] [Indexed: 04/19/2023] Open
Abstract
We present RCRUNCH, an end-to-end solution to CLIP data analysis for identification of binding sites and sequence specificity of RNA-binding proteins. RCRUNCH can analyze not only reads that map uniquely to the genome but also those that map to multiple genome locations or across splice boundaries and can consider various types of background in the estimation of read enrichment. By applying RCRUNCH to the eCLIP data from the ENCODE project, we have constructed a comprehensive and homogeneous resource of in-vivo-bound RBP sequence motifs. RCRUNCH automates the reproducible analysis of CLIP data, enabling studies of post-transcriptional control of gene expression.
Collapse
Affiliation(s)
- Maria Katsantoni
- Biozentrum, University of Basel, 4056, Basel, Switzerland.
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| | - Erik van Nimwegen
- Biozentrum, University of Basel, 4056, Basel, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Mihaela Zavolan
- Biozentrum, University of Basel, 4056, Basel, Switzerland.
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| |
Collapse
|
12
|
Mammalian pumilio proteins control cellular morphology, migration, and adhesion. Sci Rep 2023; 13:3002. [PMID: 36810759 PMCID: PMC9944931 DOI: 10.1038/s41598-023-30004-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Pumilio proteins are RNA-binding proteins that control mRNA translation and stability by binding to the 3' UTR of target mRNAs. Mammals have two canonical Pumilio proteins, PUM1 and PUM2, which are known to act in many biological processes, including embryonic development, neurogenesis, cell cycle regulation and genomic stability. Here, we characterized a new role of both PUM1 and PUM2 in regulating cell morphology, migration, and adhesion in T-REx-293 cells, in addition to previously known defects in growth rate. Gene ontology analysis of differentially expressed genes in PUM double knockout (PDKO) cells for both cellular component and biological process showed enrichment in categories related to adhesion and migration. PDKO cells had a collective cell migration rate significantly lower than that of WT cells and displayed changes in actin morphology. In addition, during growth, PDKO cells aggregated into clusters (clumps) due to an inability to escape cell-cell contacts. Addition of extracellular matrix (Matrigel) alleviated the clumping phenotype. Collagen IV (ColIV), a major component of Matrigel, was shown to be the driving force in allowing PDKO cells to monolayer appropriately, however, ColIV protein levels remained unperturbed in PDKO cells. This study characterizes a novel cellular phenotype associated with cellular morphology, migration, and adhesion which can aid in developing better models for PUM function in both developmental processes and disease.
Collapse
|
13
|
The Potential of NORAD-PUMILIO- RALGAPB Regulatory Axis as a Biomarker in Breast Cancer. Noncoding RNA 2022; 8:ncrna8060076. [PMID: 36412911 PMCID: PMC9680495 DOI: 10.3390/ncrna8060076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Introduction: Long non-coding RNAs (LncRNA) represent a heterogeneous family of RNAs that have emerged as regulators of various biological processes through their association with proteins in ribonucleoproteins complexes. The dynamic of these interactions can affect cell metabolism, including cancer development. Annually, breast cancer causes thousands of deaths worldwide, and searching for new biomarkers is pivotal for better diagnosis and treatment. Methods: Based on in silico prediction analysis, we focus on LncRNAs that have binding sites for PUMILIO, an RBP family involved in post-transcriptional regulation and associated with cancer progression. We compared the expression levels of these LncRNAs in breast cancer and non-tumor samples from the TCGA database. We analyzed the impact of overall and disease-free survival associated with the expression of the LncRNAs and co-expressed genes and targets of PUMILIO proteins. Results: Our results found NORAD as the most relevant LncRNA with a PUMILIO binding site in breast cancer, differently expressed between Luminal A and Basal subtypes. Additionally, NORAD was co-expressed in a Basal-like subtype (0.55) with the RALGAPB gene, a target gene of PUMILIO related to chromosome stability during cell division. Conclusion: These data suggest that this molecular axis may provide insights for developing novel therapeutic strategies for breast cancer.
Collapse
|
14
|
Modulation and function of Pumilio proteins in cancer. Semin Cancer Biol 2022; 86:298-309. [PMID: 35301091 DOI: 10.1016/j.semcancer.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 01/27/2023]
Abstract
Post-transcriptional regulation is involved in tumorigenesis, and in this control, RNA-binding proteins are the main protagonists. Pumilio proteins are highly conserved RNA-binding proteins that regulate many aspects of RNA processing. The dysregulation of Pumilio expression is associated with different types of cancer. This review summarizes the roles of Pumilio 1 and Pumilio 2 in cancer and discusses the factors that account for their distinct biological functions. Pumilio levels seem to be related to tumor progression and poor prognoses in some kinds of tumors, such as lung, pancreatic, prostate, and cervical cancers. Pumilio 1 is associated with cancer proliferation, migration, and invasion, and so is Pumilio 2, although there are contradictory reports regarding the latter. Furthermore, the circular RNA, circPUM1, has been described as a miRNAs sponge, regulating miRNA involved in the cell cycle. The expression and function of Pumilio proteins depend on the fine adjustment of a set of modulators, including miRNAs, lncRNAs, and circRNAs; this demonstrates that Pumilio plays an important role in tumorigenesis through a variety of regulatory axes.
Collapse
|
15
|
Snoderly-Foster LJ, Olivas WM. Regulation of Parkinson's disease-associated genes by Pumilio proteins and microRNAs in SH-SY5Y neuronal cells. PLoS One 2022; 17:e0275235. [PMID: 36174040 PMCID: PMC9522289 DOI: 10.1371/journal.pone.0275235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease is the second most common age-related, neurodegenerative disease. A small collection of genes has been linked to Parkinson's disease including LRRK2, SAT1, and SNCA, the latter of which encodes the protein alpha-synuclein that aggregates in Lewy bodies as a hallmark of the disease. Overexpression of even wild-type versions of these genes can lead to pathogenesis, yet the regulatory mechanisms that control protein production of the genes are not fully understood. Pumilio proteins belong to the highly conserved PUF family of eukaryotic RNA-binding proteins that post-transcriptionally regulate gene expression through binding conserved motifs in the 3' untranslated region (UTR) of mRNA targets known as PUF Recognition Elements (PREs). The 3'UTRs of LRRK2, SNCA and SAT1 each contain multiple putative PREs. Knockdown (KD) of the two human Pumilio homologs (Pumilio 1 and Pumilio 2) in a neurodegenerative model cell line, SH-SY5Y, resulted in increased SNCA and LRRK2 mRNA, as well as alpha-synuclein levels, suggesting these genes are normally repressed by the Pumilio proteins. Some studies have indicated a relationship between Pumilio and microRNA activities on the same target, especially when their binding sites are close together. LRRK2, SNCA, and SAT1 each contain several putative microRNA-binding sites within the 3'UTR, some of which reside near PREs. Small RNA-seq and microRNA qPCR assays were performed in both wild type and Pumilio KD SH-SY5Y cells to analyze global and differential microRNA expression. One thousand four hundred and four microRNAs were detected across wild type and Pumilio KD cells. Twenty-one microRNAs were differentially expressed between treatments, six of which were previously established to be altered in Parkinson's disease patient samples or research models. Expression of ten miRs predicted to target LRRK2 and SNCA was verified by RT-qPCR. Collectively, our results demonstrate that Pumilios and microRNAs play a multi-faceted role in regulating Parkinson's disease-associated genes.
Collapse
Affiliation(s)
- Lisa J. Snoderly-Foster
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, United States of America
| | - Wendy M. Olivas
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
16
|
Sadée C, Hagler LD, Becker WR, Jarmoskaite I, Vaidyanathan PP, Denny SK, Greenleaf WJ, Herschlag D. A comprehensive thermodynamic model for RNA binding by the Saccharomyces cerevisiae Pumilio protein PUF4. Nat Commun 2022; 13:4522. [PMID: 35927243 PMCID: PMC9352680 DOI: 10.1038/s41467-022-31968-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
Genomic methods have been valuable for identifying RNA-binding proteins (RBPs) and the genes, pathways, and processes they regulate. Nevertheless, standard motif descriptions cannot be used to predict all RNA targets or test quantitative models for cellular interactions and regulation. We present a complete thermodynamic model for RNA binding to the S. cerevisiae Pumilio protein PUF4 derived from direct binding data for 6180 RNAs measured using the RNA on a massively parallel array (RNA-MaP) platform. The PUF4 model is highly similar to that of the related RBPs, human PUM2 and PUM1, with one marked exception: a single favorable site of base flipping for PUF4, such that PUF4 preferentially binds to a non-contiguous series of residues. These results are foundational for developing and testing cellular models of RNA-RBP interactions and function, for engineering RBPs, for understanding the biophysical nature of RBP binding and the evolutionary landscape of RNAs and RBPs.
Collapse
Affiliation(s)
- Christoph Sadée
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Lauren D Hagler
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Winston R Becker
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Inga Jarmoskaite
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Pavanapuresan P Vaidyanathan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Protillion Biosciences, Burlingame, CA, USA
| | - Sarah K Denny
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
- Scribe Therapeutics, Alameda, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
- ChEM-H Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
17
|
Rajasekaran S, Khan E, Ching SR, Khan M, Siddiqui J, Gradia DF, Lin C, Bouley SJ, Mercadante D, Manning AL, Gerber AP, Walker J, Miles W. PUMILIO competes with AUF1 to control DICER1 RNA levels and miRNA processing. Nucleic Acids Res 2022; 50:7048-7066. [PMID: 35736218 PMCID: PMC9262620 DOI: 10.1093/nar/gkac499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022] Open
Abstract
DICER1 syndrome is a cancer pre-disposition disorder caused by mutations that disrupt the function of DICER1 in miRNA processing. Studying the molecular, cellular and oncogenic effects of these mutations can reveal novel mechanisms that control cell homeostasis and tumor biology. Here, we conduct the first analysis of pathogenic DICER1 syndrome allele from the DICER1 3'UTR. We find that the DICER1 syndrome allele, rs1252940486, abolishes interaction with the PUMILIO RNA binding protein with the DICER1 3'UTR, resulting in the degradation of the DICER1 mRNA by AUF1. This single mutational event leads to diminished DICER1 mRNA and protein levels, and widespread reprogramming of miRNA networks. The in-depth characterization of the rs1252940486 DICER1 allele, reveals important post-transcriptional regulatory events that control DICER1 levels.
Collapse
Affiliation(s)
- Swetha Rajasekaran
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Samuel R Ching
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Misbah Khan
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Jalal K Siddiqui
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Daniela F Gradia
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
- Department of Genetics, Federal University of Parana, Curitiba, Brazil
| | - Chenyu Lin
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Stephanie J Bouley
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dayna L Mercadante
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Amity L Manning
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - André P Gerber
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - James A Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Wayne O Miles
- To whom correspondence should be addressed. Tel: +1 614 366 2869;
| |
Collapse
|
18
|
Bhat VD, Jayaraj J, Babu K. RNA and neuronal function: the importance of post-transcriptional regulation. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac011. [PMID: 38596700 PMCID: PMC10913846 DOI: 10.1093/oons/kvac011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/03/2022] [Accepted: 05/28/2022] [Indexed: 04/11/2024]
Abstract
The brain represents an organ with a particularly high diversity of genes that undergo post-transcriptional gene regulation through multiple mechanisms that affect RNA metabolism and, consequently, brain function. This vast regulatory process in the brain allows for a tight spatiotemporal control over protein expression, a necessary factor due to the unique morphologies of neurons. The numerous mechanisms of post-transcriptional regulation or translational control of gene expression in the brain include alternative splicing, RNA editing, mRNA stability and transport. A large number of trans-elements such as RNA-binding proteins and micro RNAs bind to specific cis-elements on transcripts to dictate the fate of mRNAs including its stability, localization, activation and degradation. Several trans-elements are exemplary regulators of translation, employing multiple cofactors and regulatory machinery so as to influence mRNA fate. Networks of regulatory trans-elements exert control over key neuronal processes such as neurogenesis, synaptic transmission and plasticity. Perturbations in these networks may directly or indirectly cause neuropsychiatric and neurodegenerative disorders. We will be reviewing multiple mechanisms of gene regulation by trans-elements occurring specifically in neurons.
Collapse
Affiliation(s)
- Vandita D Bhat
- Centre for Neuroscience, Indian Institute of Science, CV Raman Road, Bangalore 560012, Karnataka, India
| | - Jagannath Jayaraj
- Centre for Neuroscience, Indian Institute of Science, CV Raman Road, Bangalore 560012, Karnataka, India
| | - Kavita Babu
- Centre for Neuroscience, Indian Institute of Science, CV Raman Road, Bangalore 560012, Karnataka, India
| |
Collapse
|
19
|
Yoon DS, Lee KM, Choi Y, Ko EA, Lee NH, Cho S, Park KH, Lee JH, Kim HW, Lee JW. TLR4 downregulation by the RNA-binding protein PUM1 alleviates cellular aging and osteoarthritis. Cell Death Differ 2022; 29:1364-1378. [PMID: 35034101 DOI: 10.1038/s41418-021-00925-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
Abstract
Dysfunction of mRNA or RNA-binding proteins (RBPs) causes cellular aging and age-related degenerative diseases; however, information regarding the mechanism through which RBP-mediated posttranscriptional regulation affects cellular aging and related disease processes is limited. In this study, PUM1 was found to be associated with the self-renewal capacity and aging process of human mesenchymal stem cells (MSC). PUM1 interacted with the 3'-untranslated region of Toll-like receptor 4 (TLR4) to suppress TLR4 mRNA translation and regulate the activity of nuclear factor-κB (NF-κB), a master regulator of the aging process in MSCs. PUM1 overexpression protected MSCs against H2O2-induced cellular senescence by suppressing TLR4-mediated NF-κB activity. TLR4-mediated NF-κB activation is a key regulator in osteoarthritis (OA) pathogenesis. PUM1 overexpression enhanced the chondrogenic potential of MSCs even under the influence of inflammation-inducing factors, such as lipopolysaccharide (LPS) or interleukin-1β (IL-1β), whereas the chondrogenic potential was reduced following the PUM1 knockdown-mediated TLR4 activation. PUM1 levels decreased under inflammatory conditions in vitro and during OA progression in human and mouse disease models. PUM1 knockdown in human chondrocytes promoted chondrogenic phenotype loss, whereas PUM1 overexpression protected the cells from inflammation-mediated disruption of the chondrogenic phenotype. Gene therapy using a lentiviral vector encoding mouse PUM1 showed promise in preserving articular cartilage integrity in OA mouse models. In conclusion, PUM1 is a novel suppressor of MSC aging, and the PUM1-TLR4 regulatory axis represents a potential therapeutic target for OA.
Collapse
Affiliation(s)
- Dong Suk Yoon
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Kyoung-Mi Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Yoorim Choi
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Eun Ae Ko
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Na-Hyun Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Sehee Cho
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Kwang Hwan Park
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea.,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, South Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea. .,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea. .,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, South Korea. .,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea.
| | - Jin Woo Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea. .,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
20
|
PUMILIO proteins promote colorectal cancer growth via suppressing p21. Nat Commun 2022; 13:1627. [PMID: 35338151 PMCID: PMC8956581 DOI: 10.1038/s41467-022-29309-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/02/2022] [Indexed: 12/17/2022] Open
Abstract
PUMILIO (PUM) proteins belong to the highly conserved PUF family post-transcriptional regulators involved in diverse biological processes. However, their function in carcinogenesis remains under-explored. Here, we report that Pum1 and Pum2 display increased expression in human colorectal cancer (CRC). Intestine-specific knockout of Pum1 and Pum2 in mice significantly inhibits the progression of colitis-associated cancer in the AOM/DSS model. Knockout or knockdown of Pum1 and/or Pum2 in human CRC cells result in a significant decrease in the tumorigenicity and delayed G1/S transition. We identify p21/Cdkn1a as a direct target of PUM1. Abrogation of the PUM1 binding site in the p21 mRNA also results in decreased cancer cell growth and delayed G1/S transition. Furthermore, intravenous injection of nanoparticle-encapsulated anti-Pum1 and Pum2 siRNAs reduces colorectal tumor growth in murine orthotopic colon cancer models. These findings reveal the requirement of PUM proteins for CRC progression and their potential as therapeutic targets. RNA binding proteins can contribute to colorectal cancer (CRC) initiation and development. Here the authors show that PUMILIO proteins, PUM1 and PUM2 contribute to CRC growth by inhibiting p21 expression.
Collapse
|
21
|
Harb K, Richter M, Neelagandan N, Magrinelli E, Harfoush H, Kuechler K, Henis M, Hermanns-Borgmeyer I, Calderon de Anda F, Duncan K. Pum2 and TDP-43 refine area-specific cytoarchitecture post-mitotically and modulate translation of Sox5, Bcl11b, and Rorb mRNAs in developing mouse neocortex. eLife 2022; 11:55199. [PMID: 35262486 PMCID: PMC8906809 DOI: 10.7554/elife.55199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
In the neocortex, functionally distinct areas process specific types of information. Area identity is established by morphogens and transcriptional master regulators, but downstream mechanisms driving area-specific neuronal specification remain unclear. Here, we reveal a role for RNA-binding proteins in defining area-specific cytoarchitecture. Mice lacking Pum2 or overexpressing human TDP-43 show apparent ‘motorization’ of layers IV and V of primary somatosensory cortex (S1), characterized by dramatic expansion of cells co-expressing Sox5 and Bcl11b/Ctip2, a hallmark of subcerebral projection neurons, at the expense of cells expressing the layer IV neuronal marker Rorβ. Moreover, retrograde labeling experiments with cholera toxin B in Pum2; Emx1-Cre and TDP43A315T mice revealed a corresponding increase in subcerebral connectivity of these neurons in S1. Intriguingly, other key features of somatosensory area identity are largely preserved, suggesting that Pum2 and TDP-43 may function in a downstream program, rather than controlling area identity per se. Transfection of primary neurons and in utero electroporation (IUE) suggest cell-autonomous and post-mitotic modulation of Sox5, Bcl11b/Ctip2, and Rorβ levels. Mechanistically, we find that Pum2 and TDP-43 directly interact with and affect the translation of mRNAs encoding Sox5, Bcl11b/Ctip2, and Rorβ. In contrast, effects on the levels of these mRNAs were not detectable in qRT-PCR or single-molecule fluorescent in situ hybridization assays, and we also did not detect effects on their splicing or polyadenylation patterns. Our results support the notion that post-transcriptional regulatory programs involving translational regulation and mediated by Pum2 and TDP-43 contribute to elaboration of area-specific neuronal identity and connectivity in the neocortex.
Collapse
Affiliation(s)
- Kawssar Harb
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Melanie Richter
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nagammal Neelagandan
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Elia Magrinelli
- Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Hend Harfoush
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Katrin Kuechler
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Melad Henis
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Anatomy and Histology, Faculty of Veterinary Medicine, New Valley University, New Valley, Egypt
| | - Irm Hermanns-Borgmeyer
- Transgenic Service Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Froylan Calderon de Anda
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kent Duncan
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
22
|
The Role of Pumilio RNA Binding Protein in Plants. Biomolecules 2021; 11:biom11121851. [PMID: 34944494 PMCID: PMC8699478 DOI: 10.3390/biom11121851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022] Open
Abstract
Eukaryotic organisms have a posttranscriptional/translational regulation system for the control of translational efficiency. RNA binding proteins (RBPs) have been known to control target genes. One type of protein, Pumilio (Pum)/Puf family RNA binding proteins, show a specific binding of 3′ untranslational region (3′ UTR) of target mRNA and function as a post-transcriptional/translational regulator in eukaryotic cells. Plant Pum protein is involved in development and biotic/abiotic stresses. Interestingly, Arabidopsis Pum can control target genes in a sequence-specific manner and rRNA processing in a sequence-nonspecific manner. As shown in in silico Pum gene expression analysis, Arabidopsis and rice Pum genes are responsive to biotic/abiotic stresses. Plant Pum can commonly contribute to host gene regulation at the post-transcriptional/translational step, as can mammalian Pum. However, the function of plant Pum proteins is not yet fully known. In this review, we briefly summarize the function of plant Pum in defense, development, and environmental responses via recent research and bioinformatics data.
Collapse
|
23
|
Frédérick PM, Simard MJ. Regulation and different functions of the animal microRNA-induced silencing complex. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1701. [PMID: 34725940 DOI: 10.1002/wrna.1701] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 01/03/2023]
Abstract
Among the different types of small RNAs, microRNAs (miRNAs) are key players in controlling gene expression at the mRNA level. To be active, they must associate with an Argonaute protein to form the miRNA induced silencing complex (miRISC) and binds to specific mRNA through complementarity sequences. The miRISC binding to an mRNA can lead to multiple outcomes, the most frequent being inhibition of the translation and/or deadenylation followed by decapping and mRNA decay. In the last years, several studies described different mechanisms modulating miRISC functions in animals. For instance, the regulation of the Argonaute protein through post-translational modifications can change the miRISC gene regulatory activity as well as modulate its binding to proteins, mRNA targets and miRISC stability. Furthermore, the presence of RNA binding proteins and multiple miRISCs at the targeted mRNA 3' untranslated region (3'UTR) can also affect its function through cooperation or competition mechanisms, underlying the importance of the 3'UTR environment in miRNA-mediated repression. Another way to regulate the miRISC function is by modulation of its interactors, forming different types of miRNA silencing complexes that affect gene regulation differently. It is also reported that the subcellular localization of several components of the miRNA pathway can modulate miRISC function, suggesting an important role for vesicular trafficking in the regulation of this essential silencing complex. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Pierre-Marc Frédérick
- Oncology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada.,Université Laval Cancer Research Centre, Québec, QC, Canada
| | - Martin J Simard
- Oncology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada.,Université Laval Cancer Research Centre, Québec, QC, Canada
| |
Collapse
|
24
|
Nakamura K, Nakao T, Mori T, Ohno S, Fujita Y, Masaoka K, Sakabayashi K, Mori K, Tobimatsu T, Sera T. Necessity of Flanking Repeats R1' and R8' of Human Pumilio1 Protein for RNA Binding. Biochemistry 2021; 60:3007-3015. [PMID: 34541851 DOI: 10.1021/acs.biochem.1c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human Pumilio (hPUM) is a structurally well-analyzed RNA-binding protein that has been used recently for artificial RNA binding. Structural analysis revealed that amino acids at positions 12, 13, and 16 in the repeats from R1 to R8 each contact one specific RNA base in the eight-nucleotide RNA target. The functions of the N- and C-terminal flanking repeats R1' and R8', however, remain unclear. Here, we report how the repeats contribute to overall RNA binding. We first prepared three mutants in which R1' and/or R8' were deleted and then analyzed RNA binding using gel shift assays. The assays showed that all deletion mutants bound to their target less than the original hPUM, but that R1' contributed more than R8', unlike Drosophila PUM. We next investigated which amino acid residues of R1' or R8' were responsible for RNA binding. With detailed analysis of the protein tertiary structure, we found a hydrophobic core in each of the repeats. We therefore mutated all hydrophobic amino residues in each core to alanine. The gel shift assays with the resulting mutants revealed that both hydrophobic cores contributed to the RNA binding: especially the hydrophobic core of R1' had a significant influence. In the present study, we demonstrated that the flanking R1' and R8' repeats are indispensable for RNA binding of hPUM and suggest that hydrophobic R1'-R1 interactions may stabilize the whole hPUM structure.
Collapse
Affiliation(s)
- Kento Nakamura
- Department of Applied Chemistry and Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Taishu Nakao
- Department of Applied Chemistry and Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Tomoaki Mori
- Department of Applied Chemistry and Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Serika Ohno
- Department of Applied Chemistry and Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Yusuke Fujita
- Department of Applied Chemistry and Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Keisuke Masaoka
- Department of Applied Chemistry and Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Kazuki Sakabayashi
- Department of Applied Chemistry and Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Koichi Mori
- Department of Applied Chemistry and Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Takamasa Tobimatsu
- Department of Applied Chemistry and Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Takashi Sera
- Department of Applied Chemistry and Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
25
|
Griesemer D, Xue JR, Reilly SK, Ulirsch JC, Kukreja K, Davis JR, Kanai M, Yang DK, Butts JC, Guney MH, Luban J, Montgomery SB, Finucane HK, Novina CD, Tewhey R, Sabeti PC. Genome-wide functional screen of 3'UTR variants uncovers causal variants for human disease and evolution. Cell 2021; 184:5247-5260.e19. [PMID: 34534445 PMCID: PMC8487971 DOI: 10.1016/j.cell.2021.08.025] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/25/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022]
Abstract
3' untranslated region (3'UTR) variants are strongly associated with human traits and diseases, yet few have been causally identified. We developed the massively parallel reporter assay for 3'UTRs (MPRAu) to sensitively assay 12,173 3'UTR variants. We applied MPRAu to six human cell lines, focusing on genetic variants associated with genome-wide association studies (GWAS) and human evolutionary adaptation. MPRAu expands our understanding of 3'UTR function, suggesting that simple sequences predominately explain 3'UTR regulatory activity. We adapt MPRAu to uncover diverse molecular mechanisms at base pair resolution, including an adenylate-uridylate (AU)-rich element of LEPR linked to potential metabolic evolutionary adaptations in East Asians. We nominate hundreds of 3'UTR causal variants with genetically fine-mapped phenotype associations. Using endogenous allelic replacements, we characterize one variant that disrupts a miRNA site regulating the viral defense gene TRIM14 and one that alters PILRB abundance, nominating a causal variant underlying transcriptional changes in age-related macular degeneration.
Collapse
Affiliation(s)
- Dustin Griesemer
- Broad Institute of MIT and Harvard, Cambridge, MA 02143, USA; Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA 02115, USA; Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - James R Xue
- Broad Institute of MIT and Harvard, Cambridge, MA 02143, USA; Department Of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02143, USA.
| | - Steven K Reilly
- Broad Institute of MIT and Harvard, Cambridge, MA 02143, USA; Department Of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02143, USA
| | - Jacob C Ulirsch
- Broad Institute of MIT and Harvard, Cambridge, MA 02143, USA; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kalki Kukreja
- Department of Molecular and Cell Biology, Harvard University, Cambridge, MA 02138, USA
| | - Joe R Davis
- BigHat Biosciences, San Carlos, CA 94070, USA
| | - Masahiro Kanai
- Broad Institute of MIT and Harvard, Cambridge, MA 02143, USA; Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA 02115, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David K Yang
- Broad Institute of MIT and Harvard, Cambridge, MA 02143, USA
| | - John C Butts
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Mehmet H Guney
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jeremy Luban
- Broad Institute of MIT and Harvard, Cambridge, MA 02143, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Stephen B Montgomery
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hilary K Finucane
- Broad Institute of MIT and Harvard, Cambridge, MA 02143, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Carl D Novina
- Broad Institute of MIT and Harvard, Cambridge, MA 02143, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan Tewhey
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA; Tufts University School of Medicine, Boston, MA 02111, USA
| | - Pardis C Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA 02143, USA; Department Of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02143, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
26
|
Zhou W, Melamed D, Banyai G, Meyer C, Tuschl T, Wickens M, Cao J, Fields S. Expanding the binding specificity for RNA recognition by a PUF domain. Nat Commun 2021; 12:5107. [PMID: 34429425 PMCID: PMC8384837 DOI: 10.1038/s41467-021-25433-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
The ability to design a protein to bind specifically to a target RNA enables numerous applications, with the modular architecture of the PUF domain lending itself to new RNA-binding specificities. For each repeat of the Pumilio-1 PUF domain, we generate a library that contains the 8,000 possible combinations of amino acid substitutions at residues critical for RNA contact. We carry out yeast three-hybrid selections with each library against the RNA recognition sequence for Pumilio-1, with any possible base present at the position recognized by the randomized repeat. We use sequencing to score the binding of each variant, identifying many variants with highly repeat-specific interactions. From these data, we generate an RNA binding code specific to each repeat and base. We use this code to design PUF domains against 16 RNAs, and find that some of these domains recognize RNAs with two, three or four changes from the wild type sequence.
Collapse
Affiliation(s)
- Wei Zhou
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, Washington, USA ,grid.34477.330000000122986657Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA ,grid.134907.80000 0001 2166 1519The Rockefeller University, New York, NY USA
| | - Daniel Melamed
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, Washington, USA ,grid.18098.380000 0004 1937 0562Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel ,grid.18098.380000 0004 1937 0562Institute of Evolution, University of Haifa, Haifa, Israel
| | - Gabor Banyai
- grid.134907.80000 0001 2166 1519The Rockefeller University, New York, NY USA
| | - Cindy Meyer
- grid.134907.80000 0001 2166 1519The Rockefeller University, New York, NY USA
| | - Thomas Tuschl
- grid.134907.80000 0001 2166 1519The Rockefeller University, New York, NY USA
| | - Marvin Wickens
- grid.14003.360000 0001 2167 3675Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Junyue Cao
- grid.134907.80000 0001 2166 1519The Rockefeller University, New York, NY USA
| | - Stanley Fields
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, Washington, USA ,grid.34477.330000000122986657Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
27
|
Wang P, Zhou Y, Richards AM. Effective tools for RNA-derived therapeutics: siRNA interference or miRNA mimicry. Theranostics 2021; 11:8771-8796. [PMID: 34522211 PMCID: PMC8419061 DOI: 10.7150/thno.62642] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
The approval of the first small interfering RNA (siRNA) drug Patisiran by FDA in 2018 marks a new era of RNA interference (RNAi) therapeutics. MicroRNAs (miRNA), an important post-transcriptional gene regulator, are also the subject of both basic research and clinical trials. Both siRNA and miRNA mimics are ~21 nucleotides RNA duplexes inducing mRNA silencing. Given the well performance of siRNA, researchers ask whether miRNA mimics are unnecessary or developed siRNA technology can pave the way for the emergence of miRNA mimic drugs. Through comprehensive comparison of siRNA and miRNA, we focus on (1) the common features and lessons learnt from the success of siRNAs; (2) the unique characteristics of miRNA that potentially offer additional therapeutic advantages and opportunities; (3) key areas of ongoing research that will contribute to clinical application of miRNA mimics. In conclusion, miRNA mimics have unique properties and advantages which cannot be fully matched by siRNA in clinical applications. MiRNAs are endogenous molecules and the gene silencing effects of miRNA mimics can be regulated or buffered to ameliorate or eliminate off-target effects. An in-depth understanding of the differences between siRNA and miRNA mimics will facilitate the development of miRNA mimic drugs.
Collapse
Affiliation(s)
- Peipei Wang
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
- Department of Medicine, National University Health System, 119228 Singapore
| | - Yue Zhou
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
- Department of Medicine, National University Health System, 119228 Singapore
| | - Arthur M. Richards
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
- Department of Medicine, National University Health System, 119228 Singapore
- Christchurch Heart Institute, Department of Medicine, University of Otago Christchurch, New Zealand
| |
Collapse
|
28
|
Systematic Analysis of Targets of Pumilio-Mediated mRNA Decay Reveals that PUM1 Repression by DNA Damage Activates Translesion Synthesis. Cell Rep 2021; 31:107542. [PMID: 32375027 DOI: 10.1016/j.celrep.2020.107542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/28/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
RNA-binding proteins (RBPs) play a pivotal role in gene expression by modulating the stability of transcripts. However, the identification of degradation target mRNAs of RBPs remains difficult. By the combined analysis of transcriptome-wide mRNA stabilities and the binding of mRNAs to human Pumilio 1 (PUM1), we identify 48 mRNAs that both bind to PUM1 and exhibit PUM1-dependent degradation. Analysis of changes in the abundance of PUM1 and its degradation target mRNAs in RNA-seq data indicate that DNA-damaging agents negatively regulate PUM1-mediated mRNA decay. Cells exposed to cisplatin have reduced PUM1 abundance and increased PCNA and UBE2A mRNAs encoding proteins involved in DNA damage tolerance by translesion synthesis (TLS). Cells overexpressing PUM1 exhibit impaired DNA synthesis and TLS and increased sensitivity to the cytotoxic effect of cisplatin. Thus, our method identifies target mRNAs of PUM1-mediated decay and reveals that cells respond to DNA damage by inhibiting PUM1-mediated mRNA decay to activate TLS.
Collapse
|
29
|
Tang S, Liu Q, Xu M. LINC00857 promotes cell proliferation and migration in colorectal cancer by interacting with YTHDC1 and stabilizing SLC7A5. Oncol Lett 2021; 22:578. [PMID: 34122629 PMCID: PMC8190780 DOI: 10.3892/ol.2021.12839] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal malignances in humans. Hence, it is of great significance to identify regulatory molecules in CRC progression. Accumulating evidence has demonstrated that long non-coding RNAs (lncRNAs) are involved in cancer malignancy. It has been reported that long intergenic non-protein coding RNA 857 (LINC00857) acts as a vital oncogene in many types of cancer by promoting cell proliferation and migration. However, the role of LINC00857 in CRC remains unclear. In the present study, LINC00857 was upregulated in CRC tissue samples and cells. Next, in vitro loss-of-function experiments demonstrated that LINC00857 knockdown suppressed CRC cell viability, proliferation and migration, as well as epithelial-mesenchymal transition and increased cell apoptosis. Mechanistically, LINC00857 abundantly interacted with the RNA-binding protein YTH domain containing 1 (YTHDC1). YTHDC1 ultimately combined with solute carrier family 7 member 5 (SLC7A5) and increased SLC7A5 mRNA stability. Finally, a series of rescue experiments indicated that LINC00857 promoted the proliferation and migration of CRC cells by regulating mRNA stability. Thus, the present findings illustrated that LINC00857 functions as an oncogene in CRC cells via the YTHDC1/SLC7A5 axis.
Collapse
Affiliation(s)
- Shu Tang
- Department of Internal Medicine-Oncology, Chenzhou No. 1 People's Hospital, Chenzhou, Hunan 423000, P.R. China
| | - Qi Liu
- Hospital Medical Department, Chenzhou No. 1 People's Hospital, Chenzhou, Hunan 423000, P.R. China
| | - Ming Xu
- Department of Gastrointestinal Surgery, Chenzhou No. 1 People's Hospital, Chenzhou, Hunan 423000, P.R. China
| |
Collapse
|
30
|
Chorostecki U, Saus E, Gabaldón T. Structural characterization of NORAD reveals a stabilizing role of spacers and two new repeat units. Comput Struct Biotechnol J 2021; 19:3245-3254. [PMID: 34141143 PMCID: PMC8192489 DOI: 10.1016/j.csbj.2021.05.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) can perform a variety of key cellular functions by interacting with proteins and other RNAs. Recent studies have shown that the functions of lncRNAS are largely mediated by their structures. However, our structural knowledge for most lncRNAS is limited to sequence-based computational predictions. Non-coding RNA activated by DNA damage (NORAD) is an atypical lncRNA due to its abundant expression and high sequence conservation. NORAD regulates genomic stability by interacting with proteins and microRNAs. Previous sequence-based characterization has identified a modular organization of NORAD composed of several NORAD repeat units (NRUs). These units comprise the protein-binding elements and are separated by regular spacers. Here, we experimentally determine for the first time the secondary structure of NORAD using the nextPARS approach. Our results suggest that the spacer regions provide structural stability to NRUs. Furthermore, we uncover two previously unreported NRUs, and determine the core structural motifs conserved across NRUs. Overall, these findings will help to elucidate the function and evolution of NORAD.
Collapse
Affiliation(s)
- Uciel Chorostecki
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona, 29. 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Ester Saus
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona, 29. 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona, 29. 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
31
|
Xu L, Zhang B, Li W. Downregulated expression levels of USP46 promote the resistance of ovarian cancer to cisplatin and are regulated by PUM2. Mol Med Rep 2021; 23:263. [PMID: 33576437 PMCID: PMC7893694 DOI: 10.3892/mmr.2021.11902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer (OC) is a major contributor to cancer‑related mortality in women. Despite numerous drugs being available for the treatment and improving the prognosis of OC, resistance to clinical chemotherapy remains a major obstacle for the treatment of advanced OC. Therefore, determining how to reverse the chemoresistance of OC has become a research hotspot in recent years. The present study aimed to reveal the potential mechanism of OC chemoresistance. Reverse transcription‑quantitative PCR and western blot analysis were performed to detect the expression levels of Ubiquitin‑specific peptidase 46 (USP46) and Pumilio 2 (PUM2) in OC. Cell viability and apoptosis were evaluated by Cell Counting Kit‑8 assay and flow cytometry, respectively. The association between USP46 and PUM2 was assessed by RNA immunoprecipitation. The results of the present study revealed that the expression levels of USP46 which is associated with tumor progression, was downregulated, while PUM2 expression levels were upregulated in cisplatin (DDP)‑resistant OC cells and patient tissues. The downregulation of USP46 expression levels in SKOV3 cells significantly inhibited cell apoptosis and increased cell viability. In SKOV3/DDP cells, the upregulation of USP46 expression levels notably suppressed cell viability and increased cell apoptosis. The results of the RNA immunoprecipitation chip assay demonstrated that PUM2 bound to USP46 and regulated its expression. Furthermore, following the knockdown of USP46 expression, the mRNA and protein expression levels of the cell apoptosis‑related protein, Bcl‑2, were upregulated, whereas the expression levels of caspase‑3, caspase‑9 and Bax were significantly downregulated. In addition, phosphorylated AKT expression levels were notably upregulated. Following the overexpression of USP46 in SKOV3/DDP cells, the opposite trends were observed. In SKOV3 cells, the knockdown of PUM2 could reverse the DDP resistance induced by small interfering RNA‑USP46 as the expression levels of Bcl‑2 were downregulated whereas those of caspase‑3, caspase‑9 and Bax were upregulated compared with the small interfering‑USP46 group. Similarly, in SKOV3/DDP cells, the overexpression of PUM2 could reverse DDP sensitivity induced by the overexpression of USP46. In conclusion, the findings of the present study suggested that the downregulation of USP46 expression levels may promote DDP resistance in OC, which may be regulated by PUM2. Therefore, targeting PUM2/USP46 may be an effective way to reverse DDP resistance in OC.
Collapse
Affiliation(s)
- Lei Xu
- Department of Gynecology, People's Hospital of Qingdao West Coast New Area, Qingdao, Shandong 266400, P.R. China
| | - Bin Zhang
- Department of Surgery, People's Hospital of Qingdao West Coast New Area, Qingdao, Shandong 266400, P.R. China
| | - Wenlan Li
- Department of Outpatient Department, People's Hospital of Qingdao West Coast New Area, Qingdao, Shandong 266400, P.R. China
| |
Collapse
|
32
|
Enwerem III, Elrod ND, Chang CT, Lin A, Ji P, Bohn JA, Levdansky Y, Wagner EJ, Valkov E, Goldstrohm AC. Human Pumilio proteins directly bind the CCR4-NOT deadenylase complex to regulate the transcriptome. RNA (NEW YORK, N.Y.) 2021; 27:445-464. [PMID: 33397688 PMCID: PMC7962487 DOI: 10.1261/rna.078436.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/28/2020] [Indexed: 05/13/2023]
Abstract
Pumilio paralogs, PUM1 and PUM2, are sequence-specific RNA-binding proteins that are essential for vertebrate development and neurological functions. PUM1&2 negatively regulate gene expression by accelerating degradation of specific mRNAs. Here, we determined the repression mechanism and impact of human PUM1&2 on the transcriptome. We identified subunits of the CCR4-NOT (CNOT) deadenylase complex required for stable interaction with PUM1&2 and to elicit CNOT-dependent repression. Isoform-level RNA sequencing revealed broad coregulation of target mRNAs through the PUM-CNOT repression mechanism. Functional dissection of the domains of PUM1&2 identified a conserved amino-terminal region that confers the predominant repressive activity via direct interaction with CNOT. In addition, we show that the mRNA decapping enzyme, DCP2, has an important role in repression by PUM1&2 amino-terminal regions. Our results support a molecular model of repression by human PUM1&2 via direct recruitment of CNOT deadenylation machinery in a decapping-dependent mRNA decay pathway.
Collapse
Affiliation(s)
- Isioma I I Enwerem
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Nathan D Elrod
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77550, USA
| | - Chung-Te Chang
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ai Lin
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77550, USA
| | - Ping Ji
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77550, USA
| | - Jennifer A Bohn
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yevgen Levdansky
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77550, USA
| | - Eugene Valkov
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
33
|
Mathias C, Pedroso GA, Pabst FR, de Lima RS, Kuroda F, Cavalli IJ, de Oliveira JC, Ribeiro EMDSF, Gradia DF. So alike yet so different. Differential expression of the long non-coding RNAs NORAD and HCG11 in breast cancer subtypes. Genet Mol Biol 2021; 44:e20200153. [PMID: 33739352 PMCID: PMC7976429 DOI: 10.1590/1678-4685-gmb-2020-0153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/07/2021] [Indexed: 01/04/2023] Open
Abstract
Breast cancer (BC) is a heterogeneous disease, and it is the leading cause of death among women. NORAD and HCG11 are highly similar lncRNAs that present binding sites for PUMILIO proteins. PUMILIO acts on hundreds of mRNA targets, contributing to the modulation of gene expression. We analyzed the expression levels of NORAD and HCG11 in the BC subtypes luminal A (LA) and basal-like (BL), and the regulatory networks associated with these lncRNAs. In the analysis of TCGA cohort (n=329) and Brazilian BC samples (n=44), NORAD was up-regulated in LA while HCG11 was up-regulated in BL subtype. An increased expression of NORAD is associated with reduced disease-free survival in basal-like patients (p = 0.002), which suggests that its prognostic value could be different in specific subtypes. The biological pathways observed for the HCG11 network are linked to the epithelial-to-mesenchymal transition; while NORAD associated pathways appear to be related to luminal epithelial cell transformation. NORAD and HCG11 regulons respectively present 36% and 21.5% of PUMILIO targets, which suggests that these lncRNAs act as a decoy for PUMILIO. These lncRNAs seem to work as players in the differentiation process that drives breast cells to acquire distinct phenotypes related to a specific BC subtype.
Collapse
Affiliation(s)
- Carolina Mathias
- Universidade Federal do Paraná, Departamento de Genética, Programa de Pós Graduação em Genética, Curitiba, PR, Brazil
| | - Gabrielle Araújo Pedroso
- Universidade Federal do Paraná, Departamento de Genética, Programa de Pós Graduação em Genética, Curitiba, PR, Brazil
| | - Fernanda Rezende Pabst
- Universidade Federal do Paraná, Departamento de Genética, Programa de Pós Graduação em Genética, Curitiba, PR, Brazil
| | | | - Flavia Kuroda
- Hospital Nossa Senhora das Graças, Centro de Doenças da Mama, Curitiba, PR, Brazil
| | - Iglenir João Cavalli
- Universidade Federal do Paraná, Departamento de Genética, Programa de Pós Graduação em Genética, Curitiba, PR, Brazil
| | | | | | - Daniela Fiori Gradia
- Universidade Federal do Paraná, Departamento de Genética, Programa de Pós Graduação em Genética, Curitiba, PR, Brazil
| |
Collapse
|
34
|
Role of PUM RNA-Binding Proteins in Cancer. Cancers (Basel) 2021; 13:cancers13010129. [PMID: 33401540 PMCID: PMC7796173 DOI: 10.3390/cancers13010129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary PUM1 and PUM2 are RNA-binding Pumilio proteins controlling the accessibility of hundreds of mRNAs for translation in a variety of human tissues. As a result, PUMs exemplify one of the mechanisms safeguarding the cellular proteome. PUM expression is disturbed in cancer, resulting in dysregulation of their target mRNAs. These targets encode factors responsible for processes usually affected in cancer, such as proliferation, apoptosis, and the cell cycle. This review describes PUM1 and PUM2 ribonucleoprotein networks and highlights the mechanisms underlying the regulatory role of PUM proteins and, most importantly, the emerging impact of PUM dysregulation in cancer. It also emphasizes the importance of upcoming studies on PUM proteins in the context of cancer, as they may provide new therapeutic targets in the future. Abstract Until recently, post-transcriptional gene regulation (PTGR), in contrast to transcriptional regulation, was not extensively explored in cancer, even though it seems to be highly important. PUM proteins are well described in the PTGR of several organisms and contain the PUF RNA-binding domain that recognizes the UGUANAUA motif, located mostly in the 3′ untranslated region (3′UTR) of target mRNAs. Depending on the protein cofactors recruited by PUM proteins, target mRNAs are directed towards translation, repression, activation, degradation, or specific localization. Abnormal profiles of PUM expression have been shown in several types of cancer, in some of them being different for PUM1 and PUM2. This review summarizes the dysregulation of PUM1 and PUM2 expression in several cancer tissues. It also describes the regulatory mechanisms behind the activity of PUMs, including cooperation with microRNA and non-coding RNA machineries, as well as the alternative polyadenylation pathway. It also emphasizes the importance of future studies to gain a more complete picture of the role of PUM proteins in different types of cancer. Such studies may result in identification of novel targets for future cancer therapies.
Collapse
|
35
|
Uhl M, Tran VD, Backofen R. Improving CLIP-seq data analysis by incorporating transcript information. BMC Genomics 2020; 21:894. [PMID: 33334306 PMCID: PMC7745353 DOI: 10.1186/s12864-020-07297-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Current peak callers for identifying RNA-binding protein (RBP) binding sites from CLIP-seq data take into account genomic read profiles, but they ignore the underlying transcript information, that is information regarding splicing events. So far, there are no studies available that closer observe this issue. RESULTS Here we show that current peak callers are susceptible to false peak calling near exon borders. We quantify its extent in publicly available datasets, which turns out to be substantial. By providing a tool called CLIPcontext for automatic transcript and genomic context sequence extraction, we further demonstrate that context choice affects the performances of RBP binding site prediction tools. Moreover, we show that known motifs of exon-binding RBPs are often enriched in transcript context sites, which should enable the recovery of more authentic binding sites. Finally, we discuss possible strategies on how to integrate transcript information into future workflows. CONCLUSIONS Our results demonstrate the importance of incorporating transcript information in CLIP-seq data analysis. Taking advantage of the underlying transcript information should therefore become an integral part of future peak calling and downstream analysis tools.
Collapse
Affiliation(s)
- Michael Uhl
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, Freiburg, 79110, Germany
| | - Van Dinh Tran
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, Freiburg, 79110, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, Freiburg, 79110, Germany. .,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestr. 18, Freiburg, 79104, Germany.
| |
Collapse
|
36
|
Wolfe MB, Schagat TL, Paulsen MT, Magnuson B, Ljungman M, Park D, Zhang C, Campbell ZT, Goldstrohm AC, Freddolino PL. Principles of mRNA control by human PUM proteins elucidated from multimodal experiments and integrative data analysis. RNA (NEW YORK, N.Y.) 2020; 26:1680-1703. [PMID: 32753408 PMCID: PMC7566576 DOI: 10.1261/rna.077362.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 05/27/2023]
Abstract
The human PUF-family proteins, PUM1 and PUM2, posttranscriptionally regulate gene expression by binding to a PUM recognition element (PRE) in the 3'-UTR of target mRNAs. Hundreds of PUM1/2 targets have been identified from changes in steady-state RNA levels; however, prior studies could not differentiate between the contributions of changes in transcription and RNA decay rates. We applied metabolic labeling to measure changes in RNA turnover in response to depletion of PUM1/2, showing that human PUM proteins regulate expression almost exclusively by changing RNA stability. We also applied an in vitro selection workflow to precisely identify the binding preferences of PUM1 and PUM2. By integrating our results with prior knowledge, we developed a "rulebook" of key contextual features that differentiate functional versus nonfunctional PREs, allowing us to train machine learning models that accurately predict the functional regulation of RNA targets by the human PUM proteins.
Collapse
Affiliation(s)
- Michael B Wolfe
- Department of Biological Chemistry and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - Michelle T Paulsen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Brian Magnuson
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Daeyoon Park
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Chi Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Zachary T Campbell
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Peter L Freddolino
- Department of Biological Chemistry and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
37
|
The Regulatory Properties of the Ccr4-Not Complex. Cells 2020; 9:cells9112379. [PMID: 33138308 PMCID: PMC7692201 DOI: 10.3390/cells9112379] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
The mammalian Ccr4–Not complex, carbon catabolite repression 4 (Ccr4)-negative on TATA-less (Not), is a large, highly conserved, multifunctional assembly of proteins that acts at different cellular levels to regulate gene expression. In the nucleus, it is involved in the regulation of the cell cycle, chromatin modification, activation and inhibition of transcription initiation, control of transcription elongation, RNA export, nuclear RNA surveillance, and DNA damage repair. In the cytoplasm, the Ccr4–Not complex plays a central role in mRNA decay and affects protein quality control. Most of our original knowledge of the Ccr4–Not complex is derived, primarily, from studies in yeast. More recent studies have shown that the mammalian complex has a comparable structure and similar properties. In this review, we summarize the evidence for the multiple roles of both the yeast and mammalian Ccr4–Not complexes, highlighting their similarities.
Collapse
|
38
|
Shen L, Wu Y, Li A, Li L, Shen L, Jiang Q, Li Q, Wu Z, Yu L, Zhang X. LncRNA TTN‑AS1 promotes endometrial cancer by sponging miR‑376a‑3p. Oncol Rep 2020; 44:1343-1354. [PMID: 32945477 PMCID: PMC7448418 DOI: 10.3892/or.2020.7691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing research has demonstrated that lncRNAs participate in the development of multiple cancer types. However, the role of TTN‑AS1 in endometrial cancer (EC) remains unknown. The present study aimed to explore the function of titin‑antisense RNA1 (TTN‑AS1) in EC progression and the underlying mechanisms. qRT‑PCR was performed to assess the TTN‑AS1 expression patterns in EC tissues and cell lines. Loss of function experiments were carried out to estimate the effects of TTN‑AS1 on EC cell proliferation, migration and invasion. To reveal the underlying mechanisms, informatics tools were used to predict the targets. Rescue experiments were performed to investigate the TTN‑AS1‑regulated miR‑376a‑3p/pumilio homolog 2 (PUM2) axis involved. The results of the present study revealed that TTN‑AS1 was highly expressed in both EC tissues and cell lines, and TTN‑AS1 knockdown inhibited EC cell proliferation, migration and invasion. With respect to the mechanisms, miR‑376a‑3p was revealed to be targeted by TTN‑AS1, and reversed the effects on EC development induced by TTN‑AS1. In addition, PUM2 was positively regulated by TTN‑AS1, and miR‑376a‑3p mediated the regulation between them. Furtherly, in vivo experiments confirmed the results. Collectively, TTN‑AS1 enhanced EC cell proliferation and metastasis by targeting the miR‑376a‑3p/PUM2 axis, which may shed light on EC diagnosis and treatment.
Collapse
Affiliation(s)
- Longde Shen
- Department of Gynecology and Obstetrics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Yinyin Wu
- Department of Gynecology and Obstetrics, Jinjiang Traditional Chinese Medicine Hospital, Jinjiang, Fujian 362200, P.R. China
| | - Ailu Li
- Department of Gynecology and Obstetrics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Lichun Li
- Department of Gynecology and Obstetrics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Longyuan Shen
- Department of Anesthesiology, Quanzhou Women's and Children's Hospital, Quanzhou, Fujian 362000, P.R. China
| | - Qiuxia Jiang
- Department of Ultrasound, Quanzhou Women's and Children's Hospital, Quanzhou, Fujian 362000, P.R. China
| | - Qiuxia Li
- Department of Gynecology and Obstetrics, Quanzhou Guangqian Hospital, Quanzhou, Fujian 362000, P.R. China
| | - Zhifen Wu
- Department of Gynecology and Obstetrics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Liji Yu
- Department of Gynecology and Obstetrics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Xiaohong Zhang
- Department of Gynecology and Obstetrics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
39
|
Wang X, Ellenbecker M, Hickey B, Day NJ, Osterli E, Terzo M, Voronina E. Antagonistic control of Caenorhabditis elegans germline stem cell proliferation and differentiation by PUF proteins FBF-1 and FBF-2. eLife 2020; 9:52788. [PMID: 32804074 PMCID: PMC7467723 DOI: 10.7554/elife.52788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Stem cells support tissue maintenance, but the mechanisms that coordinate the rate of stem cell self-renewal with differentiation at a population level remain uncharacterized. We find that two PUF family RNA-binding proteins FBF-1 and FBF-2 have opposite effects on Caenorhabditis elegans germline stem cell dynamics: FBF-1 restricts the rate of meiotic entry, while FBF-2 promotes both cell division and meiotic entry rates. Antagonistic effects of FBFs are mediated by their distinct activities toward the shared set of target mRNAs, where FBF-1-mediated post-transcriptional control requires the activity of CCR4-NOT deadenylase, while FBF-2 is deadenylase-independent and might protect the targets from deadenylation. These regulatory differences depend on protein sequences outside of the conserved PUF family RNA-binding domain. We propose that the opposing FBF-1 and FBF-2 activities serve to modulate stem cell division rate simultaneously with the rate of meiotic entry.
Collapse
Affiliation(s)
- Xiaobo Wang
- Division of Biological Sciences, University of Montana, Missoula, United States
| | - Mary Ellenbecker
- Division of Biological Sciences, University of Montana, Missoula, United States
| | - Benjamin Hickey
- Division of Biological Sciences, University of Montana, Missoula, United States
| | - Nicholas J Day
- Division of Biological Sciences, University of Montana, Missoula, United States
| | - Emily Osterli
- Division of Biological Sciences, University of Montana, Missoula, United States
| | - Mikaya Terzo
- Division of Biological Sciences, University of Montana, Missoula, United States
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, United States
| |
Collapse
|
40
|
Pokornowska M, Milewski MC, Ciechanowska K, Szczepańska A, Wojnicka M, Radogostowicz Z, Figlerowicz M, Kurzynska-Kokorniak A. The RNA-RNA base pairing potential of human Dicer and Ago2 proteins. Cell Mol Life Sci 2020; 77:3231-3244. [PMID: 31655860 PMCID: PMC7391396 DOI: 10.1007/s00018-019-03344-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/24/2019] [Accepted: 10/14/2019] [Indexed: 12/22/2022]
Abstract
The ribonuclease Dicer produces microRNAs (miRNAs) and small interfering RNAs that are handed over to Ago proteins to control gene expression by targeting complementary sequences within transcripts. Interestingly, a growing number of reports have demonstrated that the activity of Dicer may extend beyond the biogenesis of small regulatory RNAs. Among them, a report from our latest studies revealed that human Dicer facilitates base pairing of complementary sequences present in two nucleic acids, thus acting as a nucleic acid annealer. Accordingly, in this manuscript, we address how RNA structure influences the annealing activity of human Dicer. We show that Dicer supports hybridization between a small RNA and a complementary sequence of a longer RNA in vitro, even when both complementary sequences are trapped within secondary structures. Moreover, we show that under applied conditions, human Ago2, a core component of RNA-induced silencing complex, displays very limited annealing activity. Based on the available data from new-generation sequencing experiments regarding the RNA pool bound to Dicer in vivo, we show that multiple Dicer-binding sites within mRNAs also contain miRNA targets. Subsequently, we demonstrate in vitro that Dicer but not Ago2 can anneal miRNA to its target present within mRNA. We hypothesize that not all miRNA duplexes are handed over to Ago proteins. Instead, miRNA-Dicer complexes could target specific sequences within transcripts and either compete or cooperate for binding sites with miRNA-Ago complexes. Thus, not only Ago but also Dicer might be directly involved in the posttranscriptional control of gene expression.
Collapse
Affiliation(s)
- Maria Pokornowska
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Marek C Milewski
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Kinga Ciechanowska
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Agnieszka Szczepańska
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Marta Wojnicka
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Ziemowit Radogostowicz
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Marek Figlerowicz
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, 60-965, Poznan, Poland
| | - Anna Kurzynska-Kokorniak
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland.
| |
Collapse
|
41
|
Parras A, de Diego-Garcia L, Alves M, Beamer E, Conte G, Jimenez-Mateos EM, Morgan J, Ollà I, Hernandez-Santana Y, Delanty N, Farrell MA, O'Brien DF, Ocampo A, Henshall DC, Méndez R, Lucas JJ, Engel T. Polyadenylation of mRNA as a novel regulatory mechanism of gene expression in temporal lobe epilepsy. Brain 2020; 143:2139-2153. [PMID: 32594159 DOI: 10.1093/brain/awaa168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/27/2020] [Accepted: 04/09/2020] [Indexed: 01/15/2023] Open
Abstract
Temporal lobe epilepsy is the most common and refractory form of epilepsy in adults. Gene expression within affected structures such as the hippocampus displays extensive dysregulation and is implicated as a central pathomechanism. Post-transcriptional mechanisms are increasingly recognized as determinants of the gene expression landscape, but key mechanisms remain unexplored. Here we show, for first time, that cytoplasmic mRNA polyadenylation, one of the post-transcriptional mechanisms regulating gene expression, undergoes widespread reorganization in temporal lobe epilepsy. In the hippocampus of mice subjected to status epilepticus and epilepsy, we report >25% of the transcriptome displays changes in their poly(A) tail length, with deadenylation disproportionately affecting genes previously associated with epilepsy. Suggesting cytoplasmic polyadenylation element binding proteins (CPEBs) being one of the main contributors to mRNA polyadenylation changes, transcripts targeted by CPEBs were particularly enriched among the gene pool undergoing poly(A) tail alterations during epilepsy. Transcripts bound by CPEB4 were over-represented among transcripts with poly(A) tail alterations and epilepsy-related genes and CPEB4 expression was found to be increased in mouse models of seizures and resected hippocampi from patients with drug-refractory temporal lobe epilepsy. Finally, supporting an adaptive function for CPEB4, deletion of Cpeb4 exacerbated seizure severity and neurodegeneration during status epilepticus and the development of epilepsy in mice. Together, these findings reveal an additional layer of gene expression regulation during epilepsy and point to novel targets for seizure control and disease-modification in epilepsy.
Collapse
Affiliation(s)
- Alberto Parras
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, 28049 Madrid, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Laura de Diego-Garcia
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Edward Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Giorgia Conte
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Eva M Jimenez-Mateos
- Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin D02 R590, Ireland
| | - James Morgan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Ivana Ollà
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, 28049 Madrid, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Yasmina Hernandez-Santana
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Norman Delanty
- Beaumont Hospital, Beaumont, Dublin 9, Ireland.,FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI, Dublin D02 YN77, Ireland
| | | | | | - Alejandro Ocampo
- Department of Biomedical Sciences, Faculté de Biologie et Médecine, Université de Lausanne, Lausanne, Switzerland
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland.,FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI, Dublin D02 YN77, Ireland
| | - Raúl Méndez
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - José J Lucas
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, 28049 Madrid, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland.,FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI, Dublin D02 YN77, Ireland
| |
Collapse
|
42
|
Najdrová V, Stairs CW, Vinopalová M, Voleman L, Doležal P. The evolution of the Puf superfamily of proteins across the tree of eukaryotes. BMC Biol 2020; 18:77. [PMID: 32605621 PMCID: PMC7325665 DOI: 10.1186/s12915-020-00814-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Eukaryotic gene expression is controlled by a number of RNA-binding proteins (RBP), such as the proteins from the Puf (Pumilio and FBF) superfamily (PufSF). These proteins bind to RNA via multiple Puf repeat domains, each of which specifically recognizes a single RNA base. Recently, three diversified PufSF proteins have been described in model organisms, each of which is responsible for the maturation of ribosomal RNA or the translational regulation of mRNAs; however, less is known about the role of these proteins across eukaryotic diversity. RESULTS Here, we investigated the distribution and function of PufSF RBPs in the tree of eukaryotes. We determined that the following PufSF proteins are universally conserved across eukaryotes and can be broadly classified into three groups: (i) Nop9 orthologues, which participate in the nucleolar processing of immature 18S rRNA; (ii) 'classical' Pufs, which control the translation of mRNA; and (iii) PUM3 orthologues, which are involved in the maturation of 7S rRNA. In nearly all eukaryotes, the rRNA maturation proteins, Nop9 and PUM3, are retained as a single copy, while mRNA effectors ('classical' Pufs) underwent multiple lineage-specific expansions. We propose that the variation in number of 'classical' Pufs relates to the size of the transcriptome and thus the potential mRNA targets. We further distinguished full set of PufSF proteins in divergent metamonad Giardia intestinalis and initiated their cellular and biochemical characterization. CONCLUSIONS Our data suggest that the last eukaryotic common ancestor (LECA) already contained all three types of PufSF proteins and that 'classical' Pufs then underwent lineage-specific expansions.
Collapse
Affiliation(s)
- Vladimíra Najdrová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Courtney W Stairs
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123, Uppsala, Sweden
| | - Martina Vinopalová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Luboš Voleman
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic.
| |
Collapse
|
43
|
Bhondeley M, Liu Z. Mitochondrial Biogenesis Is Positively Regulated by Casein Kinase I Hrr25 Through Phosphorylation of Puf3 in Saccharomyces cerevisiae. Genetics 2020; 215:463-482. [PMID: 32317286 PMCID: PMC7268985 DOI: 10.1534/genetics.120.303191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/20/2020] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial biogenesis requires coordinated expression of genes encoding mitochondrial proteins, which in Saccharomyces cerevisiae is achieved in part via post-transcriptional control by the Pumilio RNA-binding domain protein Puf3 Puf3 binds to the 3'-UTR of many messenger RNAs (mRNAs) that encode mitochondrial proteins, regulating their turnover, translation, and/or mitochondrial targeting. Puf3 hyperphosphorylation correlates with increased mitochondrial biogenesis; however, the kinase responsible for Puf3 phosphorylation is unclear. Here, we show that the casein kinase I protein Hrr25 negatively regulates Puf3 by mediating its phosphorylation. An hrr25 mutation results in reduced phosphorylation of Puf3 in vivo and a puf3 deletion mutation reverses growth defects of hrr25 mutant cells grown on medium with a nonfermentable carbon source. We show that Hrr25 directly phosphorylates Puf3, and that the interaction between Puf3 and Hrr25 is mediated through the N-terminal domain of Puf3 and the kinase domain of Hrr25 We further found that an hrr25 mutation reduces GFP expression from GFP reporter constructs carrying the 3'-UTR of Puf3 targets. Downregulation of GFP expression due to an hrr25 mutation can be reversed either by puf3Δ or by mutations to the Puf3-binding sites in the 3'-UTR of the GFP reporter constructs. Together, our data indicate that Hrr25 is a positive regulator of mitochondrial biogenesis by phosphorylating Puf3 and inhibiting its function in downregulating target mRNAs encoding mitochondrial proteins.
Collapse
Affiliation(s)
- Manika Bhondeley
- Department of Biological Sciences, University of New Orleans, Louisiana 70148
| | - Zhengchang Liu
- Department of Biological Sciences, University of New Orleans, Louisiana 70148
| |
Collapse
|
44
|
Zhang H, Brown RD, Stenmark KR, Hu CJ. RNA-Binding Proteins in Pulmonary Hypertension. Int J Mol Sci 2020; 21:ijms21113757. [PMID: 32466553 PMCID: PMC7312837 DOI: 10.3390/ijms21113757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening disease characterized by significant vascular remodeling and aberrant expression of genes involved in inflammation, apoptosis resistance, proliferation, and metabolism. Effective therapeutic strategies are limited, as mechanisms underlying PH pathophysiology, especially abnormal expression of genes, remain unclear. Most PH studies on gene expression have focused on gene transcription. However, post-transcriptional alterations have been shown to play a critical role in inflammation and metabolic changes in diseases such as cancer and systemic cardiovascular diseases. In these diseases, RNA-binding proteins (RBPs) have been recognized as important regulators of aberrant gene expression via post-transcriptional regulation; however, their role in PH is less clear. Identifying RBPs in PH is of great importance to better understand PH pathophysiology and to identify new targets for PH treatment. In this manuscript, we review the current knowledge on the role of dysregulated RBPs in abnormal mRNA gene expression as well as aberrant non-coding RNA processing and expression (e.g., miRNAs) in PH.
Collapse
Affiliation(s)
- Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
| | - R. Dale Brown
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
| | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
| | - Cheng-Jun Hu
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
- Department of Craniofacial Biology School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-303-724-4576; Fax: +1-303-724-4580
| |
Collapse
|
45
|
Silva ILZ, Robert AW, Cabo GC, Spangenberg L, Stimamiglio MA, Dallagiovanna B, Gradia DF, Shigunov P. Effects of PUMILIO1 and PUMILIO2 knockdown on cardiomyogenic differentiation of human embryonic stem cells culture. PLoS One 2020; 15:e0222373. [PMID: 32437472 PMCID: PMC7241771 DOI: 10.1371/journal.pone.0222373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/28/2020] [Indexed: 01/31/2023] Open
Abstract
Posttranscriptional regulation plays a fundamental role in the biology of embryonic stem cells (ESCs). Many studies have demonstrated that multiple mRNAs are coregulated by one or more RNA-binding proteins (RBPs) that orchestrate mRNA expression. A family of RBPs, which is known as the Pumilio-FBF (PUF) family, is highly conserved among different species and has been associated with the undifferentiated and differentiated states of different cell lines. In humans, two homologs of the PUF family have been found: Pumilio 1 (PUM1) and Pumilio 2 (PUM2). To understand the role of these proteins in human ESCs (hESCs), we first assessed the influence of the silencing of PUM1 and PUM2 on pluripotency genes and found that the knockdown of Pumilio genes significantly decreased the OCT4 and NANOG mRNA levels and reduced the amount of nuclear OCT4, which suggests that Pumilio proteins play a role in the maintenance of pluripotency in hESCs. Furthermore, we observed that PUM1-and-PUM2-silenced hESCs exhibited improved efficiency of in vitro cardiomyogenic differentiation. Through an in silico analysis, we identified mRNA targets of PUM1 and PUM2 that are expressed at the early stages of cardiomyogenesis, and further investigation will determine whether these target mRNAs are active and involved in the progression of cardiomyogenesis. Our findings contribute to the understanding of the role of Pumilio proteins in hESC maintenance and differentiation.
Collapse
Affiliation(s)
| | - Anny Waloski Robert
- Laboratory of Basic Biology of Stem Cells (LABCET), Instituto Carlos Chagas—FIOCRUZ-PR, Curitiba, Paraná, Brazil
| | | | - Lucia Spangenberg
- Bioinformatics Unit, Instituto Pasteur de Montevideo, Montevideo, Uruguay
| | - Marco Augusto Stimamiglio
- Laboratory of Basic Biology of Stem Cells (LABCET), Instituto Carlos Chagas—FIOCRUZ-PR, Curitiba, Paraná, Brazil
| | - Bruno Dallagiovanna
- Laboratory of Basic Biology of Stem Cells (LABCET), Instituto Carlos Chagas—FIOCRUZ-PR, Curitiba, Paraná, Brazil
| | - Daniela Fiori Gradia
- Department of Genetics, Federal University of Parana (UFPR), Curitiba, Paraná, Brazil
| | - Patrícia Shigunov
- Laboratory of Basic Biology of Stem Cells (LABCET), Instituto Carlos Chagas—FIOCRUZ-PR, Curitiba, Paraná, Brazil
| |
Collapse
|
46
|
Characterization of RNP Networks of PUM1 and PUM2 Post-Transcriptional Regulators in TCam-2 Cells, a Human Male Germ Cell Model. Cells 2020; 9:cells9040984. [PMID: 32316190 PMCID: PMC7226987 DOI: 10.3390/cells9040984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 12/28/2022] Open
Abstract
Mammalian Pumilio (PUM) proteins are sequence-specific, RNA-binding proteins (RBPs) with wide-ranging roles. They are involved in germ cell development, which has functional implications in development and fertility. Although human PUM1 and PUM2 are closely related to each other and recognize the same RNA binding motif, there is some evidence for functional diversity. To address that problem, first we used RIP-Seq and RNA-Seq approaches, and identified mRNA pools regulated by PUM1 and PUM2 proteins in the TCam-2 cell line, a human male germ cell model. Second, applying global mass spectrometry-based profiling, we identified distinct PUM1- and PUM2-interacting putative protein cofactors, most of them involved in RNA processing. Third, combinatorial analysis of RIP and RNA-Seq, mass spectrometry, and RNA motif enrichment analysis revealed that PUM1 and PUM2 form partially varied RNP-regulatory networks (RNA regulons), which indicate different roles in human reproduction and testicular tumorigenesis. Altogether, this work proposes that protein paralogues with very similar and evolutionary highly conserved functional domains may play divergent roles in the cell by combining with different sets of protein cofactors. Our findings highlight the versatility of PUM paralogue-based post-transcriptional regulation, offering insight into the mechanisms underlying their diverse biological roles and diseases resulting from their dysfunction.
Collapse
|
47
|
Smialek MJ, Kuczynska B, Ilaslan E, Janecki DM, Sajek MP, Kusz-Zamelczyk K, Jaruzelska J. Kinesin KIF18A is a novel PUM-regulated target promoting mitotic progression and survival of a human male germ cell line. J Cell Sci 2020; 133:jcs240986. [PMID: 32094263 DOI: 10.1242/jcs.240986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/14/2020] [Indexed: 12/29/2022] Open
Abstract
Regulation of proliferation, apoptosis and cell cycle is crucial for the physiology of germ cells. Their malfunction contributes to infertility and germ cell tumours. The kinesin KIF18A is an important regulator of those processes in animal germ cells. Post-transcriptional regulation of KIF18A has not been extensively explored. Owing to the presence of PUM-binding elements (PBEs), KIF18A mRNA is a potential target of PUM proteins, where PUM refers to Pumilio proteins, RNA-binding proteins that act in post-transcriptional gene regulation. We conducted RNA co-immunoprecipitation combined with RT-qPCR, as well as luciferase reporter assays, by applying an appropriate luciferase construct encoding wild-type KIF18A 3'-UTR, upon PUM overexpression or knockdown in TCam-2 cells, representing human male germ cells. We found that KIF18A is repressed by PUM1 and PUM2. To study how this regulation influences KIF18A function, an MTS proliferation assay, and apoptosis and cell cycle analysis using flow cytometry, was performed upon KIF18A mRNA siRNA knockdown. KIF18A significantly influences proliferation, apoptosis and the cell cycle, with its effects being opposite to PUM effects. Repression by PUM proteins might represent one of mechanisms influencing KIF18A level in controlling proliferation, cell cycle and apoptosis in TCam-2 cells.
Collapse
Affiliation(s)
- Maciej Jerzy Smialek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Bogna Kuczynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Erkut Ilaslan
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Damian Mikolaj Janecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Marcin Piotr Sajek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Kamila Kusz-Zamelczyk
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Jadwiga Jaruzelska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| |
Collapse
|
48
|
Pumilio proteins utilize distinct regulatory mechanisms to achieve complementary functions required for pluripotency and embryogenesis. Proc Natl Acad Sci U S A 2020; 117:7851-7862. [PMID: 32198202 DOI: 10.1073/pnas.1916471117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene regulation in embryonic stem cells (ESCs) has been extensively studied at the epigenetic-transcriptional level, but not at the posttranscriptional level. Pumilio (Pum) proteins are among the few known translational regulators required for stem-cell maintenance in invertebrates and plants. Here we report the essential function of two murine Pum proteins, Pum1 and Pum2, in ESCs and early embryogenesis. Pum1/2 double-mutant ESCs display severely reduced self-renewal and differentiation, and Pum1/2 double-mutant mice are developmentally delayed at the morula stage and lethal by embryonic day 8.5. Remarkably, Pum1-deficient ESCs show increased expression of pluripotency genes but not differentiation genes, whereas Pum2-deficient ESCs show decreased pluripotency markers and accelerated differentiation. Thus, despite their high homology and overlapping target messenger RNAs (mRNAs), Pum1 promotes differentiation while Pum2 promotes self-renewal in ESCs. Pum1 and Pum2 achieve these two complementary aspects of pluripotency by forming a negative interregulatory feedback loop that directly regulates at least 1,486 mRNAs. Pum1 and Pum2 regulate target mRNAs not only by repressing translation, but also by promoting translation and enhancing or reducing mRNA stability of different target mRNAs. Together, these findings reveal distinct roles of individual mammalian Pum proteins in ESCs and their essential functions in ESC pluripotency and embryogenesis.
Collapse
|
49
|
Park Y, O'Rourke S, Taki FA, Alfhili MA, Lee MH. Dose-Dependent Effects of GLD-2 and GLD-1 on Germline Differentiation and Dedifferentiation in the Absence of PUF-8. Front Cell Dev Biol 2020; 8:5. [PMID: 32039211 PMCID: PMC6992537 DOI: 10.3389/fcell.2020.00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/08/2020] [Indexed: 11/29/2022] Open
Abstract
PUMILIO/FBF (PUF) proteins have a conserved function in stem cell regulation. Caenorhabditis elegans PUF-8 protein inhibits the translation of target mRNAs by interacting with PUF binding element (PBE) in the 3′ untranslated region (3′ UTR). In this work, an in silico analysis has identified gld-2 [a poly(A) polymerase] as a putative PUF-8 target. Biochemical and reporter analyses showed that PUF-8 specifically binds to a PBE in gld-2 3′ UTR and represses a GFP reporter gene carrying gld-2 3′ UTR in the C. elegans mitotic germ cells. GLD-2 enhances meiotic entry at least in part by activating GLD-1 (a KH motif-containing RNA-binding protein). Our genetic analyses also demonstrated that heterozygous gld-2(+/−) gld-1(+/−) genes in the absence of PUF-8 are competent for meiotic entry (early differentiation), but haplo-insufficient for the meiotic division (terminal differentiation) of spermatocytes. Indeed, the arrested spermatocytes return to mitotic cells via dedifferentiation, which results in germline tumors. Since these regulators are broadly conserved, we thus suggest that similar molecular mechanisms may control differentiation, dedifferentiation, and tumorigenesis in other organisms, including humans.
Collapse
Affiliation(s)
- Youngyong Park
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Samuel O'Rourke
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Faten A Taki
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, United States
| | - Mohammad A Alfhili
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine at East Carolina University, Greenville, NC, United States.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Myon Hee Lee
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| |
Collapse
|
50
|
Courel M, Clément Y, Bossevain C, Foretek D, Vidal Cruchez O, Yi Z, Bénard M, Benassy MN, Kress M, Vindry C, Ernoult-Lange M, Antoniewski C, Morillon A, Brest P, Hubstenberger A, Roest Crollius H, Standart N, Weil D. GC content shapes mRNA storage and decay in human cells. eLife 2019; 8:49708. [PMID: 31855182 PMCID: PMC6944446 DOI: 10.7554/elife.49708] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
mRNA translation and decay appear often intimately linked although the rules of this interplay are poorly understood. In this study, we combined our recent P-body transcriptome with transcriptomes obtained following silencing of broadly acting mRNA decay and repression factors, and with available CLIP and related data. This revealed the central role of GC content in mRNA fate, in terms of P-body localization, mRNA translation and mRNA stability: P-bodies contain mostly AU-rich mRNAs, which have a particular codon usage associated with a low protein yield; AU-rich and GC-rich transcripts tend to follow distinct decay pathways; and the targets of sequence-specific RBPs and miRNAs are also biased in terms of GC content. Altogether, these results suggest an integrated view of post-transcriptional control in human cells where most translation regulation is dedicated to inefficiently translated AU-rich mRNAs, whereas control at the level of 5’ decay applies to optimally translated GC-rich mRNAs.
Collapse
Affiliation(s)
- Maïté Courel
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, Paris, France
| | - Yves Clément
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, France
| | - Clémentine Bossevain
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, Paris, France
| | - Dominika Foretek
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL Research University, CNRS UMR 3244, Sorbonne Université, Paris, France
| | | | - Zhou Yi
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
| | - Marianne Bénard
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, Paris, France
| | - Marie-Noëlle Benassy
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, Paris, France
| | - Michel Kress
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, Paris, France
| | - Caroline Vindry
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Michèle Ernoult-Lange
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, Paris, France
| | - Christophe Antoniewski
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), ARTbio Bioinformatics Analysis Facility, Paris, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL Research University, CNRS UMR 3244, Sorbonne Université, Paris, France
| | - Patrick Brest
- Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Nice, France
| | | | | | - Nancy Standart
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, Paris, France
| |
Collapse
|