1
|
Nasrin F, Nagar P, Islam M, Heeamoni S, Hasan M, Ohno K, Rahman M. SRSF6 and SRSF1 coordinately enhance the inclusion of human MUSK exon 10 to generate a Wnt-sensitive MuSK isoform. NAR MOLECULAR MEDICINE 2025; 2:ugaf007. [PMID: 40161265 PMCID: PMC11954543 DOI: 10.1093/narmme/ugaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Alternative splicing in genes associated with neuromuscular junction (NMJ) often compromises neuromuscular signal transmission and provokes pathological consequences. Muscle-specific receptor tyrosine kinase (MuSK) is an essential molecule in the NMJ. MUSK exon 10 encodes an important part of the frizzled-like cysteine-rich domain, which is necessary for Wnt-mediated acetylcholine receptors clustering at NMJ. MUSK exon 10 is alternatively spliced in humans but not in mice. We reported that humans acquired a unique exonic splicing silencer in exon 10 compared to mice, which promotes exon skipping coordinated by hnRNP C, YB-1, and hnRNP L. Here, we have dissected the underlying mechanisms of exon inclusion. We precisely characterized the exonic splicing enhancer (ESE) elements and determined the functional motifs. We demonstrated that SRSF6 and SRSF1 coordinately enhance exon inclusion through multiple functional motifs in the ESE. Remarkably, SRSF6 exerts a stronger effect than SRSF1, and SRSF6 alone can compensate the function of SRSF1. Interestingly, differentiated muscle reduces the expression of splicing suppressors, rather than enhancers, to generate a functional Wnt-sensitive MuSK isoform to promote neuromuscular signal transmission. Finally, we developed splice-switching antisense oligonucleotides, which could be used to selectively modulate the expression of MUSK isoforms toward a beneficial outcome for therapeutic intervention.
Collapse
Affiliation(s)
- Farhana Nasrin
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 4668550 Aichi, Japan
| | - Preeti Nagar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Md Rafikul Islam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Shabiha Afroj Heeamoni
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Md Mahbub Hasan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 4668550 Aichi, Japan
- Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, 4700196 Aichi, Japan
| | - Mohammad Alinoor Rahman
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
2
|
Song YJ, Shinn MK, Bangru S, Wang Y, Sun Q, Hao Q, Chaturvedi P, Freier SM, Perez-Pinera P, Nelson ER, Belmont AS, Guttman M, Prasanth SG, Kalsotra A, Pappu RV, Prasanth KV. Chromatin-associated lncRNA-splicing factor condensates regulate hypoxia responsive RNA processing of genes pre-positioned near nuclear speckles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621310. [PMID: 39554052 PMCID: PMC11565956 DOI: 10.1101/2024.10.31.621310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Hypoxia-induced alternative splicing (AS) regulates tumor progression and metastasis. Little is known about how such AS is controlled and whether higher-order genome and nuclear domain (ND) organizations dictate these processes. We observe that hypoxia-responsive alternatively spliced genes position near nuclear speckle (NS), the ND that enhances splicing efficiency. NS-resident MALAT1 long noncoding RNA, induced in response to hypoxia, regulates hypoxia-responsive AS. MALAT1 achieves this by organizing the SR-family of splicing factor, SRSF1, near NS and regulating the binding of SRSF1 to pre-mRNAs. Mechanistically, MALAT1 enhances the recruitment of SRSF1 to elongating RNA polymerase II (pol II) by promoting the formation of phase-separated condensates of SRSF1, which are preferentially recognized by pol II. During hypoxia, MALAT1 regulates spatially organized AS by establishing a threshold SRSF1 concentration near NSs, potentially by forming condensates, critical for pol II-mediated recruitment of SRSF1 to pre-mRNAs.
Collapse
|
3
|
Yi S, Singh SS, Rozen-Gagnon K, Luna JM. Mapping RNA-protein interactions with subcellular resolution using colocalization CLIP. RNA (NEW YORK, N.Y.) 2024; 30:920-937. [PMID: 38658162 PMCID: PMC11182006 DOI: 10.1261/rna.079890.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
RNA-binding proteins (RBPs) are essential for RNA metabolism and profoundly impact health and disease. The subcellular organization of RBP interaction networks with target RNAs remains largely unexplored. Here, we develop colocalization CLIP (coCLIP), a method that combines cross-linking and immunoprecipitation (CLIP) with proximity labeling, to explore in-depth the subcellular RNA interactions of the RBP human antigen R (HuR). Using this method, we uncover HuR's dynamic and location-specific interactions with RNA, revealing alterations in sequence preferences and interactions in the nucleus, cytosol, or stress granule (SG) compartments. We uncover HuR's unique binding preferences within SGs during arsenite stress, illuminating intricate interactions that conventional methodologies cannot capture. Overall, coCLIP provides a powerful method for revealing RBP-RNA interactions based on localization and lays the foundation for an advanced understanding of RBP models that incorporate subcellular location as a critical determinant of their functions.
Collapse
Affiliation(s)
- Soon Yi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Shashi S Singh
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Kathryn Rozen-Gagnon
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Joseph M Luna
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
4
|
Borden KLB. The eukaryotic translation initiation factor eIF4E unexpectedly acts in splicing thereby coupling mRNA processing with translation: eIF4E induces widescale splicing reprogramming providing system-wide connectivity between splicing, nuclear mRNA export and translation. Bioessays 2024; 46:e2300145. [PMID: 37926700 PMCID: PMC11021180 DOI: 10.1002/bies.202300145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Recent findings position the eukaryotic translation initiation factor eIF4E as a novel modulator of mRNA splicing, a process that impacts the form and function of resultant proteins. eIF4E physically interacts with the spliceosome and with some intron-containing transcripts implying a direct role in some splicing events. Moreover, eIF4E drives the production of key components of the splicing machinery underpinning larger scale impacts on splicing. These drive eIF4E-dependent reprogramming of the splicing signature. This work completes a series of studies demonstrating eIF4E acts in all the major mRNA maturation steps whereby eIF4E drives production of the RNA processing machinery and escorts some transcripts through various maturation steps. In this way, eIF4E couples the mRNA processing-export-translation axis linking nuclear mRNA processing to cytoplasmic translation. eIF4E elevation is linked to worse outcomes in acute myeloid leukemia patients where these activities are dysregulated. Understanding these effects provides new insight into post-transcriptional control and eIF4E-driven cancers.
Collapse
Affiliation(s)
- Katherine L. B. Borden
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell BiologyUniversity of MontrealMontrealQuebecCanada
| |
Collapse
|
5
|
Yi S, Singh SS, Rozen-Gagnon K, Luna JM. Mapping RNA-Protein Interactions with Subcellular Resolution Using Colocalization CLIP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.563984. [PMID: 37961159 PMCID: PMC10634835 DOI: 10.1101/2023.10.26.563984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
RNA binding proteins (RBPs) are essential for RNA metabolism and profoundly impact health and disease. The subcellular organization of RBP interaction networks with target RNAs remains largely unexplored. Here, we develop colocalization CLIP, a method that combines CrossLinking and ImmunoPrecipitation (CLIP) with proximity labeling, to explore in-depth the subcellular RNA interactions of the well-studied RNA-binding protein HuR. Using this method, we uncover HuR's dynamic and location-specific interactions with RNA, revealing alterations in sequence preferences and interactions in the nucleus, cytosol, or stress granule compartments. We uncover HuR's unique binding preferences within stress granules during arsenite stress, illuminating intricate interactions that conventional methodologies cannot capture. Overall, coCLIP provides a powerful method for revealing RBP:RNA interactions based on localization and lays the foundation for an advanced understanding of RBP models that incorporate subcellular location as a critical determinant of their functions.
Collapse
|
6
|
Jia ZC, Das D, Zhang Y, Fernie AR, Liu YG, Chen M, Zhang J. Plant serine/arginine-rich proteins: versatile players in RNA processing. PLANTA 2023; 257:109. [PMID: 37145304 DOI: 10.1007/s00425-023-04132-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
MAIN CONCLUSION Serine/arginine-rich (SR) proteins participate in RNA processing by interacting with precursor mRNAs or other splicing factors to maintain plant growth and stress responses. Alternative splicing is an important mechanism involved in mRNA processing and regulation of gene expression at the posttranscriptional level, which is the main reason for the diversity of genes and proteins. The process of alternative splicing requires the participation of many specific splicing factors. The SR protein family is a splicing factor in eukaryotes. The vast majority of SR proteins' existence is an essential survival factor. Through its RS domain and other unique domains, SR proteins can interact with specific sequences of precursor mRNA or other splicing factors and cooperate to complete the correct selection of splicing sites or promote the formation of spliceosomes. They play essential roles in the composition and alternative splicing of precursor mRNAs, providing pivotal functions to maintain growth and stress responses in animals and plants. Although SR proteins have been identified in plants for three decades, their evolutionary trajectory, molecular function, and regulatory network remain largely unknown compared to their animal counterparts. This article reviews the current understanding of this gene family in eukaryotes and proposes potential key research priorities for future functional studies.
Collapse
Affiliation(s)
- Zi-Chang Jia
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Debatosh Das
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences and Technology, 52 Agricultural Building, University of Missouri, Columbia, MO, 65201, USA
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Youjun Zhang
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
- Max-Planck-Institut Für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
- Max-Planck-Institut Für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Ying-Gao Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
7
|
Cassidy MF, Herbert ZT, Moulton VR. Splicing factor SRSF1 controls autoimmune-related molecular pathways in regulatory T cells distinct from FoxP3. Mol Immunol 2022; 152:140-152. [PMID: 36368121 DOI: 10.1016/j.molimm.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
Regulatory T cells (Tregs) are vital for maintaining immune self-tolerance, and their impaired function leads to autoimmune disease. Mutations in FoxP3, the master transcriptional regulator of Tregs, leads to immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome in humans and the early lethal "scurfy" phenotype with multi-organ autoimmune disease in mice. We recently identified serine/arginine-rich splicing factor 1 (SRSF1) as an indispensable regulator of Treg homeostasis and function. Intriguingly, Treg-conditional SRSF1-deficient mice exhibit early lethal systemic autoimmunity with multi-organ inflammation reminiscent of the scurfy mice. Importantly, SRSF1 is decreased in T cells from patients with the autoimmune disease systemic lupus erythematosus (SLE), and low SRSF1 levels inversely correlate with disease severity. Given that the Treg-specific deficiency of SRSF1 causes similarly profound autoimmune disease outcomes in mice as the deficiency/mutation in FoxP3, we aimed to evaluate the genes and molecular pathways controlled by these two indispensable regulatory proteins. We performed comparative bioinformatic analyses of transcriptomic profiles of Tregs from Srsf1-knockout mice and two Foxp3 mutant mice--the FoxP3-deficient ΔFoxp3 and the Foxp3 M370I mutant mice. We identified 132 differentially expressed genes (DEGs) unique to Srsf1-ko Tregs, 503 DEGs unique to Foxp3 M370I Tregs, and 1367 DEGs unique to ΔFoxp3 Tregs. Gene set enrichment and pathway analysis of DEGs unique to Srsf1-ko Tregs indicate that SRSF1 controls cytokine and immune response pathways. Conversely, FoxP3 controls pathways involved in DNA replication and cell cycle. Besides the distinct gene signatures, we identified only 30 shared genes between all three Treg mutants, mostly contributing to cytokine and immune defense pathways. Prominent genes included the chemokines CXCR6 and CCL1 and the checkpoint inhibitors FASLG and PDCD1. Thus, we demonstrate that SRSF1 and FoxP3 control common and distinct molecular pathways implicated in autoimmunity. Our analyses suggest that SRSF1 controls crucial immune functions in Tregs contributing to immune tolerance, and perturbations in its levels lead to systemic autoimmunity via mechanisms that are largely distinct from FoxP3.
Collapse
Affiliation(s)
- Michael F Cassidy
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Tufts University School of Medicine, Boston, MA, United States.
| | - Zachary T Herbert
- Molecular Biology Core Facilities, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Vaishali R Moulton
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
De Silva NIU, Fargason T, Zhang Z, Wang T, Zhang J. Inter-domain Flexibility of Human Ser/Arg-Rich Splicing Factor 1 Allows Variable Spacer Length in Cognate RNA’s Bipartite Motifs. Biochemistry 2022; 61:2922-2932. [DOI: 10.1021/acs.biochem.2c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Naiduwadura Ivon Upekala De Silva
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, Alabama35294-1240, United States
| | - Talia Fargason
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, Alabama35294-1240, United States
| | - Zihan Zhang
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, Alabama35294-1240, United States
| | - Ting Wang
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, Alabama35294-1240, United States
| | - Jun Zhang
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, Alabama35294-1240, United States
| |
Collapse
|
9
|
Pengelly RJ, Bakhtiar D, Borovská I, Královičová J, Vořechovský I. Exonic splicing code and protein binding sites for calcium. Nucleic Acids Res 2022; 50:5493-5512. [PMID: 35474482 PMCID: PMC9177970 DOI: 10.1093/nar/gkac270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/12/2022] Open
Abstract
Auxilliary splicing sequences in exons, known as enhancers (ESEs) and silencers (ESSs), have been subject to strong selection pressures at the RNA and protein level. The protein component of this splicing code is substantial, recently estimated at ∼50% of the total information within ESEs, but remains poorly understood. The ESE/ESS profiles were previously associated with the Irving-Williams (I-W) stability series for divalent metals, suggesting that the ESE/ESS evolution was shaped by metal binding sites. Here, we have examined splicing activities of exonic sequences that encode protein binding sites for Ca2+, a weak binder in the I-W affinity order. We found that predicted exon inclusion levels for the EF-hand motifs and for Ca2+-binding residues in nonEF-hand proteins were higher than for average exons. For canonical EF-hands, the increase was centred on the EF-hand chelation loop and, in particular, on Ca2+-coordinating residues, with a 1>12>3∼5>9 hierarchy in the 12-codon loop consensus and usage bias at codons 1 and 12. The same hierarchy but a lower increase was observed for noncanonical EF-hands, except for S100 proteins. EF-hand loops preferentially accumulated exon splits in two clusters, one located in their N-terminal halves and the other around codon 12. Using splicing assays and published crosslinking and immunoprecipitation data, we identify candidate trans-acting factors that preferentially bind conserved GA-rich motifs encoding negatively charged amino acids in the loops. Together, these data provide evidence for the high capacity of codons for Ca2+-coordinating residues to be retained in mature transcripts, facilitating their exon-level expansion during eukaryotic evolution.
Collapse
Affiliation(s)
- Reuben J Pengelly
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Dara Bakhtiar
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Ivana Borovská
- Slovak Academy of Sciences, Centre of Biosciences, 840 05 Bratislava, Slovak Republic
| | - Jana Královičová
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
- Slovak Academy of Sciences, Centre of Biosciences, 840 05 Bratislava, Slovak Republic
- Slovak Academy of Sciences, Institute of Zoology, 845 06 Bratislava, Slovak Republic
| | - Igor Vořechovský
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
10
|
Yang C, Dong Z, Ling Z, Chen Y. The crucial mechanism and therapeutic implication of RNA methylation in bone pathophysiology. Ageing Res Rev 2022; 79:101641. [PMID: 35569786 DOI: 10.1016/j.arr.2022.101641] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Methylation is the most common posttranscriptional modification in cellular RNAs, which has been reported to modulate the alteration of RNA structure for initiating relevant functions such as nuclear translocation and RNA degradation. Recent studies found that RNA methylation especially N6-methyladenosine (m6A) regulates the dynamic balance of bone matrix and forms a complicated network in bone metabolism. The modulation disorder of RNA methylation contributes to several pathological bone diseases including osteoporosis (OP), osteoarthritis (OA), rheumatoid arthritis (RA), and so on. In the review, we will discuss advanced technologies for detecting RNA methylation, summarize RNA methylation-related biological impacts on regulating bone homeostasis and pathological bone diseases. In addition, we focus on the promising roles of RNA methylation in early diagnosis and therapeutic implications for bone-related diseases. Then, we aim to establish a theoretical basis for further investigation in this meaningful field.
Collapse
|
11
|
Yu T, Cazares O, Tang AD, Kim HY, Wald T, Verma A, Liu Q, Barcellos-Hoff MH, Floor SN, Jung HS, Brooks AN, Klein OD. SRSF1 governs progenitor-specific alternative splicing to maintain adult epithelial tissue homeostasis and renewal. Dev Cell 2022; 57:624-637.e4. [PMID: 35202586 PMCID: PMC8974236 DOI: 10.1016/j.devcel.2022.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/04/2021] [Accepted: 01/18/2022] [Indexed: 12/30/2022]
Abstract
Alternative splicing generates distinct mRNA variants and is essential for development, homeostasis, and renewal. Proteins of the serine/arginine (SR)-rich splicing factor family are major splicing regulators that are broadly required for organ development as well as cell and organism viability. However, how these proteins support adult organ function remains largely unknown. Here, we used the continuously growing mouse incisor as a model to dissect the functions of the prototypical SR family protein SRSF1 during tissue homeostasis and renewal. We identified an SRSF1-governed alternative splicing network that is specifically required for dental proliferation and survival of progenitors but dispensable for the viability of differentiated cells. We also observed a similar progenitor-specific role of SRSF1 in the small intestinal epithelium, indicating a conserved function of SRSF1 across adult epithelial tissues. Thus, our findings define a regulatory mechanism by which SRSF1 specifically controls progenitor-specific alternative splicing events to support adult tissue homeostasis and renewal.
Collapse
Affiliation(s)
- Tingsheng Yu
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Oscar Cazares
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alison D Tang
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Hyun-Yi Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Tomas Wald
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adya Verma
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Qi Liu
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
12
|
Sahadevan S, Pérez-Berlanga M, Polymenidou M. Identification of RNA-RBP Interactions in Subcellular Compartments by CLIP-Seq. Methods Mol Biol 2022; 2428:305-323. [PMID: 35171488 DOI: 10.1007/978-1-0716-1975-9_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cross-linking immunoprecipitation and high-throughput sequencing (CLIP-seq) allows the identification of RNA targets bound by a specific RNA-binding protein (RBP) in in vivo and ex vivo experimental models with high specificity. Due to the little RNA yield obtained after cross-linking, immunoprecipitation, polyacrylamide gel electrophoresis, membrane transfer, and RNA extraction, CLIP-seq is usually performed from relatively large amounts of starting material, like cell lysates or tissue homogenates. However, RBP binding of its specific RNA targets depends on its subcellular localization, and a different set of RNAs may be bound by the same RBP within distinct subcellular sites. To uncover these RNA subsets, preparation of CLIP-seq libraries from specific subcellular compartments and comparison to CLIP-seq datasets from total lysates is necessary, yet there are currently no available protocols for this. Here we describe the adaptation of CLIP-seq to identify the specific RNA targets of an RBP (FUS) at a small subcompartment, that is, neuronal synapses, including subcompartment isolation, RBP-RNA complex enrichment, and upscaling steps.
Collapse
Affiliation(s)
- Sonu Sahadevan
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
13
|
Alvelos MI, Brüggemann M, Sutandy FXR, Juan-Mateu J, Colli ML, Busch A, Lopes M, Castela Â, Aartsma-Rus A, König J, Zarnack K, Eizirik DL. The RNA-binding profile of the splicing factor SRSF6 in immortalized human pancreatic β-cells. Life Sci Alliance 2021; 4:e202000825. [PMID: 33376132 PMCID: PMC7772782 DOI: 10.26508/lsa.202000825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
In pancreatic β-cells, the expression of the splicing factor SRSF6 is regulated by GLIS3, a transcription factor encoded by a diabetes susceptibility gene. SRSF6 down-regulation promotes β-cell demise through splicing dysregulation of central genes for β-cells function and survival, but how RNAs are targeted by SRSF6 remains poorly understood. Here, we define the SRSF6 binding landscape in the human pancreatic β-cell line EndoC-βH1 by integrating individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP) under basal conditions with RNA sequencing after SRSF6 knockdown. We detect thousands of SRSF6 bindings sites in coding sequences. Motif analyses suggest that SRSF6 specifically recognizes a purine-rich consensus motif consisting of GAA triplets and that the number of contiguous GAA triplets correlates with increasing binding site strength. The SRSF6 positioning determines the splicing fate. In line with its role in β-cell function, we identify SRSF6 binding sites on regulated exons in several diabetes susceptibility genes. In a proof-of-principle, the splicing of the susceptibility gene LMO7 is modulated by antisense oligonucleotides. Our present study unveils the splicing regulatory landscape of SRSF6 in immortalized human pancreatic β-cells.
Collapse
Affiliation(s)
- Maria Inês Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Mirko Brüggemann
- Buchman Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Jonàs Juan-Mateu
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maikel Luis Colli
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Anke Busch
- Institute of Molecular Biology gGmbH, Mainz, Germany
| | - Miguel Lopes
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ângela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Julian König
- Institute of Molecular Biology gGmbH, Mainz, Germany
| | - Kathi Zarnack
- Buchman Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Décio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| |
Collapse
|
14
|
Qiu C, Zhang Y, Fan YJ, Pang TL, Su Y, Zhan S, Xu YZ. HITS-CLIP reveals sex-differential RNA binding and alterative splicing regulation of SRm160 in Drosophila. J Mol Cell Biol 2020; 11:170-181. [PMID: 29750417 DOI: 10.1093/jmcb/mjy029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/20/2018] [Accepted: 05/07/2018] [Indexed: 12/27/2022] Open
Abstract
Serine/arginine (SR)-rich proteins are critical for the regulation of alternative splicing (AS), which generates multiple mRNA isoforms from one gene and provides protein diversity for cell differentiation and tissue development. Genetic evidence suggests that Drosophila genital-specific overexpression of SR-related nuclear matrix protein of 160 kDa (SRm160), an SR protein with a PWI RNA-binding motif, causes defective development only in male flies and results in abnormal male genital structures and abnormal testis. However, the molecular characterization of SRm160 is limited. Using the high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP) method in two sex-specific embryonic cell lines, S2 from the male and Kc from the female, we first identified the genome-wide RNA-binding characteristics of SRm160, which preferred binding to the exonic tri-nucleotide repeats GCA and AAC. We then validated this binding through both in vitro gel-shift assay and in vivo splicing of minigenes and found that SRm160 level affects AS of many transcripts. Furthermore, we identified 492 differential binding sites (DBS) of SRm160 varying between the two sex-specific cell lines. Among these DBS-containing genes, splicing factors were highly enriched, including transformer, a key regulator in the sex determination cascade. Analyses of fly mutants demonstrated that the SRm160 level affects AS isoforms of transformer. These findings shed crucial light on SRm160's RNA-binding specificity and regulation of AS in Drosophila sex determination and development.
Collapse
Affiliation(s)
- Chen Qiu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Yu Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Yu-Jie Fan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ting-Lin Pang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Su
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Zhen Xu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
15
|
Yugami M, Okano H, Nakanishi A, Yano M. Analysis of the nucleocytoplasmic shuttling RNA-binding protein HNRNPU using optimized HITS-CLIP method. PLoS One 2020; 15:e0231450. [PMID: 32302342 PMCID: PMC7164624 DOI: 10.1371/journal.pone.0231450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/24/2020] [Indexed: 01/08/2023] Open
Abstract
RNA-binding proteins (RBPs) control many types of post-transcriptional regulation, including mRNA splicing, mRNA stability, and translational efficiency, by directly binding to their target RNAs and their mutation and dysfunction are often associated with several human neurological diseases and tumorigenesis. Crosslinking immunoprecipitation (CLIP), coupled with high-throughput sequencing (HITS-CLIP), is a powerful technique for investigating the molecular mechanisms underlying disease pathogenesis by comprehensive identification of RBP target sequences at the transcriptome level. However, HITS-CLIP protocol is still required for some optimization due to experimental complication, low efficiency and time-consuming, whose library has to be generated from very small amounts of RNAs. Here we improved a more efficient, rapid, and reproducible CLIP method by optimizing BrdU-CLIP. Our protocol produced a 10-fold greater yield of pre-amplified CLIP library, which resulted in a low duplicate rate of CLIP-tag reads because the number of PCR cycles required for library amplification was reduced. Variance of the yields was also reduced, and the experimental period was shortened by 2 days. Using this, we validated IL-6 expression by a nuclear RBP, HNRNPU, which directly binds the 3’-UTR of IL-6 mRNA in HeLa cells. Importantly, this interaction was only observed in the cytoplasmic fraction, suggesting a role of cytoplasmic HNRNPU in mRNA stability control. This optimized method enables us to accurately identify target genes and provides a snapshot of the protein-RNA interactions of nucleocytoplasmic shuttling RBPs.
Collapse
Affiliation(s)
- Masato Yugami
- Takeda Pharmaceutical Company, Ltd, Osaka, Japan
- * E-mail: (MYu); (MYa)
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Minato, Japan
| | | | - Masato Yano
- Department of Physiology, School of Medicine, Keio University, Minato, Japan
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- * E-mail: (MYu); (MYa)
| |
Collapse
|
16
|
Giaretta A, Toffolo GM, Elston TC. Stochastic modeling of human papillomavirusearly promoter gene regulation. J Theor Biol 2020; 486:110057. [PMID: 31672406 PMCID: PMC6937396 DOI: 10.1016/j.jtbi.2019.110057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/01/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022]
Abstract
High risk forms of human papillomaviruses (HPVs) promote cancerous lesions and are implicated in almost all cervical cancer. Of particular relevance to cancer progression is regulation of the early promoter that controls gene expression in the initial phases of infection and can eventually lead to pre-cancer progression. Our goal was to develop a stochastic model to investigate the control mechanisms that regulate gene expression from the HPV early promoter. Our model integrates modules that account for transcriptional, post-transcriptional, translational and post-translational regulation of E1 and E2 early genes to form a functioning gene regulatory network. Each module consists of a set of biochemical steps whose stochastic evolution is governed by a chemical Master Equation and can be simulated using the Gillespie algorithm. To investigate the role of noise in gene expression, we compared our stochastic simulations with solutions to ordinary differential equations for the mean behavior of the system that are valid under the conditions of large molecular abundances and quasi-equilibrium for fast reactions. The model produced results consistent with known HPV biology. Our simulation results suggest that stochasticity plays a pivotal role in determining the dynamics of HPV gene expression. In particular, the combination of positive and negative feedback regulation generates stochastic bursts of gene expression. Analysis of the model reveals that regulation at the promoter affects burst amplitude and frequency, whereas splicing is more specialized to regulate burst frequency. Our results also suggest that splicing enhancers are a significant source of stochasticity in pre-mRNA abundance and that the number of viruses infecting the host cell represents a third important source of stochasticity in gene expression.
Collapse
Affiliation(s)
- Alberto Giaretta
- Department of Information Engineering, University of Padova, Padova, Italy
| | | | - Timothy C Elston
- Department of Pharmacology, University of North Carolina, Chapel Hill, United States of America.
| |
Collapse
|
17
|
Park S, Brugiolo M, Akerman M, Das S, Urbanski L, Geier A, Kesarwani AK, Fan M, Leclair N, Lin KT, Hu L, Hua I, George J, Muthuswamy SK, Krainer AR, Anczuków O. Differential Functions of Splicing Factors in Mammary Transformation and Breast Cancer Metastasis. Cell Rep 2019; 29:2672-2688.e7. [PMID: 31775037 PMCID: PMC6936330 DOI: 10.1016/j.celrep.2019.10.110] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/09/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
Abstract
Misregulation of alternative splicing is a hallmark of human tumors, yet to what extent and how it contributes to malignancy are only beginning to be unraveled. Here, we define which members of the splicing factor SR and SR-like families contribute to breast cancer and uncover differences and redundancies in their targets and biological functions. We identify splicing factors frequently altered in human breast tumors and assay their oncogenic functions using breast organoid models. We demonstrate that not all splicing factors affect mammary tumorigenesis in MCF-10A cells. Specifically, the upregulation of SRSF4, SRSF6, or TRA2β disrupts acinar morphogenesis and promotes cell proliferation and invasion in MCF-10A cells. By characterizing the targets of these oncogenic splicing factors, we identify shared spliced isoforms associated with well-established cancer hallmarks. Finally, we demonstrate that TRA2β is regulated by the MYC oncogene, plays a role in metastasis maintenance in vivo, and its levels correlate with breast cancer patient survival.
Collapse
Affiliation(s)
- SungHee Park
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA,These authors contributed equally
| | - Mattia Brugiolo
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA,These authors contributed equally
| | - Martin Akerman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,Envisagenics Inc., New York, NY, USA,These authors contributed equally
| | - Shipra Das
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,These authors contributed equally
| | - Laura Urbanski
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA,Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | | | | | - Martin Fan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Nathan Leclair
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA,Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | - Kuan-Ting Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Leo Hu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ian Hua
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA,Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - Senthil K. Muthuswamy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Adrian R. Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,Correspondence: (O.A.), (A.R.K.)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Institute for Systems Genomics, UConn Health, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|
18
|
SRSF1 and PTBP1 Are trans-Acting Factors That Suppress the Formation of a CD33 Splicing Isoform Linked to Alzheimer's Disease Risk. Mol Cell Biol 2019; 39:MCB.00568-18. [PMID: 31208978 PMCID: PMC6712934 DOI: 10.1128/mcb.00568-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 06/08/2019] [Indexed: 12/19/2022] Open
Abstract
A single nucleotide polymorphism (SNP) in exon 2 of the CD33 gene is associated with reduced susceptibility to late-onset Alzheimer’s disease (AD) and causal for elevated mRNA lacking exon 2. In contrast to full-length CD33, transcripts lacking exon 2 result in CD33 protein unable to suppress activation responses in myeloid cells, including microglia. Currently, little is known about the regulation of CD33 exon 2 splicing. A single nucleotide polymorphism (SNP) in exon 2 of the CD33 gene is associated with reduced susceptibility to late-onset Alzheimer’s disease (AD) and causal for elevated mRNA lacking exon 2. In contrast to full-length CD33, transcripts lacking exon 2 result in CD33 protein unable to suppress activation responses in myeloid cells, including microglia. Currently, little is known about the regulation of CD33 exon 2 splicing. Using functional genomics and proteomic approaches, we found that SRSF1 and PTBP1 act as splicing enhancers to increase CD33 exon 2 inclusion in mRNA. Binding of PTBP1 to RNA sequences proximal to the intron 1-exon 2 splice junction is altered by the SNP and represents a potential mechanism behind the SNP-genotype dependent alternative splicing. Our studies also reveal that binding of SRSF1 to the CD33 RNA is not altered by the SNP genotype. Instead, a putative SRSF1 binding sequence at the 3′ end of exon 2 directs CD33 exon 2 inclusion into the mRNA, indicating that PTBP1 and SRSF1 promote full-length isoform expression through different mechanisms. Our findings shed light on molecular interactions that regulate CD33 exon 2 splicing, ultimately impacting receptor expression on the cell surface. These data aid in the understanding of CD33’s regulation of microglial signaling underpinning the AD genetic associations.
Collapse
|
19
|
View from an mRNP: The Roles of SR Proteins in Assembly, Maturation and Turnover. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:83-112. [PMID: 31811631 DOI: 10.1007/978-3-030-31434-7_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Serine- and arginine-rich proteins (SR proteins) are a family of multitasking RNA-binding proteins (RBPs) that are key determinants of messenger ribonucleoprotein (mRNP) formation, identity and fate. Apart from their essential functions in pre-mRNA splicing, SR proteins display additional pre- and post-splicing activities and connect nuclear and cytoplasmic gene expression machineries. Through changes in their post-translational modifications (PTMs) and their subcellular localization, they provide functional specificity and adjustability to mRNPs. Transcriptome-wide UV crosslinking and immunoprecipitation (CLIP-Seq) studies revealed that individual SR proteins are present in distinct mRNPs and act in specific pairs to regulate different gene expression programmes. Adopting an mRNP-centric viewpoint, we discuss the roles of SR proteins in the assembly, maturation, quality control and turnover of mRNPs and describe the mechanisms by which they integrate external signals, coordinate their multiple tasks and couple subsequent mRNA processing steps.
Collapse
|
20
|
Darnell JC, Mele A, Hung KYS, Darnell RB. Mapping of In Vivo RNA-Binding Sites by Ultraviolet (UV)-Cross-Linking Immunoprecipitation (CLIP). Cold Spring Harb Protoc 2018; 2018:2018/12/pdb.top097931. [PMID: 30510132 DOI: 10.1101/pdb.top097931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RNA "CLIP" (cross-linking immunoprecipitation), the method by which RNA-protein complexes are covalently cross-linked and purified and the RNA sequenced, has attracted attention as a powerful means of developing genome-wide maps of direct, functional RNA-protein interaction sites. These maps have been used to identify points of regulation, and they hold promise for understanding the dynamics of RNA regulation in normal cell function and its dysregulation in disease.
Collapse
|
21
|
Zhou Y, Tong L, Wang M, Chang X, Wang S, Li K, Xiao J. miR-505-3p is a repressor of the puberty onset in female mice. J Endocrinol 2018; 240:JOE-18-0533.R2. [PMID: 30557853 DOI: 10.1530/joe-18-0533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/17/2018] [Indexed: 12/31/2022]
Abstract
Puberty onset is a complex trait regulated by multiple genetic and environmental factors. In this study, we narrowed a puberty related QTL region down to a 1.7 Mb region on chromosome X in female mice and inferred miR-505-3p as the functional gene. We conducted ectopic expression of miR-505-3p in the hypothalamus of prepubertal female mice through lentivirus-mediated orthotopic injection. The impact of miR-505-3p on female puberty was evaluated by the measurement of pubertal/reproduction events and histological analysis. The results showed that female mice with overexpression of miR-505-3p in the hypothalamus manifested later puberty onset timing both in vaginal opening and ovary maturation, followed by weaker fertility lying in the longer interval time between mating and delivery, higher abortion rate and smaller litter size. We also constructed miR-505-3p knockout mice by CRISPR/Cas9 technology. MiR-505-3p knockout female mice showed earlier vaginal opening timing, higher serum gonadotrophin and higher expression of puberty-related gene in the hypothalamus than their wild type littermates. Srsf1 was proved to be the target gene of miR-505-3p that played the major role in this process. The results of RNA Immunoprecipitation-sequencing showed that SRSF1 (or SF2), the protein product of Srsf1 gene, mainly bound to ribosome protein (RP) mRNAs in GT1-7 cells. The collective evidence implied that miR-505-3p/SRSF1/RP could play a role in the sexual maturation regulation of mammals.
Collapse
Affiliation(s)
- Yuxun Zhou
- Y Zhou, The College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Li Tong
- L Tong, The College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Maochun Wang
- M Wang, The College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xueying Chang
- X Chang, The College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Sijia Wang
- S Wang, The College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Kai Li
- K Li, Department of Bioengineer, Donghua University, Songjiang, 201620, China
| | - Junhua Xiao
- J Xiao, The College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| |
Collapse
|
22
|
Chakrabarti AM, Haberman N, Praznik A, Luscombe NM, Ule J. Data Science Issues in Studying Protein–RNA Interactions with CLIP Technologies. Annu Rev Biomed Data Sci 2018; 1:235-261. [PMID: 37123514 PMCID: PMC7614488 DOI: 10.1146/annurev-biodatasci-080917-013525] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An interplay of experimental and computational methods is required to achieve a comprehensive understanding of protein–RNA interactions. UV crosslinking and immunoprecipitation (CLIP) identifies endogenous interactions by sequencing RNA fragments that copurify with a selected RNA-binding protein under stringent conditions. Here we focus on approaches for the analysis of the resulting data and appraise the methods for peak calling, visualization, analysis, and computational modeling of protein–RNA binding sites. We advocate that the sensitivity and specificity of data be assessed in combination for computational quality control. Moreover, we demonstrate the value of analyzing sequence motif enrichment in peaks assigned from CLIP data and of visualizing RNA maps, which examine the positional distribution of peaks around regulated landmarks in transcripts. We use these to assess how variations in CLIP data quality and in different peak calling methods affect the insights into regulatory mechanisms. We conclude by discussing future opportunities for the computational analysis of protein–RNA interaction experiments.
Collapse
Affiliation(s)
- Anob M. Chakrabarti
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Genetics, Environment and Evolution, UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Nejc Haberman
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London WC1E 6BT, United Kingdom
| | - Arne Praznik
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Nicholas M. Luscombe
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Genetics, Environment and Evolution, UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0412, Japan
| | - Jernej Ule
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
23
|
|
24
|
Pons M, Miguel L, Miel C, Avequin T, Juge F, Frebourg T, Campion D, Lecourtois M. Splicing factors act as genetic modulators of TDP-43 production in a new autoregulatory TDP-43 Drosophila model. Hum Mol Genet 2018; 26:3396-3408. [PMID: 28854702 DOI: 10.1093/hmg/ddx229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/09/2017] [Indexed: 01/24/2023] Open
Abstract
TDP-43 is a critical RNA-binding factor associated with RNA metabolism. In the physiological state, maintaining normal TDP-43 protein levels is critical for proper physiological functions of the cells. As such, TDP-43 expression is tightly regulated through an autoregulatory negative feedback loop. TDP-43 is a major disease-causing protein in Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD). Several studies argue for a pathogenic role of elevated TDP-43 levels in these disorders. Modulating the cycle of TDP-43 production might therefore provide a new therapeutic strategy. In this study, we developed a new transgenic Drosophila model mimicking the TDP-43 autoregulatory feedback loop in order to identify genetic modulators of TDP-43 protein steady-state levels in vivo. First, we showed that our TDP-43_TDPBR Drosophila model recapitulates key features of the TDP-43 autoregulatory processes previously described in mammalian and cellular models, namely alternative splicing events, differential usage of polyadenylation sites, nuclear retention of the transcript and a decrease in steady-state mRNA levels. Using this new Drosophila model, we identified several splicing factors, including SF2, Rbp1 and Sf3b1, as genetic modulators of TDP-43 production. Interestingly, our data indicate that these three RNA-binding proteins regulate TDP-43 protein production, at least in part, by controlling mRNA steady-state levels.
Collapse
Affiliation(s)
- Marine Pons
- Normandie University, UNIROUEN, Inserm, U1245, IRIB, Rouen, France
| | - Laetitia Miguel
- Normandie University, UNIROUEN, Inserm, U1245, IRIB, Rouen, France
| | - Camille Miel
- Normandie University, UNIROUEN, Inserm, U1245, IRIB, Rouen, France
| | - Tracey Avequin
- Normandie University, UNIROUEN, Inserm, U1245, IRIB, Rouen, France
| | | | - Thierry Frebourg
- Normandie University, UNIROUEN, Inserm, U1245, IRIB, Rouen, France.,Department of Genetics, Rouen University Hospital, 76301 Rouen, France
| | - Dominique Campion
- Normandie University, UNIROUEN, Inserm, U1245, IRIB, Rouen, France.,Centre Hospitalier du Rouvray, Sotteville-Lès-Rouen, France
| | | |
Collapse
|
25
|
Brugiolo M, Botti V, Liu N, Müller-McNicoll M, Neugebauer KM. Fractionation iCLIP detects persistent SR protein binding to conserved, retained introns in chromatin, nucleoplasm and cytoplasm. Nucleic Acids Res 2017; 45:10452-10465. [PMID: 28977534 PMCID: PMC5737842 DOI: 10.1093/nar/gkx671] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 07/20/2017] [Indexed: 01/25/2023] Open
Abstract
RNA binding proteins (RBPs) regulate the lives of all RNAs from transcription, processing, and function to decay. How RNA-protein interactions change over time and space to support these roles is poorly understood. Towards this end, we sought to determine how two SR proteins-SRSF3 and SRSF7, regulators of pre-mRNA splicing, nuclear export and translation-interact with RNA in different cellular compartments. To do so, we developed Fractionation iCLIP (Fr-iCLIP), in which chromatin, nucleoplasmic and cytoplasmic fractions are prepared from UV-crosslinked cells and then subjected to iCLIP. As expected, SRSF3 and SRSF7 targets were detected in all fractions, with intron, snoRNA and lncRNA interactions enriched in the nucleus. Cytoplasmically-bound mRNAs reflected distinct functional groupings, suggesting coordinated translation regulation. Surprisingly, hundreds of cytoplasmic intron targets were detected. These cytoplasmic introns were found to be highly conserved and introduced premature termination codons into coding regions. However, many intron-retained mRNAs were not substrates for nonsense-mediated decay (NMD), even though they were detected in polysomes. These findings suggest that intron-retained mRNAs in the cytoplasm have previously uncharacterized functions and/or escape surveillance. Hence, Fr-iCLIP detects the cellular location of RNA-protein interactions and provides insight into co-transcriptional, post-transcriptional and cytoplasmic RBP functions for coding and non-coding RNAs.
Collapse
Affiliation(s)
- Mattia Brugiolo
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St., New Haven, CT 06520, USA
| | - Valentina Botti
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St., New Haven, CT 06520, USA
| | - Na Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St., New Haven, CT 06520, USA
| | - Michaela Müller-McNicoll
- RNA Regulation Group, Cluster of Excellence 'Macromolecular Complexes', Goethe-University Frankfurt, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St., New Haven, CT 06520, USA
| |
Collapse
|
26
|
Abstract
Serine and arginine-rich (SR) proteins are RNA-binding proteins (RBPs) known as constitutive and alternative splicing regulators. As splicing is linked to transcriptional and post-transcriptional steps, SR proteins are implicated in the regulation of multiple aspects of the gene expression program. Recent global analyses of SR-RNA interaction maps have advanced our understanding of SR-regulated gene expression. Diverse SR proteins play partially overlapping but distinct roles in transcription-coupled splicing and mRNA processing in the nucleus. In addition, shuttling SR proteins act as adaptors for mRNA export and as regulators for translation in the cytoplasm. This mini-review will summarize the roles of SR proteins as RNA binders, regulators, and connectors from transcription in the nucleus to translation in the cytoplasm.
Collapse
Affiliation(s)
- Sunjoo Jeong
- Department of Bioconvergent Science and Technology, Dankook University, Yongin 16890,
Korea
| |
Collapse
|
27
|
Santo J, Lopez-Herrera C, Apolit C, Bareche Y, Lapasset L, Chavey C, Capozi S, Mahuteau-Betzer F, Najman R, Fornarelli P, Lopez-Mejía IC, Béranger G, Casas F, Amri EZ, Pau B, Scherrer D, Tazi J. Pharmacological modulation of LMNA SRSF1-dependent splicing abrogates diet-induced obesity in mice. Int J Obes (Lond) 2016; 41:390-401. [PMID: 27916986 DOI: 10.1038/ijo.2016.220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/26/2016] [Accepted: 11/01/2016] [Indexed: 12/14/2022]
Abstract
Bakground/Objectives:Intense drug discovery efforts in the metabolic field highlight the need for novel strategies for the treatment of obesity. Alternative splicing (AS) and/or polyadenylation enable the LMNA gene to express distinct protein isoforms that exert opposing effects on energy metabolism and lifespan. Here we aimed to use the splicing factor SRSF1 that contribute to the production of these different isoforms as a target to uncover new anti-obesity drug. SUBJECTS/METHODS Small molecules modulating SR protein activity and splicing were tested for their abilities to interact with SRSF1 and to modulate LMNA (AS). Using an LMNA luciferase reporter we selected molecules that were tested in diet-induced obese (DIO) mice. Transcriptomic analyses were performed in the white adipose tissues from untreated and treated DIO mice and mice fed a chow diet. RESULTS We identified a small molecule that specifically interacted with the RS domain of SRSF1. ABX300 abolished DIO in mice, leading to restoration of adipose tissue homeostasis. In contrast, ABX300 had no effect on mice fed a standard chow diet. A global transcriptomic analysis revealed similar profiles of white adipose tissue from DIO mice treated with ABX300 and from untreated mice fed a chow diet. Mice treated with ABX300 exhibited an increase in O2 consumption and a switch in fuel preference toward lipids. CONCLUSIONS Targeting SRSF1 with ABX300 compensates for changes in RNA biogenesis induced by fat accumulation and consequently represents a novel unexplored approach for the treatment of obesity.
Collapse
Affiliation(s)
- J Santo
- ABIVAX, Montpellier Cedex 5, France
| | | | - C Apolit
- ABIVAX, Montpellier Cedex 5, France
| | - Y Bareche
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, University of Montpellier, Montpellier Cedex 5, France
| | | | - C Chavey
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, University of Montpellier, Montpellier Cedex 5, France
| | - S Capozi
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, University of Montpellier, Montpellier Cedex 5, France
| | - F Mahuteau-Betzer
- Institut Curie, PSL Research University, CNRS, INSERM, Orsay, France
| | - R Najman
- ABIVAX, Montpellier Cedex 5, France.,Institut Curie, PSL Research University, CNRS, INSERM, Orsay, France
| | - P Fornarelli
- ABIVAX, Montpellier Cedex 5, France.,Institut Curie, PSL Research University, CNRS, INSERM, Orsay, France
| | - I C Lopez-Mejía
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, University of Montpellier, Montpellier Cedex 5, France
| | - G Béranger
- Institut de Biologie de Valrose, UMR CNRS 7277-UMR INSERM 1091, Université de Nice Sophia Antipolis, Faculté de Médecine, Nice Cedex 2, France
| | - F Casas
- UMR Dynamique Musculaire et Métabolisme, INRA-CAMPUS SUPAGRO 2 place Viala, Montpellier Cedex 2, France
| | - E-Z Amri
- Institut de Biologie de Valrose, UMR CNRS 7277-UMR INSERM 1091, Université de Nice Sophia Antipolis, Faculté de Médecine, Nice Cedex 2, France
| | - B Pau
- Université de Montpellier, UFR Pharmacie, Montpellier, France
| | | | - J Tazi
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, University of Montpellier, Montpellier Cedex 5, France
| |
Collapse
|
28
|
Rodor J, Pan Q, Blencowe BJ, Eyras E, Cáceres JF. The RNA-binding profile of Acinus, a peripheral component of the exon junction complex, reveals its role in splicing regulation. RNA (NEW YORK, N.Y.) 2016; 22:1411-26. [PMID: 27365209 PMCID: PMC4986896 DOI: 10.1261/rna.057158.116] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/24/2016] [Indexed: 05/21/2023]
Abstract
Acinus (apoptotic chromatin condensation inducer in the nucleus) is an RNA-binding protein (RBP) originally identified for its role in apoptosis. It was later found to be an auxiliary component of the exon junction complex (EJC), which is deposited at exon junctions as a consequence of pre-mRNA splicing. To uncover the cellular functions of Acinus and investigate its role in splicing, we mapped its endogenous RNA targets using the cross-linking immunoprecipitation protocol (iCLIP). We observed that Acinus binds to pre-mRNAs, associating specifically to a subset of suboptimal introns, but also to spliced mRNAs. We also confirmed the presence of Acinus as a peripheral factor of the EJC. RNA-seq was used to investigate changes in gene expression and alternative splicing following siRNA-mediated depletion of Acinus in HeLa cells. This analysis revealed that Acinus is preferentially required for the inclusion of specific alternative cassette exons and also controls the faithful splicing of a subset of introns. Moreover, a large number of splicing changes can be related to Acinus binding, suggesting a direct role of Acinus in exon and intron definition. In particular, Acinus regulates the splicing of DFFA/ICAD transcript, a major regulator of DNA fragmentation. Globally, the genome-wide identification of RNA targets of Acinus revealed its role in splicing regulation as well as its involvement in other cellular pathways, including cell cycle progression. Altogether, this study uncovers new cellular functions of an RBP transiently associated with the EJC.
Collapse
Affiliation(s)
- Julie Rodor
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Qun Pan
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Eduardo Eyras
- Universitat Pompeu Fabra, E08003, Barcelona, Spain Catalan Institution for Research and Advanced Studies (ICREA), E08010 Barcelona, Spain
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
29
|
Müller-McNicoll M, Botti V, de Jesus Domingues AM, Brandl H, Schwich OD, Steiner MC, Curk T, Poser I, Zarnack K, Neugebauer KM. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export. Genes Dev 2016; 30:553-66. [PMID: 26944680 PMCID: PMC4782049 DOI: 10.1101/gad.276477.115] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, Müller-McNicoll et al. investigate how export machinery assembles on mRNA and how it senses mRNA maturity before exporting mRNAs from the nucleus. They show that SR proteins act as NXF1 adaptors by connecting alternative splicing and 3′ end formation to mRNA export in vivo and propose that SR proteins and NXF1 form a ternary complex on mRNAs, particularly in last exons, and shuttle together to the cytoplasm. Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1–7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1–7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3′ untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3′ ends.
Collapse
Affiliation(s)
- Michaela Müller-McNicoll
- RNA Regulation Group, Institute of Cell Biology and Neuroscience, Goethe-University Frankfurt, 60438 Frankfurt/Main, Germany
| | - Valentina Botti
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | - Holger Brandl
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Oliver D Schwich
- RNA Regulation Group, Institute of Cell Biology and Neuroscience, Goethe-University Frankfurt, 60438 Frankfurt/Main, Germany; Buchmann Institute for Life Sciences (BMLS), 60438 Frankfurt/Main, Germany
| | - Michaela C Steiner
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Tomaz Curk
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Kathi Zarnack
- Buchmann Institute for Life Sciences (BMLS), 60438 Frankfurt/Main, Germany
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
30
|
Tang SJ, Luo S, Ho JXJ, Ly PT, Goh E, Roca X. Characterization of the Regulation of CD46 RNA Alternative Splicing. J Biol Chem 2016; 291:14311-14323. [PMID: 27226545 DOI: 10.1074/jbc.m115.710350] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Indexed: 11/06/2022] Open
Abstract
Here we present a detailed analysis of the alternative splicing regulation of human CD46, which generates different isoforms with distinct functions. CD46 is a ubiquitous membrane protein that protects host cells from complement and plays other roles in immunity, autophagy, and cell adhesion. CD46 deficiency causes an autoimmune disorder, and this protein is also involved in pathogen infection and cancer. Before this study, the mechanisms of CD46 alternative splicing remained unexplored even though dysregulation of this process has been associated with autoimmune diseases. We proved that the 5' splice sites of CD46 cassette exons 7 and 8 encoding extracellular domains are defined by noncanonical mechanisms of base pairing to U1 small nuclear RNA. Next we characterized the regulation of CD46 cassette exon 13, whose inclusion or skipping generates different cytoplasmic tails with distinct functions. Using splicing minigenes, we identified multiple exonic and intronic splicing enhancers and silencers that regulate exon 13 inclusion via trans-acting splicing factors like PTBP1 and TIAL1. Interestingly, a common splicing activator such as SRSF1 appears to repress CD46 exon 13 inclusion. We also report that expression of CD46 mRNA isoforms is further regulated by non-sense-mediated mRNA decay and transcription speed. Finally, we successfully manipulated CD46 exon 13 inclusion using antisense oligonucleotides, opening up opportunities for functional studies of the isoforms as well as for therapeutics for autoimmune diseases. This study provides insight into CD46 alternative splicing regulation with implications for its function in the immune system and for genetic disease.
Collapse
Affiliation(s)
- Sze Jing Tang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Shufang Luo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jia Xin Jessie Ho
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Phuong Thao Ly
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Eling Goh
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
31
|
Assessing Computational Steps for CLIP-Seq Data Analysis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:196082. [PMID: 26539468 PMCID: PMC4619761 DOI: 10.1155/2015/196082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/07/2015] [Indexed: 11/17/2022]
Abstract
RNA-binding protein (RBP) is a key player in regulating gene expression at the posttranscriptional level. CLIP-Seq, with the ability to provide a genome-wide map of protein-RNA interactions, has been increasingly used to decipher RBP-mediated posttranscriptional regulation. Generating highly reliable binding sites from CLIP-Seq requires not only stringent library preparation but also considerable computational efforts. Here we presented a first systematic evaluation of major computational steps for identifying RBP binding sites from CLIP-Seq data, including preprocessing, the choice of control samples, peak normalization, and motif discovery. We found that avoiding PCR amplification artifacts, normalizing to input RNA or mRNAseq, and defining the background model from control samples can reduce the bias introduced by RNA abundance and improve the quality of detected binding sites. Our findings can serve as a general guideline for CLIP experiments design and the comprehensive analysis of CLIP-Seq data.
Collapse
|
32
|
Anczuków O, Akerman M, Cléry A, Wu J, Shen C, Shirole NH, Raimer A, Sun S, Jensen MA, Hua Y, Allain FHT, Krainer AR. SRSF1-Regulated Alternative Splicing in Breast Cancer. Mol Cell 2015; 60:105-17. [PMID: 26431027 PMCID: PMC4597910 DOI: 10.1016/j.molcel.2015.09.005] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/24/2015] [Accepted: 08/28/2015] [Indexed: 12/28/2022]
Abstract
Splicing factor SRSF1 is upregulated in human breast tumors, and its overexpression promotes transformation of mammary cells. Using RNA-seq, we identified SRSF1-regulated alternative splicing (AS) targets in organotypic three-dimensional MCF-10A cell cultures that mimic a context relevant to breast cancer. We identified and validated hundreds of endogenous SRSF1-regulated AS events. De novo discovery of the SRSF1 binding motif reconciled discrepancies in previous motif analyses. Using a Bayesian model, we determined positional effects of SRSF1 binding on cassette exons: binding close to the 5' splice site generally promoted exon inclusion, whereas binding near the 3' splice site promoted either exon skipping or inclusion. Finally, we identified SRSF1-regulated AS events deregulated in human tumors; overexpressing one such isoform, exon-9-included CASC4, increased acinar size and proliferation, and decreased apoptosis, partially recapitulating SRSF1's oncogenic effects. Thus, we uncovered SRSF1 positive and negative regulatory mechanisms, and oncogenic AS events that represent potential targets for therapeutics development.
Collapse
Affiliation(s)
- Olga Anczuków
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Martin Akerman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Antoine Cléry
- Institute for Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jie Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Chen Shen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Nitin H Shirole
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Amanda Raimer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Shuying Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Mads A Jensen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yimin Hua
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Frédéric H-T Allain
- Institute for Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
33
|
Posttranscriptional Regulation of Splicing Factor SRSF1 and Its Role in Cancer Cell Biology. BIOMED RESEARCH INTERNATIONAL 2015; 2015:287048. [PMID: 26273603 PMCID: PMC4529898 DOI: 10.1155/2015/287048] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/16/2014] [Indexed: 01/23/2023]
Abstract
Over the past decade, alternative splicing has been progressively recognized as a major mechanism regulating gene expression patterns in different tissues and disease states through the generation of multiple mRNAs from the same gene transcript. This process requires the joining of selected exons or usage of different pairs of splice sites and is regulated by gene-specific combinations of RNA-binding proteins. One archetypical splicing regulator is SRSF1, for which we review the molecular mechanisms and posttranscriptional modifications involved in its life cycle. These include alternative splicing of SRSF1 itself, regulatory protein phosphorylation events, and the role of nuclear versus cytoplasmic SRSF1 localization. In addition, we resume current knowledge on deregulated SRSF1 expression in tumors and describe SRSF1-regulated alternative transcripts with functional consequences for cancer cell biology at different stages of tumor development.
Collapse
|
34
|
Badr E, Heath LS. Identifying splicing regulatory elements with de Bruijn graphs. J Comput Biol 2015; 21:880-97. [PMID: 25393830 DOI: 10.1089/cmb.2014.0183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Splicing regulatory elements (SREs) are short, degenerate sequences on pre-mRNA molecules that enhance or inhibit the splicing process via the binding of splicing factors, proteins that regulate the functioning of the spliceosome. Existing methods for identifying SREs in a genome are either experimental or computational. Here, we propose a formalism based on de Bruijn graphs that combines genomic structure, word count enrichment analysis, and experimental evidence to identify SREs found in exons. In our approach, SREs are not restricted to a fixed length (i.e., k-mers, for a fixed k). As a result, we identify 2001 putative exonic enhancers and 3080 putative exonic silencers for human genes, with lengths varying from 6 to 15 nucleotides. Many of the predicted SREs overlap with experimentally verified binding sites. Our model provides a novel method to predict variable length putative regulatory elements computationally for further experimental investigation.
Collapse
Affiliation(s)
- Eman Badr
- Department of Computer Science, Virginia Tech , Blacksburg, Virginia
| | | |
Collapse
|
35
|
Akerman M, Fregoso OI, Das S, Ruse C, Jensen MA, Pappin DJ, Zhang MQ, Krainer AR. Differential connectivity of splicing activators and repressors to the human spliceosome. Genome Biol 2015; 16:119. [PMID: 26047612 PMCID: PMC4502471 DOI: 10.1186/s13059-015-0682-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 05/22/2015] [Indexed: 12/29/2022] Open
Abstract
Background During spliceosome assembly, protein-protein interactions (PPI) are sequentially formed and disrupted to accommodate the spatial requirements of pre-mRNA substrate recognition and catalysis. Splicing activators and repressors, such as SR proteins and hnRNPs, modulate spliceosome assembly and regulate alternative splicing. However, it remains unclear how they differentially interact with the core spliceosome to perform their functions. Results Here, we investigate the protein connectivity of SR and hnRNP proteins to the core spliceosome using probabilistic network reconstruction based on the integration of interactome and gene expression data. We validate our model by immunoprecipitation and mass spectrometry of the prototypical splicing factors SRSF1 and hnRNPA1. Network analysis reveals that a factor’s properties as an activator or repressor can be predicted from its overall connectivity to the rest of the spliceosome. In addition, we discover and experimentally validate PPIs between the oncoprotein SRSF1 and members of the anti-tumor drug target SF3 complex. Our findings suggest that activators promote the formation of PPIs between spliceosomal sub-complexes, whereas repressors mostly operate through protein-RNA interactions. Conclusions This study demonstrates that combining in-silico modeling with biochemistry can significantly advance the understanding of structure and function relationships in the human spliceosome. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0682-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Akerman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Present address: Envisagenics, Inc, 315 Main St., 2nd floor, Huntington, NY, 11743, USA
| | - Oliver I Fregoso
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Watson School of Biological Sciences, Cold Spring Harbor, NY, 11724, USA.,Present address: Fred Hutchinson Cancer Research Center, Division of Human Biology, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Shipra Das
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Cristian Ruse
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Present address: New England Biolabs, 240 County Road, Ipswich, MA, 01938, UK
| | - Mads A Jensen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Present address: Santaris Pharma A/S, Horsholm, Denmark
| | | | - Michael Q Zhang
- Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, 75080, USA.,Bioinformatics Division, TNLIST, Tsinghua University, Beijing, 100084, China
| | | |
Collapse
|
36
|
Kavunja HW, Voss PG, Wang JL, Huang X. Identification of Lectins from Metastatic Cancer Cells through Magnetic Glyconanoparticles. Isr J Chem 2015; 55:423-436. [PMID: 27110035 PMCID: PMC4838199 DOI: 10.1002/ijch.201400156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cancer cells can have characteristic carbohydrate binding properties. Previously, it was shown that a highly metastatic melanoma cell line B16F10 bound to galacto-side-functionalized nanoparticles much stronger than the corresponding less metastatic B16F1 cells. To better understand the carbohydrate binding properties of cancer cells, herein, we report the isolation and characterization of endogenous galactose binding proteins from B16F10 cells using magnetic glyconanoparticles. The galactose-coated magnetic glyconanoparticles could bind with lectins present in the cells and be isolated through magnet-mediated separation. Through Western blot and mass spectrometry, the arginine/serine rich splicing factor Sfrs1 was identified as a galactose-selective endogenous lectin, overexpressed in B16F10 cells, compared with B16F1 cells. In addition, galactin-3 was found in higher amounts in B16F10 cells. Finally, the glyconanoparticles exhibited a superior efficiency in lectin isolation, from both protein mixtures and live cells, than the corresponding more traditional microparticles functionalized with carbohydrates. Thus, the magnetic glyconanoparticles present a useful tool for discovery of endogenous lectins, as well as binding partners of lectins, without prior knowledge of protein identities.
Collapse
Affiliation(s)
- Herbert W. Kavunja
- Department of Chemistry, Chemistry Building, Room 426, 578 S. Shaw Lane, Michigan State University, East Lansing, MI 48824 (USA)
| | - Patricia G. Voss
- Department of Biochemistry and Molecular Biology, Biochemistry Building, Room 402, 603 Wilson Road, Michigan State University, East Lansing, MI 48824 (USA)
| | - John L. Wang
- Department of Biochemistry and Molecular Biology, Biochemistry Building, Room 402, 603 Wilson Road, Michigan State University, East Lansing, MI 48824 (USA)
| | - Xuefei Huang
- Department of Chemistry, Chemistry Building, Room 426, 578 S. Shaw Lane, Michigan State University, East Lansing, MI 48824 (USA)
| |
Collapse
|
37
|
Shilo A, Siegfried Z, Karni R. The role of splicing factors in deregulation of alternative splicing during oncogenesis and tumor progression. Mol Cell Oncol 2015; 2:e970955. [PMID: 27308389 PMCID: PMC4905244 DOI: 10.4161/23723548.2014.970955] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 04/18/2023]
Abstract
In past decades, cancer research has focused on genetic alterations that are detected in malignant tissues and contribute to the initiation and progression of cancer. These changes include mutations, copy number variations, and translocations. However, it is becoming increasingly clear that epigenetic changes, including alternative splicing, play a major role in cancer development and progression. There are relatively few studies on the contribution of alternative splicing and the splicing factors that regulate this process to cancer development and progression. Recently, multiple studies have revealed altered splicing patterns in cancers and several splicing factors were found to contribute to tumor development. Studies using high-throughput genomic analysis have identified mutations in components of the core splicing machinery and in splicing factors in several cancers. In this review, we will highlight new findings on the role of alternative splicing and its regulators in cancer initiation and progression, in addition to novel approaches to correct oncogenic splicing.
Collapse
Affiliation(s)
- Asaf Shilo
- Department of Biochemistry and Molecular Biology; Institute for Medical Research Israel-Canada; Hebrew University-Hadassah Medical School; Ein Karem, Jerusalem, Israel
| | - Zahava Siegfried
- Department of Biochemistry and Molecular Biology; Institute for Medical Research Israel-Canada; Hebrew University-Hadassah Medical School; Ein Karem, Jerusalem, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology; Institute for Medical Research Israel-Canada; Hebrew University-Hadassah Medical School; Ein Karem, Jerusalem, Israel
- Correspondence to: Rotem Karni;
| |
Collapse
|
38
|
Bradley T, Cook ME, Blanchette M. SR proteins control a complex network of RNA-processing events. RNA (NEW YORK, N.Y.) 2015; 21:75-92. [PMID: 25414008 PMCID: PMC4274639 DOI: 10.1261/rna.043893.113] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 10/15/2014] [Indexed: 05/23/2023]
Abstract
SR proteins are a well-conserved class of RNA-binding proteins that are essential for regulation of splice-site selection, and have also been implicated as key regulators during other stages of RNA metabolism. For many SR proteins, the complexity of the RNA targets and specificity of RNA-binding location are poorly understood. It is also unclear if general rules governing SR protein alternative pre-mRNA splicing (AS) regulation uncovered for individual SR proteins on few model genes, apply to the activity of all SR proteins on endogenous targets. Using RNA-seq, we characterize the global AS regulation of the eight Drosophila SR protein family members. We find that a majority of AS events are regulated by multiple SR proteins, and that all SR proteins can promote exon inclusion, but also exon skipping. Most coregulated targets exhibit cooperative regulation, but some AS events are antagonistically regulated. Additionally, we found that SR protein levels can affect alternative promoter choices and polyadenylation site selection, as well as overall transcript levels. Cross-linking and immunoprecipitation coupled with high-throughput sequencing (iCLIP-seq), reveals that SR proteins bind a distinct and functionally diverse class of RNAs, which includes several classes of noncoding RNAs, uncovering possible novel functions of the SR protein family. Finally, we find that SR proteins exhibit positional RNA binding around regulated AS events. Therefore, regulation of AS by the SR proteins is the result of combinatorial regulation by multiple SR protein family members on most endogenous targets, and SR proteins have a broader role in integrating multiple layers of gene expression regulation.
Collapse
Affiliation(s)
- Todd Bradley
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Malcolm E Cook
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Marco Blanchette
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
39
|
Ciuzan O, Hancock J, Pamfil D, Wilson I, Ladomery M. The evolutionarily conserved multifunctional glycine-rich RNA-binding proteins play key roles in development and stress adaptation. PHYSIOLOGIA PLANTARUM 2015; 153:1-11. [PMID: 25243592 DOI: 10.1111/ppl.12286] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/11/2014] [Accepted: 08/20/2014] [Indexed: 05/24/2023]
Abstract
The class IV glycine-rich RNA-binding proteins are a distinct subgroup within the heterogenous superfamily of glycine-rich proteins (GRPs). They are distinguished by the presence of an RNA-binding domain in the N-terminus; generally in the form of an RNA-recognition motif (RRM) or a cold-shock domain (CSD). These are followed by a C-terminal glycine-rich domain. Growing evidence suggests that these proteins play key roles in the adaptation of organisms to biotic and abiotic stresses including those resulting from pathogenesis, alterations in the osmotic, saline and oxidative environment and changes in temperature. Similar vertebrate proteins are also cold-induced and involved in, e.g. hibernation, suggesting evolutionarily conserved functions. The class IV RNA-binding GRPs are likely to operate as key molecular components of hormonally regulated development and to work by regulating gene expression at multiple levels by modifying alternative splicing, mRNA export, mRNA translation and mRNA degradation.
Collapse
Affiliation(s)
- Oana Ciuzan
- University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, 400372, Romania; Molecular Cell Physiology, Faculty of Biology, Bielefeld University, Bielefeld, D-33615, Germany
| | | | | | | | | |
Collapse
|
40
|
Zhao X, Yang Y, Sun BF, Shi Y, Yang X, Xiao W, Hao YJ, Ping XL, Chen YS, Wang WJ, Jin KX, Wang X, Huang CM, Fu Y, Ge XM, Song SH, Jeong HS, Yanagisawa H, Niu Y, Jia GF, Wu W, Tong WM, Okamoto A, He C, Rendtlew Danielsen JM, Wang XJ, Yang YG. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res 2014; 24:1403-19. [PMID: 25412662 PMCID: PMC4260349 DOI: 10.1038/cr.2014.151] [Citation(s) in RCA: 906] [Impact Index Per Article: 82.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 12/25/2022] Open
Abstract
The role of Fat Mass and Obesity-associated protein (FTO) and its substrate N6-methyladenosine (m6A) in mRNA processing and adipogenesis remains largely unknown. We show that FTO expression and m6A levels are inversely correlated during adipogenesis. FTO depletion blocks differentiation and only catalytically active FTO restores adipogenesis. Transcriptome analyses in combination with m6A-seq revealed that gene expression and mRNA splicing of grouped genes are regulated by FTO. M6A is enriched in exonic regions flanking 5′- and 3′-splice sites, spatially overlapping with mRNA splicing regulatory serine/arginine-rich (SR) protein exonic splicing enhancer binding regions. Enhanced levels of m6A in response to FTO depletion promotes the RNA binding ability of SRSF2 protein, leading to increased inclusion of target exons. FTO controls exonic splicing of adipogenic regulatory factor RUNX1T1 by regulating m6A levels around splice sites and thereby modulates differentiation. These findings provide compelling evidence that FTO-dependent m6A demethylation functions as a novel regulatory mechanism of RNA processing and plays a critical role in the regulation of adipogenesis.
Collapse
Affiliation(s)
- Xu Zhao
- 1] Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China [2] University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ying Yang
- 1] Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China [2] University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Bao-Fa Sun
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Yue Shi
- 1] Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China [2] University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xin Yang
- 1] Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China [2] University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Wen Xiao
- 1] Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China [2] University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ya-Juan Hao
- 1] Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China [2] University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiao-Li Ping
- 1] Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China [2] University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yu-Sheng Chen
- 1] Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China [2] University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Wen-Jia Wang
- 1] Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China [2] University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Kang-Xuan Jin
- 1] Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China [2] University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xing Wang
- 1] Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China [2] University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Chun-Min Huang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Yu Fu
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Qinghuayuan 1, Beijing 100084, China
| | - Xiao-Meng Ge
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Shu-Hui Song
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Hyun Seok Jeong
- Research Center for Advanced Science and Technology, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroyuki Yanagisawa
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yamei Niu
- Department of Pathology, Center for Experimental Animal Research, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Gui-Fang Jia
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Wu
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Qinghuayuan 1, Beijing 100084, China
| | - Wei-Min Tong
- Department of Pathology, Center for Experimental Animal Research, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Akimitsu Okamoto
- 1] Research Center for Advanced Science and Technology, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan [2] RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Chuan He
- 1] Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China [2] Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Jannie M Rendtlew Danielsen
- 1] Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China [2] The Novo Nordisk Foundation Center for Protein Research, Ubiquitin Signalling Group, Faculty of Health Sciences, Blegdamsvej 3b, 2200 Copenhagen, Denmark
| | - Xiu-Jie Wang
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun-Gui Yang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
41
|
Howard JM, Sanford JR. The RNAissance family: SR proteins as multifaceted regulators of gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:93-110. [PMID: 25155147 DOI: 10.1002/wrna.1260] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 12/29/2022]
Abstract
Serine and arginine-rich (SR) proteins play multiple roles in the eukaryotic gene expression pathway. Initially described as constitutive and alternative splicing factors, now it is clear that SR proteins are key determinants of exon identity and function as molecular adaptors, linking the pre-messenger RNA (pre-mRNA) to the splicing machinery. In addition, now SR proteins are implicated in many aspects of mRNA and noncoding RNA (ncRNA) processing well beyond splicing. These unexpected roles, including RNA transcription, export, translation, and decay, may prove to be the rule rather than the exception. To simply define, this family of RNA-binding proteins as splicing factors belies the broader roles of SR proteins in post-transcriptional gene expression.
Collapse
Affiliation(s)
- Jonathan M Howard
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | | |
Collapse
|
42
|
Regulation of gene expression programmes by serine–arginine rich splicing factors. Semin Cell Dev Biol 2014; 32:11-21. [DOI: 10.1016/j.semcdb.2014.03.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/11/2014] [Indexed: 12/21/2022]
|
43
|
Gupta SK, Chikne V, Eliaz D, Tkacz ID, Naboishchikov I, Carmi S, Waldman Ben-Asher H, Michaeli S. Two splicing factors carrying serine-arginine motifs, TSR1 and TSR1IP, regulate splicing, mRNA stability, and rRNA processing in Trypanosoma brucei. RNA Biol 2014; 11:715-31. [PMID: 24922194 DOI: 10.4161/rna.29143] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In trypanosomes, mRNAs are processed by trans-splicing; in this process, a common exon, the spliced leader, is added to all mRNAs from a small RNA donor, the spliced leader RNA (SL RNA). However, little is known regarding how this process is regulated. In this study we investigated the function of two serine-arginine-rich proteins, TSR1 and TSR1IP, implicated in trans-splicing in Trypanosoma brucei. Depletion of these factors by RNAi suggested their role in both cis- and trans-splicing. Microarray was used to examine the transcriptome of the silenced cells. The level of hundreds of mRNAs was changed, suggesting that these proteins have a role in regulating only a subset of T. brucei mRNAs. Mass-spectrometry analyses of complexes associated with these proteins suggest that these factors function in mRNA stability, translation, and rRNA processing. We further demonstrate changes in the stability of mRNA as a result of depletion of the two TSR proteins. In addition, rRNA defects were observed under the depletion of U2AF35, TSR1, and TSR1IP, but not SF1, suggesting involvement of SR proteins in rRNA processing.
Collapse
Affiliation(s)
- Sachin Kumar Gupta
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| | - Vaibhav Chikne
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| | - Dror Eliaz
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| | - Itai Dov Tkacz
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| | - Ilana Naboishchikov
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| | - Shai Carmi
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| | - Hiba Waldman Ben-Asher
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| |
Collapse
|
44
|
Maslon MM, Heras SR, Bellora N, Eyras E, Cáceres JF. The translational landscape of the splicing factor SRSF1 and its role in mitosis. eLife 2014; 3:e02028. [PMID: 24842991 PMCID: PMC4027812 DOI: 10.7554/elife.02028] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/21/2014] [Indexed: 12/19/2022] Open
Abstract
The shuttling Serine/Arginine rich (SR) protein SRSF1 (previously known as SF2/ASF) is a splicing regulator that also activates translation in the cytoplasm. In order to dissect the gene network that is translationally regulated by SRSF1, we performed a high-throughput deep sequencing analysis of polysomal fractions in cells overexpressing SRSF1. We identified approximately 1,500 mRNAs that are translational targets of SRSF1. These include mRNAs encoding proteins involved in cell cycle regulation, such as spindle, kinetochore and M phase proteins, which are essential for accurate chromosome segregation. Indeed, we show that translational activity of SRSF1 is required for normal mitotic progression. Furthermore, we found that mRNAs that display alternative splicing changes upon SRSF1 overexpression are also its translational targets; strongly suggesting that SRSF1 couples pre-mRNA splicing and translation. These data provide insights on the complex role of SRSF1 in the control of gene expression at multiple levels and its implications in cancer.
Collapse
Affiliation(s)
- Magdalena M Maslon
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Sara R Heras
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - Nicolas Bellora
- Computational Genomics Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Eduardo Eyras
- Computational Genomics Group, Universitat Pompeu Fabra, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
45
|
Li X, Song J, Yi C. Genome-wide mapping of cellular protein-RNA interactions enabled by chemical crosslinking. GENOMICS PROTEOMICS & BIOINFORMATICS 2014; 12:72-8. [PMID: 24747191 PMCID: PMC4411377 DOI: 10.1016/j.gpb.2014.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 11/24/2022]
Abstract
RNA-protein interactions influence many biological processes. Identifying the binding sites of RNA-binding proteins (RBPs) remains one of the most fundamental and important challenges to the studies of such interactions. Capturing RNA and RBPs via chemical crosslinking allows stringent purification procedures that significantly remove the non-specific RNA and protein interactions. Two major types of chemical crosslinking strategies have been developed to date, i.e., UV-enabled crosslinking and enzymatic mechanism-based covalent capture. In this review, we compare such strategies and their current applications, with an emphasis on the technologies themselves rather than the biology that has been revealed. We hope such methods could benefit broader audience and also urge for the development of new methods to study RNA-RBP interactions.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jinghui Song
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Synthetic and Functional Biomolecules Center, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.
| |
Collapse
|
46
|
Rossbach O, Hung LH, Khrameeva E, Schreiner S, König J, Curk T, Zupan B, Ule J, Gelfand MS, Bindereif A. Crosslinking-immunoprecipitation (iCLIP) analysis reveals global regulatory roles of hnRNP L. RNA Biol 2014; 11:146-55. [PMID: 24526010 DOI: 10.4161/rna.27991] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein L (hnRNP L) is a multifunctional RNA-binding protein that is involved in many different processes, such as regulation of transcription, translation, and RNA stability. We have previously characterized hnRNP L as a global regulator of alternative splicing, binding to CA-repeat, and CA-rich RNA elements. Interestingly, hnRNP L can both activate and repress splicing of alternative exons, but the precise mechanism of hnRNP L-mediated splicing regulation remained unclear. To analyze activities of hnRNP L on a genome-wide level, we performed individual-nucleotide resolution crosslinking-immunoprecipitation in combination with deep-sequencing (iCLIP-Seq). Sequence analysis of the iCLIP crosslink sites showed significant enrichment of C/A motifs, which perfectly agrees with the in vitro binding consensus obtained earlier by a SELEX approach, indicating that in vivo hnRNP L binding targets are mainly determined by the RNA-binding activity of the protein. Genome-wide mapping of hnRNP L binding revealed that the protein preferably binds to introns and 3' UTR. Additionally, position-dependent splicing regulation by hnRNP L was demonstrated: The protein represses splicing when bound to intronic regions upstream of alternative exons, and in contrast, activates splicing when bound to the downstream intron. These findings shed light on the longstanding question of differential hnRNP L-mediated splicing regulation. Finally, regarding 3' UTR binding, hnRNP L binding preferentially overlaps with predicted microRNA target sites, indicating global competition between hnRNP L and microRNA binding. Translational regulation by hnRNP L was validated for a subset of predicted target 3'UTRs.
Collapse
Affiliation(s)
- Oliver Rossbach
- Institute of Biochemistry; University of Giessen; Giessen, Germany
| | - Lee-Hsueh Hung
- Institute of Biochemistry; University of Giessen; Giessen, Germany
| | - Ekaterina Khrameeva
- Kharkevich Institute for Information Transmission Problems; Russian Academy of Sciences; Moscow, Russia; Department of Bioengineering and Bioinformatics; Lomonosov Moscow State University; Moscow, Russia
| | - Silke Schreiner
- Institute of Biochemistry; University of Giessen; Giessen, Germany
| | - Julian König
- Institute of Molecular Biology (IMB); Mainz, Germany; Institute of Neurology; University College London; London, United Kingdom
| | - Tomaž Curk
- Faculty of Computer and Information Science; University of Ljubljana; Ljubljana, Slovenia
| | - Blaž Zupan
- Faculty of Computer and Information Science; University of Ljubljana; Ljubljana, Slovenia
| | - Jernej Ule
- Institute of Neurology; University College London; London, United Kingdom
| | - Mikhail S Gelfand
- Kharkevich Institute for Information Transmission Problems; Russian Academy of Sciences; Moscow, Russia; Department of Bioengineering and Bioinformatics; Lomonosov Moscow State University; Moscow, Russia
| | | |
Collapse
|
47
|
Jensen MA, Wilkinson JE, Krainer AR. Splicing factor SRSF6 promotes hyperplasia of sensitized skin. Nat Struct Mol Biol 2014; 21:189-97. [PMID: 24440982 PMCID: PMC4118672 DOI: 10.1038/nsmb.2756] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/11/2013] [Indexed: 12/22/2022]
Abstract
Many biological processes involve gene-expression regulation by alternative splicing. Here, we identify the splicing factor SRSF6 as a regulator of wound healing and tissue homeostasis in skin. We show that SRSF6 is a proto-oncogene that is frequently overexpressed in human skin cancer. Overexpressing it in transgenic mice induces hyperplasia of sensitized skin and promotes aberrant alternative splicing. We identify 139 target genes of SRSF6 in skin, and show that this SR protein binds to alternative exons of the extracellular-matrix protein tenascin C pre-mRNA, promoting the expression of isoforms characteristic of invasive and metastatic cancer in a cell-type-independent manner. SRSF6 overexpression additionally results in depletion of Lgr6+ stem cells, and excessive keratinocyte proliferation and response to injury. Furthermore, the effects of SRSF6 in wound healing assayed in vitro depend on the TNC isoforms. Thus, abnormal SR-protein expression can perturb tissue homeostasis.
Collapse
Affiliation(s)
- Mads A Jensen
- 1] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA. [2]
| | - John E Wilkinson
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| |
Collapse
|
48
|
de Miguel FJ, Sharma RD, Pajares MJ, Montuenga LM, Rubio A, Pio R. Identification of alternative splicing events regulated by the oncogenic factor SRSF1 in lung cancer. Cancer Res 2013; 74:1105-15. [PMID: 24371231 DOI: 10.1158/0008-5472.can-13-1481] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abnormal alternative splicing has been associated with cancer. Genome-wide microarrays can be used to detect differential splicing events. In this study, we have developed ExonPointer, an algorithm that uses data from exon and junction probes to identify annotated cassette exons. We used the algorithm to profile differential splicing events in lung adenocarcinoma A549 cells after downregulation of the oncogenic serine/arginine-rich splicing factor 1 (SRSF1). Data were generated using two different microarray platforms. The PCR-based validation rate of the top 20 ranked genes was 60% and 100%. Functional enrichment analyses found a substantial number of splicing events in genes related to RNA metabolism. These analyses also identified genes associated with cancer and developmental and hereditary disorders, as well as biologic processes such as cell division, apoptosis, and proliferation. Most of the top 20 ranked genes were validated in other adenocarcinoma and squamous cell lung cancer cells, with validation rates of 80% to 95% and 70% to 75%, respectively. Moreover, the analysis allowed us to identify four genes, ATP11C, IQCB1, TUBD1, and proline-rich coiled-coil 2C (PRRC2C), with a significantly different pattern of alternative splicing in primary non-small cell lung tumors compared with normal lung tissue. In the case of PRRC2C, SRSF1 downregulation led to the skipping of an exon overexpressed in primary lung tumors. Specific siRNA downregulation of the exon-containing variant significantly reduced cell growth. In conclusion, using a novel analytical tool, we have identified new splicing events regulated by the oncogenic splicing factor SRSF1 in lung cancer.
Collapse
Affiliation(s)
- Fernando J de Miguel
- Authors' Affiliations: Division of Oncology, Center for Applied Medical Research (CIMA); Departments of Histology and Pathology and Biochemistry and Genetics, Schools of Science and Medicine, University of Navarra, Pamplona; and CEIT and TECNUN, University of Navarra, San Sebastian, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Cléry A, Sinha R, Anczuków O, Corrionero A, Moursy A, Daubner GM, Valcárcel J, Krainer AR, Allain FHT. Isolated pseudo-RNA-recognition motifs of SR proteins can regulate splicing using a noncanonical mode of RNA recognition. Proc Natl Acad Sci U S A 2013; 110:E2802-11. [PMID: 23836656 PMCID: PMC3725064 DOI: 10.1073/pnas.1303445110] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Serine/arginine (SR) proteins, one of the major families of alternative-splicing regulators in Eukarya, have two types of RNA-recognition motifs (RRMs): a canonical RRM and a pseudo-RRM. Although pseudo-RRMs are crucial for activity of SR proteins, their mode of action was unknown. By solving the structure of the human SRSF1 pseudo-RRM bound to RNA, we discovered a very unusual and sequence-specific RNA-binding mode that is centered on one α-helix and does not involve the β-sheet surface, which typically mediates RNA binding by RRMs. Remarkably, this mode of binding is conserved in all pseudo-RRMs tested. Furthermore, the isolated pseudo-RRM is sufficient to regulate splicing of about half of the SRSF1 target genes tested, and the bound α-helix is a pivotal element for this function. Our results strongly suggest that SR proteins with a pseudo-RRM frequently regulate splicing by competing with, rather than recruiting, spliceosome components, using solely this unusual RRM.
Collapse
Affiliation(s)
- Antoine Cléry
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Rahul Sinha
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Olga Anczuków
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Anna Corrionero
- Institució Catalana de Recerca i Estudis Avançats, Universitat Pompeu Fabra 08003 Barcelona, Spain; and
- Centre de Regulació Genòmica, 08003 Barcelona, Spain
| | - Ahmed Moursy
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Gerrit M. Daubner
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Juan Valcárcel
- Institució Catalana de Recerca i Estudis Avançats, Universitat Pompeu Fabra 08003 Barcelona, Spain; and
- Centre de Regulació Genòmica, 08003 Barcelona, Spain
| | | | - Frédéric H.-T. Allain
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| |
Collapse
|
50
|
Chettouh H, Fartoux L, Aoudjehane L, Wendum D, Clapéron A, Chrétien Y, Rey C, Scatton O, Soubrane O, Conti F, Praz F, Housset C, Rosmorduc O, Desbois-Mouthon C. Mitogenic insulin receptor-A is overexpressed in human hepatocellular carcinoma due to EGFR-mediated dysregulation of RNA splicing factors. Cancer Res 2013; 73:3974-86. [PMID: 23633480 DOI: 10.1158/0008-5472.can-12-3824] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insulin receptor (IR) exists as two isoforms resulting from the alternative splicing of IR pre-mRNA. IR-B promotes the metabolic effects of insulin, whereas IR-A rather signals proliferative effects. IR-B is predominantly expressed in the adult liver. Here, we show that the alternative splicing of IR pre-mRNA is dysregulated in a panel of 85 human hepatocellular carcinoma (HCC) while being normal in adjacent nontumor liver tissue. An IR-B to IR-A switch is frequently observed in HCC tumors regardless of tumor etiology. Using pharmacologic and siRNA approaches, we show that the autocrine or paracrine activation of the EGF receptor (EGFR)/mitogen-activated protein/extracellular signal-regulated kinase pathway increases the IR-A:IR-B ratio in HCC cell lines, but not in normal hepatocytes, by upregulating the expression of the splicing factors CUGBP1, hnRNPH, hnRNPA1, hnRNPA2B1, and SF2/ASF. In HCC tumors, there is a significant correlation between the expression of IR-A and that of splicing factors. Dysregulation of IR pre-mRNA splicing was confirmed in a chemically induced model of HCC in rat but not in regenerating livers after partial hepatectomy. This study identifies a mechanism responsible for the generation of mitogenic IR-A and provides a novel interplay between IR and EGFR pathways in HCC. Increased expression of IR-A during neoplastic transformation of hepatocytes could mediate some of the adverse effects of hyperinsulinemia on HCC.
Collapse
Affiliation(s)
- Hamza Chettouh
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine; UPMC Univ Paris 06, UMR_S 938, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|