1
|
Huang S, Liu X, Li Z, Si Y, Yang L, Deng J, Luo Y, Xue YX, Lu L. Memory Reconsolidation Updating in Substance Addiction: Applications, Mechanisms, and Future Prospects for Clinical Therapeutics. Neurosci Bull 2025; 41:289-304. [PMID: 39264570 PMCID: PMC11794923 DOI: 10.1007/s12264-024-01294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/09/2024] [Indexed: 09/13/2024] Open
Abstract
Persistent and maladaptive drug-related memories represent a key component in drug addiction. Converging evidence from both preclinical and clinical studies has demonstrated the potential efficacy of the memory reconsolidation updating procedure (MRUP), a non-pharmacological strategy intertwining two distinct memory processes: reconsolidation and extinction-alternatively termed "the memory retrieval-extinction procedure". This procedure presents a promising approach to attenuate, if not erase, entrenched drug memories and prevent relapse. The present review delineates the applications, molecular underpinnings, and operational boundaries of MRUP in the context of various forms of substance dependence. Furthermore, we critically examine the methodological limitations of MRUP, postulating potential refinement to optimize its therapeutic efficacy. In addition, we also look at the potential integration of MRUP and neurostimulation treatments in the domain of substance addiction. Overall, existing studies underscore the significant potential of MRUP, suggesting that interventions predicated on it could herald a promising avenue to enhance clinical outcomes in substance addiction therapy.
Collapse
Affiliation(s)
- Shihao Huang
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, China
| | - Zhonghao Li
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Yue Si
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Liping Yang
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Jiahui Deng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, China
| | - Yixiao Luo
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Yan-Xue Xue
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Lin Lu
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Vargas-Vargas IL, Pérez-Hernández E, González D, Rosetti MF, Contreras-Galindo J, Roldán-Roldán G. Evidence of long-term allocentric spatial memory in the Terrestrial Hermit Crab Coenobita compressus. PLoS One 2023; 18:e0293358. [PMID: 37883496 PMCID: PMC10602228 DOI: 10.1371/journal.pone.0293358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Spatial learning is a complex cognitive skill and ecologically important trait scarcely studied in crustaceans. We investigated the ability of the Pacific (Ecuadorian) hermit crab Coenobita compressus, to learn an allocentric spatial task using a palatable novel food as reward. Crabs were trained to locate the reward in a single session of eleven consecutive trials and tested subsequently, for short- (5 min) and long-term memory 1, 3 and 7 days later. Our results indicate that crabs were able to learn the location of the reward as they showed a reduction in the time required to find the food whenever it was present, suggesting a visuo-spatial and olfactory cue-guided task resolution. Moreover, crabs also remember the location of the reward up to 7 days after training using spatial cues only (without the food), as evidenced by the longer investigation time they spent in the learned food location than in any other part of the experimental arena, suggesting a visuo-spatial memory formation. This study represents the first description of allocentric spatial long-term memory in a terrestrial hermit crab.
Collapse
Affiliation(s)
- Ilse Lorena Vargas-Vargas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Estefany Pérez-Hernández
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniel González
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcos Francisco Rosetti
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Instituto National de Psiquiatría, Ramón de la Fuente Muñiz, Mexico City, Mexico
| | | | - Gabriel Roldán-Roldán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Romano A, Freudenthal R, Feld M. Molecular insights from the crab Neohelice memory model. Front Mol Neurosci 2023; 16:1214061. [PMID: 37415833 PMCID: PMC10321408 DOI: 10.3389/fnmol.2023.1214061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Memory acquisition, formation and maintenance depend on synaptic post-translational machinery and regulation of gene expression triggered by several transduction pathways. In turns, these processes lead to stabilization of synaptic modifications in neurons in the activated circuits. In order to study the molecular mechanisms involved in acquisition and memory, we have taken advantage of the context-signal associative learning and, more recently, the place preference task, of the crab Neohelice granulata. In this model organism, we studied several molecular processes, including activation of extracellular signal-regulated kinase (ERK) and the nuclear factor kappa light chain enhancer of activated B cells (NF-κB) transcription factor, involvement of synaptic proteins such as NMDA receptors and neuroepigenetic regulation of gene expression. All these studies allowed description of key plasticity mechanisms involved in memory, including consolidation, reconsolidation and extinction. This article is aimed at review the most salient findings obtained over decades of research in this memory model.
Collapse
Affiliation(s)
- Arturo Romano
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular “Dr. Hector Maldonado” (FBMC), Buenos Aires, Argentina
- Biología Molecular y Neurociencias (IFIBYNE), Instituto de Fisiología, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Ramiro Freudenthal
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular “Dr. Hector Maldonado” (FBMC), Buenos Aires, Argentina
- Biotecnología y Biología Traslacional (IB3), Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Feld
- Biología Molecular y Neurociencias (IFIBYNE), Instituto de Fisiología, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
4
|
Alghamdi BS, Alshehri FS. Melatonin Blocks Morphine-Induced Place Preference: Involvement of GLT-1, NF-κB, BDNF, and CREB in the Nucleus Accumbens. Front Behav Neurosci 2021; 15:762297. [PMID: 34720901 PMCID: PMC8551802 DOI: 10.3389/fnbeh.2021.762297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022] Open
Abstract
Opioid addiction remains a widespread issue despite continuous attempts by the FDA to help maintain abstinence. Melatonin is a neurohormone considered to be involved only in the neuroendocrine and reproductive systems; however, recent reports have demonstrated its potential to attenuate drug addiction and dependence. Cumulative studies have suggested that melatonin can attenuate the rewarding effects of several drugs of abuse, including opioids. This study aimed to investigate the effect of melatonin (50 mg/kg) on morphine (5 mg/kg) to produce place preference. We also investigated the effect of melatonin and morphine on the expression of GLT-1, BDNF, NF-κB, and CREB within the nucleus accumbens. Male Wistar rats were divided into control, morphine, melatonin, and the morphine + melatonin groups. The study involved a two-phase habituation phase from day 1 to day 3 and an acquisition phase from day 5 to day 14. The conditioned place preference (CPP) score, distance traveled, resting time, ambulatory count, and total activity count were measured for all animals. Rats that received morphine showed a significant increase in CPP score compared to those in the control group. Morphine treatment reduced the mRNA expression of GLT-1, BDNF, and CREB and increased that of NF-κB. However, melatonin treatment administered 30 min before morphine treatment attenuated morphine place preference and reversed GLT-1, BDNF, NF-κB, and CREB expression levels. In conclusion, the study results indicate, for the first time, the new potential targets of melatonin in modulating morphine-induced CPP.
Collapse
Affiliation(s)
- Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad S Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
5
|
Vaverková Z, Milton AL, Merlo E. Retrieval-Dependent Mechanisms Affecting Emotional Memory Persistence: Reconsolidation, Extinction, and the Space in Between. Front Behav Neurosci 2020; 14:574358. [PMID: 33132861 PMCID: PMC7550798 DOI: 10.3389/fnbeh.2020.574358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/03/2020] [Indexed: 01/20/2023] Open
Abstract
Maladaptive emotional memories contribute to the persistence of many mental health disorders, and therefore the prospect of disrupting these memories to produce long-term reductions in relapse is of great clinical appeal. Reducing the impact of maladaptive emotional memories on behaviour could be achieved by two retrieval-dependent manipulations that engage separate mnemonic processes: "reconsolidation disruption" and "extinction enhancement." Extinction occurs during a prolonged re-exposure session in the absence of the expected emotional outcome and is widely accepted as reflecting the formation of a new, inhibitory memory that prevents behavioural expression of the original trace. Reconsolidation, by contrast, involves the destabilisation of the original memory, allowing for subsequent updating and restabilisation in specific brain regions, unless the re-stabilization process is prevented through specific pharmacological or behavioural interventions. Both destabilisation of the original memory and memory extinction require that re-exposure induces prediction error-a mismatch between what is expected and what actually occurs-but the parameters that allow reconsolidation and extinction to occur, and control the transition between them, have not been well-characterised. Here, we review what is known about the induction of memory destabilisation and extinction, and the transition period that separates these mnemonic processes, drawing on preclinical and clinical examples. A deeper understanding of the processes that determine the alternative routes to memory persistence or inhibition is critical for designing new and more reliable clinical treatments targeting maladaptive emotional memories.
Collapse
Affiliation(s)
- Zuzana Vaverková
- School of Psychology, University of Sussex, Brighton, United Kingdom
| | - Amy L Milton
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Emiliano Merlo
- School of Psychology, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
6
|
Loy I, Fernández-Victorero S, Muñiz-Moreno J. Renewal of conditioned tentacle lowering by circadian contextual cues in snails Cornu aspersum. Behav Processes 2020; 178:104144. [PMID: 32445853 DOI: 10.1016/j.beproc.2020.104144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/03/2020] [Accepted: 05/17/2020] [Indexed: 11/18/2022]
Abstract
Previous experiments using tentacle lowering conditioning in terrestrial snails Cornu aspersum have shown extinction and recovery of the conditioned response (CR) as a consequence of both inserting a delay between the extinction and test (spontaneous recovery) and of re-exposing the animal to the unconditioned stimulus after extinction (reinstatement). Two experiments that examined recovery of the CR due to a change in context (renewal effect) were carried out to continue this line of research. In Experiment 1, subjects received conditioning with an odour (CS) followed by extinction in the presence of another odour (CS + C), before being exposed to the original one (CS). In Experiment 2, conditioning and extinction of an odour CS took place in the presence of different circadian contextual cues (hour of the day and presence of light). The results showed that a return to the original context of conditioned training, after the extinction in a different context, either defined by an odour (Experiment 1) or by circadian cues (Experiment 2), produce a recovery of the CR compared to suitable control groups. These results can be interpreted as an instance of ABA renewal effect and they provide information about psychological mechanisms involved in extinction processes.
Collapse
Affiliation(s)
- Ignacio Loy
- Department of Psychology, University of Oviedo, Plaza the Feijoo s/n, 33003 Oviedo, Spain.
| | | | - Judit Muñiz-Moreno
- Department of Psychology, University of Oviedo, Plaza the Feijoo s/n, 33003 Oviedo, Spain
| |
Collapse
|
7
|
Pagani MR, Merlo E. Kinase and Phosphatase Engagement Is Dissociated Between Memory Formation and Extinction. Front Mol Neurosci 2019; 12:38. [PMID: 30842725 PMCID: PMC6391346 DOI: 10.3389/fnmol.2019.00038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/31/2019] [Indexed: 01/18/2023] Open
Abstract
Associative long-term memories (LTMs) support long-lasting behavioral changes resulting from sensory experiences. Retrieval of a stable LTM by means of a large number of conditioned stimulus (CS) alone presentations produces inhibition of the original memory through extinction. Currently, there are two opposing hypotheses to account for the neural mechanisms supporting extinction. The unlearning hypothesis posits that extinction affects the original memory trace by reverting the synaptic changes supporting LTM. On the contrary, the new learning hypothesis proposes that extinction is simply the formation of a new associative memory that inhibits the expression of the original one. We propose that detailed analysis of extinction-associated molecular mechanisms could help distinguish between these hypotheses. Here we will review experimental evidence regarding the role of protein kinases and phosphatases (K&P) on LTM formation and extinction. Even though K&P regulate both memory processes, their participation appears to be dissociated. LTM formation recruits kinases, but is constrained by phosphatases. Memory extinction presents a more diverse molecular landscape, requiring phosphatases and some kinases, but also being constrained by kinase activity. Based on the available evidence, we propose a new theoretical model for memory extinction: a neuronal segregation of K&P supports a combination of time-dependent reversible inhibition of the original memory [CS-unconditioned stimulus (US)], with establishment of a new associative memory trace (CS-noUS).
Collapse
Affiliation(s)
- Mario Rafael Pagani
- Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-Houssay, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Emiliano Merlo
- Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-Houssay, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Wang X, Li M, Zhu H, Yu Y, Xu Y, Zhang W, Bian C. Transcriptional Regulation Involved in Fear Memory Reconsolidation. J Mol Neurosci 2018; 65:127-140. [PMID: 29796837 DOI: 10.1007/s12031-018-1084-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/09/2018] [Indexed: 11/26/2022]
Abstract
Memory reconsolidation has been demonstrated to offer a potential target period during which the fear memories underlying fear disorders can be disrupted. Reconsolidation is a labile stage that consolidated memories re-enter after memories are reactivated. Reactivated memories, induced by cues related to traumatic events, are susceptible to strengthening and weakening. Gene transcription regulation and protein synthesis have been suggested to be required for fear memory reconsolidation. Investigating the transcriptional regulation mechanisms underlying reconsolidation may provide a therapeutic method for the treatment of fear disorders such as post-traumatic stress disorder (PTSD). However, the therapeutic effect of treating a fear disorder through interfering with reconsolidation is still contradictory. In this review, we summarize several transcription factors that have been linked to fear memory reconsolidation and propose that transcription factors, as well as related signaling pathways can serve as targets for fear memory interventions. Then, we discuss the application of pharmacological and behavioral interventions during reconsolidation that may or not efficiently treat fear disorders.
Collapse
Affiliation(s)
- Xu Wang
- Department of Military Psychology, College of Psychology, Army Medical University, Chongqing, 400038, China
- Forth Battalion of Cadet Brigade, Army Medical University, Chongqing, 400038, China
| | - Min Li
- Department of Military Psychology, College of Psychology, Army Medical University, Chongqing, 400038, China
| | - Haitao Zhu
- Medical Company, Troops 95848 of People's Liberation Army, Xiaogan, 432100, China
| | - Yongju Yu
- Department of Military Psychology, College of Psychology, Army Medical University, Chongqing, 400038, China
| | - Yuanyuan Xu
- Department of Military Psychology, College of Psychology, Army Medical University, Chongqing, 400038, China
| | - Wenmo Zhang
- Department of Fundamental, Army Logistical University of PLA, Chongqing, 401331, China
| | - Chen Bian
- Department of Military Psychology, College of Psychology, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
9
|
Scholz B, Doidge AN, Barnes P, Hall J, Wilkinson LS, Thomas KL. The Regulation of Cytokine Networks in Hippocampal CA1 Differentiates Extinction from Those Required for the Maintenance of Contextual Fear Memory after Recall. PLoS One 2016; 11:e0153102. [PMID: 27224427 PMCID: PMC4880201 DOI: 10.1371/journal.pone.0153102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/23/2016] [Indexed: 12/17/2022] Open
Abstract
We investigated the distinctiveness of gene regulatory networks in CA1 associated with the extinction of contextual fear memory (CFM) after recall using Affymetrix GeneChip Rat Genome 230 2.0 Arrays. These data were compared to previously published retrieval and reconsolidation-attributed, and consolidation datasets. A stringent dual normalization and pareto-scaled orthogonal partial least-square discriminant multivariate analysis together with a jack-knifing-based cross-validation approach was used on all datasets to reduce false positives. Consolidation, retrieval and extinction were correlated with distinct patterns of gene expression 2 hours later. Extinction-related gene expression was most distinct from the profile accompanying consolidation. A highly specific feature was the discrete regulation of neuroimmunological gene expression associated with retrieval and extinction. Immunity-associated genes of the tyrosine kinase receptor TGFβ and PDGF, and TNF families' characterized extinction. Cytokines and proinflammatory interleukins of the IL-1 and IL-6 families were enriched with the no-extinction retrieval condition. We used comparative genomics to predict transcription factor binding sites in proximal promoter regions of the retrieval-regulated genes. Retrieval that does not lead to extinction was associated with NF-κB-mediated gene expression. We confirmed differential NF-κBp65 expression, and activity in all of a representative sample of our candidate genes in the no-extinction condition. The differential regulation of cytokine networks after the acquisition and retrieval of CFM identifies the important contribution that neuroimmune signalling plays in normal hippocampal function. Further, targeting cytokine signalling upon retrieval offers a therapeutic strategy to promote extinction mechanisms in human disorders characterised by dysregulation of associative memory.
Collapse
Affiliation(s)
- Birger Scholz
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Amie N. Doidge
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Philip Barnes
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Lawrence S. Wilkinson
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- Schools of Psychology and Medicine, Behavioral Genetics Group, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics and Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kerrie L. Thomas
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
10
|
Baldi E, Bucherelli C. Brain sites involved in fear memory reconsolidation and extinction of rodents. Neurosci Biobehav Rev 2015; 53:160-90. [DOI: 10.1016/j.neubiorev.2015.04.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 03/30/2015] [Accepted: 04/06/2015] [Indexed: 12/21/2022]
|
11
|
Almeida-Corrêa S, Amaral OB. Memory labilization in reconsolidation and extinction--evidence for a common plasticity system? ACTA ACUST UNITED AC 2014; 108:292-306. [PMID: 25173958 DOI: 10.1016/j.jphysparis.2014.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/27/2014] [Accepted: 08/20/2014] [Indexed: 12/19/2022]
Abstract
Reconsolidation and extinction are two processes occurring upon memory retrieval that have received great attention in memory research over the last decade, partly due to their purported potential in the treatment of anxiety disorders. Due to their opposite behavioral effects, the two phenomena have usually been considered as separate entities, with few attempts to build a unified view of how both could be produced by similar mechanisms. Based on computational modeling, we have previously proposed that reconsolidation and extinction are behavioral outcomes of the same set of plasticity systems, albeit working at different synapses. One of these systems seems to be pharmacologically similar to the one involved in initial memory consolidation, and likely involves traditional Hebbian plasticity, while the second seems to be more involved with the labilization of existing memories and/or synaptic changes. In this article, we review the evidence for the existence of a plasticity system specifically involved in memory labilization, as well as its possible molecular requirements, anatomical substrates, synaptic mechanisms and physiological roles. Based on these data, we propose that the field of memory updating might ultimately benefit from a paradigm shift in which reconsolidation and extinction are viewed not as separate processes but as different instantiations of plasticity systems responsible for reinforcement and labilization of synaptic changes.
Collapse
Affiliation(s)
- Suellen Almeida-Corrêa
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Brazil
| | - Olavo B Amaral
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Sol Fustiñana M, de la Fuente V, Federman N, Freudenthal R, Romano A. Protein degradation by ubiquitin-proteasome system in formation and labilization of contextual conditioning memory. ACTA ACUST UNITED AC 2014; 21:478-87. [PMID: 25135196 PMCID: PMC4138359 DOI: 10.1101/lm.035998.114] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ubiquitin–proteasome system (UPS) of protein degradation has been evaluated in different forms of neural plasticity and memory. The role of UPS in such processes is controversial. Several results support the idea that the activation of this system in memory consolidation is necessary to overcome negative constrains for plasticity. In this case, the inhibition of the UPS during consolidation impairs memory. Similar results were reported for memory reconsolidation. However, in other cases, the inhibition of UPS had no effect on memory consolidation and reconsolidation but impedes the amnesic action of protein synthesis inhibition after retrieval. The last finding suggests a specific action of the UPS inhibitor on memory labilization. However, another interpretation is possible in terms of the synthesis/degradation balance of positive and negative elements in neural plasticity, as was found in the case of long-term potentiation. To evaluate these alternative interpretations, other reconsolidation-interfering drugs than translation inhibitors should be tested. Here we analyzed initially the UPS inhibitor effect in contextual conditioning in crabs. We found that UPS inhibition during consolidation impaired long-term memory. In contrast, UPS inhibition did not affect memory reconsolidation after contextual retrieval but, in fact, impeded memory labilization, blocking the action of drugs that does not affect directly the protein synthesis. To extend these finding to vertebrates, we performed similar experiments in contextual fear memory in mice. We found that the UPS inhibitor in hippocampus affected memory consolidation and blocked memory labilization after retrieval. These findings exclude alternative interpretations to the requirement of UPS in memory labilization and give evidence of this mechanism in both vertebrates and invertebrates.
Collapse
Affiliation(s)
- María Sol Fustiñana
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, 1428EHA, Buenos Aires, Argentina
| | | | - Noel Federman
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, 1428EHA, Buenos Aires, Argentina
| | - Ramiro Freudenthal
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, 1428EHA, Buenos Aires, Argentina
| | - Arturo Romano
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, 1428EHA, Buenos Aires, Argentina
| |
Collapse
|
13
|
Conditioned avoidance responses survive contingency degradation in the garden slug, Lehmannia valentiana. Learn Behav 2014; 42:305-12. [PMID: 24946946 DOI: 10.3758/s13420-014-0147-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Joint presentations of a conditioned stimulus (CS) and an unconditioned stimulus (US) strengthen the contingency between them, whereas presentations of one stimulus without the other degrade this contingency. For example, the CS can be presented without the US either before conditioning (CS-no US and then CS-US; latent inhibition) or after conditioning (CS-US and then CS-no US; extinction). In vertebrate subjects and several invertebrate species, a time lapse usually results in a return of the conditioned response, or spontaneous recovery. However, in land mollusks, spontaneous recovery from extinction has only recently been reported, and response recovery after latent inhibition has not been reported. In two experiments, using conditioned aversion to a food odor as a measure of learning and memory retention, we observed contingency degradation via latent inhibition (Experiment 1) and extinction (Experiment 2) in the common garden slug, Lehmannia valentiana. In both situations, the contingency degradation procedure successfully attenuated conditioned responding, and delaying testing by several days resulted in recovery of the conditioned response. This suggests that the CS-US association survived the degradation manipulation and was retained over an interval of several days.
Collapse
|
14
|
Alvarez B, Morís J, Luque D, Loy I. Extinction, spontaneous recovery and reinstatement in the garden snail, Helix aspersa. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Salles A, Romano A, Freudenthal R. Synaptic NF-kappa B pathway in neuronal plasticity and memory. ACTA ACUST UNITED AC 2014; 108:256-62. [PMID: 24854662 DOI: 10.1016/j.jphysparis.2014.05.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/14/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
Abstract
Several transcription factors are present at the synapse, and among these are the Rel-NF-kappa B pathway components. NF-kappa B is a constitutive transcription factor, with a strong presence in the brain of which a considerable part is located in the neuropiles. This localization of the transcription factor, plus evidence pointing to different functions, is what gave place to two general hypotheses for synaptic NF-kappa B: (a) The transcription factor plays a role in the synapse to nucleus communication, and it is retrogradely transported from polarized localizations to regulate gene expression; (b) The transcription factor modulates the synaptic function locally. Evidence indicates that both mechanisms can operate simultaneously; here we will present different possibilities of these hypotheses that are supported by an increasing amount of data. We pay special attention to the local role of the transcription factor at the synapse, and based in the described evidence from different animal models, we propose several processes in which the transcription factor may change the synaptic strength.
Collapse
Affiliation(s)
- Angeles Salles
- Laboratorio de Neurobiología de la Memoria, FBMC, FCEyN, UBA, IFIBYNE, CONICET, 2°piso, pabellón II, Intendente Güiraldez 2160, Ciudad Universitaria, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Arturo Romano
- Laboratorio de Neurobiología de la Memoria, FBMC, FCEyN, UBA, IFIBYNE, CONICET, 2°piso, pabellón II, Intendente Güiraldez 2160, Ciudad Universitaria, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Ramiro Freudenthal
- Laboratorio de Neurobiología de la Memoria, FBMC, FCEyN, UBA, IFIBYNE, CONICET, 2°piso, pabellón II, Intendente Güiraldez 2160, Ciudad Universitaria, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
16
|
Flavell CR, Lambert EA, Winters BD, Bredy TW. Mechanisms governing the reactivation-dependent destabilization of memories and their role in extinction. Front Behav Neurosci 2013; 7:214. [PMID: 24421762 PMCID: PMC3872723 DOI: 10.3389/fnbeh.2013.00214] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/13/2013] [Indexed: 12/28/2022] Open
Abstract
The extinction of learned associations has traditionally been considered to involve new learning, which competes with the original memory for control over behavior. However, a recent resurgence of interest in reactivation-dependent amnesia has revealed that the retrieval of fear-related memory (with what is essentially a brief extinction session) can result in its destabilization. This review discusses some of the cellular and molecular mechanisms that are involved in the destabilization of a memory following its reactivation and/or extinction, and investigates the evidence that extinction may involve both new learning as well as a partial destabilization-induced erasure of the original memory trace.
Collapse
Affiliation(s)
- Charlotte R Flavell
- Queensland Brain Institute, The University of Queensland Brisbane, QLD, Australia
| | - Elliot A Lambert
- Queensland Brain Institute, The University of Queensland Brisbane, QLD, Australia
| | - Boyer D Winters
- Department of Psychology, University of Guelph Guelph, ON, Canada
| | - Timothy W Bredy
- Queensland Brain Institute, The University of Queensland Brisbane, QLD, Australia
| |
Collapse
|
17
|
Hepp Y, Tano MC, Pedreira ME, Freudenthal RA. NMDA-like receptors in the nervous system of the crabNeohelice granulata: A neuroanatomical description. J Comp Neurol 2013; 521:2279-97. [DOI: 10.1002/cne.23285] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/30/2012] [Accepted: 12/11/2012] [Indexed: 11/06/2022]
|
18
|
Torregrossa MM, Taylor JR. Learning to forget: manipulating extinction and reconsolidation processes to treat addiction. Psychopharmacology (Berl) 2013; 226:659-72. [PMID: 22638814 PMCID: PMC3466391 DOI: 10.1007/s00213-012-2750-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 05/13/2012] [Indexed: 11/29/2022]
Abstract
Finding effective long-lasting treatments for drug addiction has been an elusive goal. Consequently, researchers are beginning to investigate novel treatment strategies including manipulations of drug-associated memories. When environmental stimuli (cues) become associated with drug use, they become powerful motivators of continued drug use and relapse after abstinence. Reducing the strength of these cue-drug memories could decrease the number of factors that induce craving and relapse to aid in the treatment of addiction. Enhancing the consolidation of extinction learning and/or disrupting cue-drug memory reconsolidation are two strategies that have been proposed to reduce the strength of cues in motivating drug-seeking and drug-taking behavior. Here, we review the latest basic and clinical research elucidating the mechanisms underlying consolidation of extinction and reconsolidation of cue-drug memories in the hopes of developing pharmacological tools that exploit these signaling systems to treat addiction.
Collapse
Affiliation(s)
| | - Jane R. Taylor
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT,Department of Psychology, Yale University, New Haven, CT
| |
Collapse
|
19
|
A Multidisciplinary Approach to Learning and Memory in the Crab Neohelice (Chasmagnathus) granulata. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-12-415823-8.00026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Iscru E, Ahmed T, Coremans V, Bozzi Y, Caleo M, Conway EM, D'Hooge R, Balschun D. Loss of survivin in neural precursor cells results in impaired long-term potentiation in the dentate gyrus and CA1-region. Neuroscience 2012; 231:413-9. [PMID: 23123921 DOI: 10.1016/j.neuroscience.2012.10.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 10/22/2012] [Accepted: 10/24/2012] [Indexed: 11/17/2022]
Abstract
In adult mammals, newborn neural precursor cells (NPCs) derived from either the subventricular zone (SVZ) or the subgranular zone (SGZ) migrate into the olfactory bulb and the dentate gyrus (DG), respectively, where some of them mature into excitatory and inhibitory neurons. There is increasing evidence that this neurogenesis process is important for some types of learning and synaptic plasticity and vice versa. Survivin, a member of the inhibitor-of-apoptosis protein (IAP) family, has been suggested to have a central role in the regulation of neurogenesis. The protein is abundantly expressed in nervous tissue during embryonic development while being restricted postnatally to proliferating and migrating NPCs in SVZ and SGZ. Here we examined adult Survivin(Camcre) mice with a conditional deletion of the survivin gene in embryonic neurogenic regions. Although the deletion of survivin had no effect on basic excitability in DG and CA1-region, there was a marked impairment of long-term potentiation (LTP) in these areas. Our data support a function of survivin in hippocampal synaptic plasticity and learning and underline the importance of adult brain neurogenesis for proper operation of the hippocampal tri-synaptic circuit and the physiological functions that depend on it.
Collapse
Affiliation(s)
- E Iscru
- KU Leuven, Laboratory of Biological Psychology, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Fustiñana MS, Carbó Tano M, Romano A, Pedreira ME. Contextual Pavlovian conditioning in the crab Chasmagnathus. Anim Cogn 2012; 16:255-72. [DOI: 10.1007/s10071-012-0570-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 09/11/2012] [Accepted: 10/08/2012] [Indexed: 12/27/2022]
|
22
|
Abstract
During extinction animals experience that the previously learned association between a conditioned stimulus (CS) and an unconditioned stimulus (US) no longer holds true. Accordingly, the conditioned response (CR) to the CS decreases. This decrease of the CR can be reversed by presentation of the US alone following extinction, a phenomenon termed reinstatement. Reinstatement and two additional phenomena, spontaneous recovery and renewal, indicate that the original CS-US association is not lost through extinction but can be reactivated through different processes. In honeybees (Apis mellifera), spontaneous recovery, i.e., the time-dependent return of the CR, has been demonstrated, suggesting that also in these insects the original CS-US association is not lost during extinction. To support this notion, we ask whether honeybees show reinstatement after extinction. In vertebrates reinstatement is context-dependent, so we examined whether the same holds true for honeybees. We demonstrate reinstatement in restrained honeybees and show that reinstatement is context-dependent. Furthermore, we show that an alteration of the color of light illuminating the experimental setup suffices to indicate a contextual change. We conclude that in honeybees the initially formed CS-US memory is not lost after extinction. Rather, honeybees might learn about the context during extinction. This enables them to adequately retrieve one of the two opposing memories about the CS that have been formed after extinction.
Collapse
Affiliation(s)
- Jenny Aino Plath
- Freie Universität Berlin, FB Biologie, Pharmazie, Chemie, Institut für Biologie, Neurobiologie, Königin-Luise-Strasse 28/30, 14195 Berlin, Germany
| | | | | |
Collapse
|
23
|
Rodríguez MLC, Campos J, Forcato C, Leiguarda R, Maldonado H, Molina VA, Pedreira ME. Enhancing a declarative memory in humans: the effect of clonazepam on reconsolidation. Neuropharmacology 2012; 64:432-42. [PMID: 22819624 DOI: 10.1016/j.neuropharm.2012.06.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/23/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
Abstract
A consolidated memory recalled by a specific reminder can become unstable (labile) and susceptible to facilitation or impairment for a discrete period of time. This labilization phase is followed by a process of stabilization called reconsolidation. The phenomenon has been shown in diverse types of memory, and different pharmacological agents have been used to disclose its presence. Several studies have revealed the relevance of the GABAergic system to this process. Consequently, our hypothesis is that the system is involved in the reconsolidation of declarative memory in humans. Thus, using our verbal learning task, we analyzed the effect of benzodiazepines on the re-stabilization of the declarative memory. On Day 1, volunteers learned an association between five cue- response-syllables. On Day 2, the verbal memory was labilized by a reminder presentation, and then a placebo capsule or 0.25 mg or 0.03 mg of clonazepam was administered to the subjects. The verbal memory was evaluated on Day 3. The volunteers who had received the 0.25 mg clonazepam along with the specific reminder on Day 2, exhibited memory improvement. In contrast, there was no effect when the drug was given without retrieval, when the memory was simply retrieved instead of being reactivated or when short-term memory testing was performed 4 h after reactivation. We discuss the GABAergic role in reconsolidation, which shows a collateral effect on other memories when the treatment is aimed at treating anxiety disorders. Further studies might elucidate the role of GABA in the reconsolidation process associated with dissimilar scenarios. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- M L C Rodríguez
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE - CONICET, Ciudad Universitaria, Pab II (1428), Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
24
|
Yang CH, Liu XM, Si JJ, Shi HS, Xue YX, Liu JF, Luo YX, Chen C, Li P, Yang JL, Wu P, Lu L. Role of IKK/NF-κB signaling in extinction of conditioned place aversion memory in rats. PLoS One 2012; 7:e39696. [PMID: 22761874 PMCID: PMC3383688 DOI: 10.1371/journal.pone.0039696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/29/2012] [Indexed: 11/19/2022] Open
Abstract
The inhibitor κB protein kinase/nuclear factor κB (IKK/NF-κB) signaling pathway is critical for synaptic plasticity. However, the role of IKK/NF-κB in drug withdrawal-associated conditioned place aversion (CPA) memory is unknown. Here, we showed that inhibition of IKK/NF-κB by sulphasalazine (SSZ; 10 mM, i.c.v.) selectively blocked the extinction but not acquisition or expression of morphine-induced CPA in rats. The blockade of CPA extinction induced by SSZ was abolished by sodium butyrate, an inhibitor of histone deacetylase. Thus, the IKK/NF-κB signaling pathway might play a critical role in the extinction of morphine-induced CPA in rats and might be a potential pharmacotherapy target for opiate addiction.
Collapse
Affiliation(s)
- Cheng-Hao Yang
- Tianjin Medical University, Tianjin, China
- Tianjin Institute of Mental Health, Tianjin Mental Health Center, Tianjin, China
| | - Xiang-Ming Liu
- Department of Thoracic Oncology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Ji-Jian Si
- Tianjin Medical University, Tianjin, China
- Tianjin Institute of Mental Health, Tianjin Mental Health Center, Tianjin, China
| | - Hai-Shui Shi
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Jian-Feng Liu
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Yi-Xiao Luo
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Chen Chen
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Peng Li
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Jian-Li Yang
- Tianjin Institute of Mental Health, Tianjin Mental Health Center, Tianjin, China
| | - Ping Wu
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence, Peking University, Beijing, China
| |
Collapse
|
25
|
Federman N, Fustiñana MS, Romano A. Reconsolidation involves histone acetylation depending on the strength of the memory. Neuroscience 2012; 219:145-56. [PMID: 22659565 DOI: 10.1016/j.neuroscience.2012.05.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/18/2022]
Abstract
Gene expression is a necessary step for memory re-stabilization after retrieval, a process known as reconsolidation. Histone acetylation is a fundamental mechanism involved in epigenetic regulation of gene expression and has been implicated in memory consolidation. However, few studies are available in reconsolidation, all of them in vertebrate models. Additionally, the recruitment of histone acetylation as a function of different memory strengths has not been systematically analyzed before. Here we studied the role of histone acetylation in reconsolidation using a well-characterized memory model in invertebrate, the context-signal memory in the crab Chasmagnathus. Firstly, we found an increase in histone H3 acetylation 1h after memory reactivation returning to basal levels at 3 h. Strikingly, this increment was only detected during reconsolidation of a long-term memory induced by a strong training of 30 trials, but not for a short-term memory formed by a weak training of five trials or for a long-term memory induced by a standard training of 15 trials. Furthermore, we showed that a weak memory which was enhanced during consolidation by histone deacetylases inhibition, also recruited histone H3 acetylation in reconsolidation as the strong training does. Accordingly, we found the first evidence that the administration of a histone acetyl transferase inhibitor during memory reconsolidation impairs long-term memory re-stabilization. Finally, we found that strong training memory, at variance with the standard training memory, was resistant to extinction, indicating that such strong training induced in fact a stronger memory. In conclusion, the results presented here support that the participation of histone acetylation during reconsolidation is an evolutionary conserved feature and constitutes a specific molecular characteristic of strong memories.
Collapse
Affiliation(s)
- N Federman
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, Pab. II, 2do piso (1428EHA), Buenos Aires, Argentina
| | | | | |
Collapse
|
26
|
The role of metaplasticity mechanisms in regulating memory destabilization and reconsolidation. Neurosci Biobehav Rev 2012; 36:1667-707. [PMID: 22484475 DOI: 10.1016/j.neubiorev.2012.03.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 03/09/2012] [Accepted: 03/21/2012] [Indexed: 12/13/2022]
Abstract
Memory allows organisms to predict future events based on prior experiences. This requires encoded information to persist once important predictors are extracted, while also being modifiable in response to changes within the environment. Memory reconsolidation may allow stored information to be modified in response to related experience. However, there are many boundary conditions beyond which reconsolidation may not occur. One interpretation of these findings is that the event triggering memory retrieval must contain new information about a familiar stimulus in order to induce reconsolidation. Presently, the mechanisms that affect the likelihood of reconsolidation occurring under these conditions are not well understood. Here we speculate on a number of systems that may play a role in protecting memory from being destabilized during retrieval. We conclude that few memories may enter a state in which they cannot be modified. Rather, metaplasticity mechanisms may serve to alter the specific reactivation cues necessary to destabilize a memory. This might imply that destabilization mechanisms can differ depending on learning conditions.
Collapse
|
27
|
Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature 2012; 483:87-91. [PMID: 22343895 DOI: 10.1038/nature10792] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 12/09/2011] [Indexed: 11/08/2022]
Abstract
It is generally believed that fear extinction is a form of new learning that inhibits rather than erases previously acquired fear memories. Although this view has gained much support from behavioural and electrophysiological studies, the hypothesis that extinction causes the partial erasure of fear memories remains viable. Using transcranial two-photon microscopy, we investigated how neural circuits are modified by fear learning and extinction by examining the formation and elimination of postsynaptic dendritic spines of layer-V pyramidal neurons in the mouse frontal association cortex. Here we show that fear conditioning by pairing an auditory cue with a footshock increases the rate of spine elimination. By contrast, fear extinction by repeated presentation of the same auditory cue without a footshock increases the rate of spine formation. The degrees of spine remodelling induced by fear conditioning and extinction strongly correlate with the expression and extinction of conditioned fear responses, respectively. Notably, spine elimination and formation induced by fear conditioning and extinction occur on the same dendritic branches in a cue- and location-specific manner: cue-specific extinction causes formation of dendritic spines within a distance of two micrometres from spines that were eliminated after fear conditioning. Furthermore, reconditioning preferentially induces elimination of dendritic spines that were formed after extinction. Thus, within vastly complex neuronal networks, fear conditioning, extinction and reconditioning lead to opposing changes at the level of individual synapses. These findings also suggest that fear memory traces are partially erased after extinction.
Collapse
|
28
|
Forcato C, Rodríguez MLC, Pedreira ME. Repeated labilization-reconsolidation processes strengthen declarative memory in humans. PLoS One 2011; 6:e23305. [PMID: 21850268 PMCID: PMC3151295 DOI: 10.1371/journal.pone.0023305] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 07/14/2011] [Indexed: 11/28/2022] Open
Abstract
The idea that memories are immutable after consolidation has been challenged. Several reports have shown that after the presentation of a specific reminder, reactivated old memories become labile and again susceptible to amnesic agents. Such vulnerability diminishes with the progress of time and implies a re-stabilization phase, usually referred to as reconsolidation. To date, the main findings describe the mechanisms associated with the labilization-reconsolidation process, but little is known about its functionality from a biological standpoint. Indeed, two functions have been proposed. One suggests that destabilization of the original memory after the reminder allows the integration of new information into the background of the original memory (memory updating), and the other suggests that the labilization-reconsolidation process strengthens the original memory (memory strengthening). We have previously reported the reconsolidation of human declarative memories, demonstrating memory updating in the framework of reconsolidation. Here we deal with the strengthening function attributed to the reconsolidation process. We triggered labilization-reconsolidation processes successively by repeated presentations of the proper reminder. Participants learned an association between five cue-syllables and their respective response-syllables. Twenty-four hours later, the paired-associate verbal memory was labilized by exposing the subjects to one, two or four reminders. The List-memory was evaluated on Day 3 showing that the memory was improved when at least a second reminder was presented in the time window of the first labilization-reconsolidation process prompted by the earlier reminder. However, the improvement effect was revealed on Day 3, only when at least two reminders were presented on Day2 and not as a consequence of only retrieval. Therefore, we propose central concepts for the reconsolidation process, emphasizing its biological role and the parametrical constrains for this function to be operative.
Collapse
Affiliation(s)
- Cecilia Forcato
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE – CONICET, Buenos Aires, Argentina
| | - María L. C. Rodríguez
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE – CONICET, Buenos Aires, Argentina
| | - María E. Pedreira
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE – CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
29
|
Osan R, Tort ABL, Amaral OB. A mismatch-based model for memory reconsolidation and extinction in attractor networks. PLoS One 2011; 6:e23113. [PMID: 21826231 PMCID: PMC3149635 DOI: 10.1371/journal.pone.0023113] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 07/06/2011] [Indexed: 11/23/2022] Open
Abstract
The processes of memory reconsolidation and extinction have received increasing attention in recent experimental research, as their potential clinical applications begin to be uncovered. A number of studies suggest that amnestic drugs injected after reexposure to a learning context can disrupt either of the two processes, depending on the behavioral protocol employed. Hypothesizing that reconsolidation represents updating of a memory trace in the hippocampus, while extinction represents formation of a new trace, we have built a neural network model in which either simple retrieval, reconsolidation or extinction of a stored attractor can occur upon contextual reexposure, depending on the similarity between the representations of the original learning and reexposure sessions. This is achieved by assuming that independent mechanisms mediate Hebbian-like synaptic strengthening and mismatch-driven labilization of synaptic changes, with protein synthesis inhibition preferentially affecting the former. Our framework provides a unified mechanistic explanation for experimental data showing (a) the effect of reexposure duration on the occurrence of reconsolidation or extinction and (b) the requirement of memory updating during reexposure to drive reconsolidation.
Collapse
Affiliation(s)
- Remus Osan
- Center for Neuroscience, Boston University, Boston, Massachusetts, United States of America
- Center for Biodynamics, Boston University, Boston, Massachusetts, United States of America
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States of America
| | - Adriano B. L. Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Edmond and Lily Safra International Institute of Neuroscience of Natal, Natal, Rio Grande do Norte, Brazil
| | - Olavo B. Amaral
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
30
|
Paradoxical enhancement of fear extinction memory and synaptic plasticity by inhibition of the histone acetyltransferase p300. J Neurosci 2011; 31:7486-91. [PMID: 21593332 DOI: 10.1523/jneurosci.0133-11.2011] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
It is well established that the coordinated regulation of activity-dependent gene expression by the histone acetyltransferase (HAT) family of transcriptional coactivators is crucial for the formation of contextual fear and spatial memory, and for hippocampal synaptic plasticity. However, no studies have examined the role of this epigenetic mechanism within the infralimbic prefrontal cortex (ILPFC), an area of the brain that is essential for the formation and consolidation of fear extinction memory. Here we report that a postextinction training infusion of a combined p300/CBP inhibitor (Lys-CoA-Tat), directly into the ILPFC, enhances fear extinction memory in mice. Our results also demonstrate that the HAT p300 is highly expressed within pyramidal neurons of the ILPFC and that the small-molecule p300-specific inhibitor (C646) infused into the ILPFC immediately after weak extinction training enhances the consolidation of fear extinction memory. C646 infused 6 h after extinction had no effect on fear extinction memory, nor did an immediate postextinction training infusion into the prelimbic prefrontal cortex. Consistent with the behavioral findings, inhibition of p300 activity within the ILPFC facilitated long-term potentiation (LTP) under stimulation conditions that do not evoke long-lasting LTP. These data suggest that one function of p300 activity within the ILPFC is to constrain synaptic plasticity, and that a reduction in the function of this HAT is required for the formation of fear extinction memory.
Collapse
|
31
|
Reconsolidation or extinction: transcription factor switch in the determination of memory course after retrieval. J Neurosci 2011; 31:5562-73. [PMID: 21490196 DOI: 10.1523/jneurosci.6066-10.2011] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In fear conditioning, aversive stimuli are readily associated with contextual features. A brief reexposure to the training context causes fear memory reconsolidation, whereas a prolonged reexposure induces memory extinction. The regulation of hippocampal gene expression plays a key role in contextual memory consolidation and reconsolidation. However, the mechanisms that determine whether memory will reconsolidate or extinguish are not known. Here, we demonstrate opposing roles for two evolutionarily related transcription factors in the mouse hippocampus. We found that nuclear factor-κB (NF-κB) is required for fear memory reconsolidation. Conversely, calcineurin phosphatase inhibited NF-κB and induced nuclear factor of activated T-cells (NFAT) nuclear translocation in the transition between reconsolidation and extinction. Accordingly, the hippocampal inhibition of both calcineurin and NFAT independently impaired memory extinction, whereas inhibition of NF-κB enhanced memory extinction. These findings represent the first insight into the molecular mechanisms that determine memory reprocessing after retrieval, supporting a transcriptional switch that directs memory toward reconsolidation or extinction. The precise molecular characterization of postretrieval processes has potential importance to the development of therapeutic strategies for fear memory disorders.
Collapse
|
32
|
Stafford JM, Lattal KM. Is an epigenetic switch the key to persistent extinction? Neurobiol Learn Mem 2011; 96:35-40. [PMID: 21536141 DOI: 10.1016/j.nlm.2011.04.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 02/03/2023]
Abstract
Many studies of learning have demonstrated that conditioned behavior can be eliminated when previously established relations between stimuli are severed. This extinction process has been extremely important for the development of learning theories and, more recently, for delineating the neurobiological mechanisms that underlie memory. A key finding from behavioral studies of extinction is that extinction eliminates behavior without eliminating the original memory; extinguished behavior often returns with time or with a return to the context in which the original learning occurred. This persistence of the original memory after extinction creates a challenge for clinical applications that use extinction as part of a treatment intervention. Consequently, a goal of recent neurobiological research on extinction is to identify potential pharmacological targets that may result in persistent extinction. Drugs that promote epigenetic changes are particularly promising because they can result in a long-term molecular signal that, combined with the appropriate behavioral treatment, can cause persistent changes in behavior induced by extinction. We will review evidence demonstrating extinction enhancements by drugs that target epigenetic mechanisms and will describe some of the challenges that epigenetic approaches face in promoting persistent suppression of memories.
Collapse
Affiliation(s)
- James M Stafford
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States
| | | |
Collapse
|
33
|
Abstract
Recent advances in chromatin biology have identified a role for epigenetic mechanisms in the regulation of neuronal gene expression changes, a necessary process for proper synaptic plasticity and memory formation. Experimental evidence for dynamic chromatin remodeling influencing gene transcription in postmitotic neurons grew from initial reports describing posttranslational modifications of histones, including phosphorylation and acetylation occurring in various brain regions during memory consolidation. An accumulation of recent studies, however, has also highlighted the importance of other epigenetic modifications, such as DNA methylation and histone methylation, as playing a role in memory formation. This present review examines learning-induced gene transcription by chromatin remodeling underlying long-lasting changes in neurons, with direct implications for the study of epigenetic mechanisms in long-term memory formation and behavior. Furthermore, the study of epigenetic gene regulation, in conjunction with transcription factor activation, can provide complementary lines of evidence to further understanding transcriptional mechanisms subserving memory storage.
Collapse
Affiliation(s)
- Farah D. Lubin
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Swati Gupta
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - R. Ryley Parrish
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicola M. Grissom
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robin L. Davis
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
34
|
Involvement of p38/NF-κB signaling pathway in the nucleus accumbens in the rewarding effects of morphine in rats. Behav Brain Res 2011; 218:184-9. [DOI: 10.1016/j.bbr.2010.11.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/15/2010] [Accepted: 11/23/2010] [Indexed: 11/23/2022]
|
35
|
Abstract
We have previously reported that the reconsolidation and extinction of hippocampal-dependent contextual fear memory can be initiated by a single context conditioned stimulus (CS) presentation of either short or long duration, and that both processes require protein synthesis in this brain region. Furthermore, reconsolidation depends on Zif268 activity in this region. Here we show that by infusing a recombinant brain-derived neurotrophic factor (rBDNF) directly into the brain of rats, that high levels of mature BDNF in the hippocampus at retrieval constrain the extinction of the fear memory after prolonged memory recall. We also show after a short CS exposure that reconsolidation was impaired using antisense oligonucleotides targeting Zif268, and that, similarly, reductions in conditioned behavior were observed after prolonged CS presentation when extinction is constrained by high levels of BDNF. This is direct evidence that in the mammalian brain extinction proceeds exclusively after prolonged CS exposure. In addition, that BDNF activity in the hippocampus contributes to a molecular switch for the extinction of hippocampal-dependent memory.
Collapse
Affiliation(s)
- Anne Kirtley
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | | |
Collapse
|
36
|
Perez-Cuesta LM, Maldonado H. Memory reconsolidation and extinction in the crab: Mutual exclusion or coexistence? Learn Mem 2009; 16:714-21. [DOI: 10.1101/lm.1544609] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Hepp Y, Pérez-Cuesta LM, Maldonado H, Pedreira ME. Extinction memory in the crab Chasmagnathus: recovery protocols and effects of multi-trial extinction training. Anim Cogn 2009; 13:391-403. [PMID: 19813034 DOI: 10.1007/s10071-009-0288-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/16/2009] [Accepted: 09/17/2009] [Indexed: 10/20/2022]
Abstract
A decline in the frequency or intensity of a conditioned behavior following the withdrawal of the reinforcement is called experimental extinction. However, the experimental manipulation necessary to trigger memory reconsolidation or extinction is to expose the animal to the conditioned stimulus in the absence of reinforcement. Recovery protocols were used to reveal which of these two processes was developed. By using the crab contextual memory model (a visual danger stimulus associated with the training context), we investigated the dynamics of extinction memory in Chasmagnathus. Here, we reveal the presence of three recovery protocols that restore the original memory: the old memory comes back 4 days after the extinction training, or when a weak training is administered later, or once the VDS is presented in a novel context 24 h after the extinction session. Another objective was to evaluate whether the administration of multi-trial extinction training could trigger an extinction memory in Chasmagnathus. The results evince that the extinction memory appears only when the total re-exposure time is around 90 min independently of the number of trials employed to accumulate it. Thus, it is feasible that the mechanisms described for the case of the extinction memory acquired through a single training trial are valid for multi-trial extinction protocols. Finally, these results are in agreement with those reports obtained with models phylogenetically far apart from the crab. Behind this attempt is the idea that in the domain of studies on memory, some principles of behavior organization and basic mechanisms have universal validity.
Collapse
Affiliation(s)
- Yanil Hepp
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, IFIByNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| | | | | | | |
Collapse
|
38
|
Lee JLC. Reconsolidation: maintaining memory relevance. Trends Neurosci 2009; 32:413-20. [PMID: 19640595 DOI: 10.1016/j.tins.2009.05.002] [Citation(s) in RCA: 347] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 05/13/2009] [Accepted: 05/15/2009] [Indexed: 11/18/2022]
Abstract
The retrieval of a memory places it into a plastic state, the result of which is that the memory can be disrupted or even enhanced by experimental treatment. This phenomenon has been conceptualised within a framework of memories being reactivated and then reconsolidated in repeated rounds of cellular processing. The reconsolidation phase has been seized upon as crucial for the understanding of memory stability and, more recently, as a potential therapeutic target in the treatment of disorders such as post-traumatic stress and drug addiction. However, little is known about the reactivation process, or what might be the adaptive function of retrieval-induced plasticity. Reconsolidation has long been proposed to mediate memory updating, but only recently has this hypothesis been supported experimentally. Here, the adaptive function of memory reconsolidation is explored in more detail, with a strong emphasis on its role in updating memories to maintain their relevance.
Collapse
Affiliation(s)
- Jonathan L C Lee
- School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
39
|
|