1
|
Mourier T. Transposable elements and circular DNAs. Mob Genet Elements 2016; 6:e1240748. [PMID: 28090380 PMCID: PMC5173269 DOI: 10.1080/2159256x.2016.1240748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 01/06/2023] Open
Abstract
Circular DNAs are extra-chromosomal fragments that become circularized by genomic recombination events. We have recently shown that yeast LTR elements generate circular DNAs through recombination events between their flanking long terminal repeats (LTRs). Similarly, circular DNAs can be generated by recombination between LTRs residing at different genomic loci, in which case the circular DNA will contain the intervening sequence. In yeast, this can result in gene copy number variations when circles contain genes and origins of replication. Here, I speculate on the potential and implications of circular DNAs generated through recombination between human transposable elements.
Collapse
Affiliation(s)
- Tobias Mourier
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology , Thuwal, Saudi Arabia
| |
Collapse
|
2
|
Zhou K, Kuo A, Grigoriev IV. Reverse transcriptase and intron number evolution. Stem Cell Investig 2014; 1:17. [PMID: 27358863 DOI: 10.3978/j.issn.2306-9759.2014.08.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 08/04/2014] [Indexed: 11/14/2022]
Abstract
BACKGROUND Introns are universal in eukaryotic genomes and play important roles in transcriptional regulation, mRNA export to the cytoplasm, nonsense-mediated decay as both a regulatory and a splicing quality control mechanism, R-loop avoidance, alternative splicing, chromatin structure, and evolution by exon-shuffling. METHODS Sixteen complete fungal genomes were used 13 of which were sequenced and annotated by JGI. Ustilago maydis, Cryptococcus neoformans, and Coprinus cinereus (also named Coprinopsis cinerea) were from the Broad Institute. Gene models from JGI-annotated genomes were taken from the GeneCatalog track that contained the best representative gene models. Varying fractions of the GeneCatalog were manually curated by external users. For clarity, we used the JGI unique database identifier. RESULTS The last common ancestor of eukaryotes (LECA) has an estimated 6.4 coding exons per gene (EPG) and evolved into the diverse eukaryotic life forms, which is recapitulated by the development of a stem cell. We found a parallel between the simulated reverse transcriptase (RT)-mediated intron loss and the comparative analysis of 16 fungal genomes that spanned a wide range of intron density. Although footprints of RT (RTF) were dynamic, relative intron location (RIL) to the 5'-end of mRNA faithfully traced RT-mediated intron loss and revealed 7.7 EPG for LECA. The mode of exon length distribution was conserved in simulated intron loss, which was exemplified by the shared mode of 75 nt between fungal and Chlamydomonas genomes. The dominant ancient exon length was corroborated by the average exon length of the most intron-rich genes in fungal genomes and consistent with ancient protein modules being ~25 aa. Combined with the conservation of a protein length of 400 aa, the earliest ancestor of eukaryotes could have 16 EPG. During earlier evolution, Ascomycota's ancestor had significantly more 3'-biased RT-mediated intron loss that was followed by dramatic RTF loss. There was a down trend of EPG from more conserved to less conserved genes. Moreover, species-specific genes have higher exon-densities, shorter exons, and longer introns when compared to genes conserved at the phylum level. However, intron length in species-specific genes became shorter than that of genes conserved in all species after genomes experiencing drastic intron loss. The estimated EPG from the most frequent exon length is more than double that from the RIL method. CONCLUSIONS This implies significant intron loss during the very early period of eukaryotic evolution. De novo gene-birth contributes to shorter exons, longer introns, and higher exon-density in species-specific genes relative to conserved genes.
Collapse
Affiliation(s)
- Kemin Zhou
- 1 Computational Genomics, Bristol-Myers Squibb, 311 Pennington Rocky Hill Road, Pennington, NJ 08534, USA ; 2 US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Alan Kuo
- 1 Computational Genomics, Bristol-Myers Squibb, 311 Pennington Rocky Hill Road, Pennington, NJ 08534, USA ; 2 US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Igor V Grigoriev
- 1 Computational Genomics, Bristol-Myers Squibb, 311 Pennington Rocky Hill Road, Pennington, NJ 08534, USA ; 2 US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| |
Collapse
|
3
|
Ivancevic AM, Walsh AM, Kortschak RD, Adelson DL. Jumping the fine LINE between species: horizontal transfer of transposable elements in animals catalyses genome evolution. Bioessays 2013; 35:1071-82. [PMID: 24003001 DOI: 10.1002/bies.201300072] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Horizontal transfer (HT) is the transmission of genetic material between non-mating species, a phenomenon thought to occur rarely in multicellular eukaryotes. However, many transposable elements (TEs) are not only capable of HT, but have frequently jumped between widely divergent species. Here we review and integrate reported cases of HT in retrotransposons of the BovB family, and DNA transposons, over a broad range of animals spanning all continents. Our conclusions challenge the paradigm that HT in vertebrates is restricted to infective long terminal repeat (LTR) retrotransposons or retroviruses. This raises the possibility that other non-LTR retrotransposons, such as L1 or CR1 elements, believed to be only vertically transmitted, can horizontally transfer between species. Growing evidence indicates that the process of HT is much more general across different TEs and species than previously believed, and that it likely shapes eukaryotic genomes and catalyses genome evolution.
Collapse
Affiliation(s)
- Atma M Ivancevic
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
4
|
Hobson D, Wei W, Steinmetz L, Svejstrup J. RNA polymerase II collision interrupts convergent transcription. Mol Cell 2012; 48:365-74. [PMID: 23041286 PMCID: PMC3504299 DOI: 10.1016/j.molcel.2012.08.027] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/20/2012] [Accepted: 08/10/2012] [Indexed: 01/22/2023]
Abstract
Antisense noncoding transcripts, genes-within-genes, and convergent gene pairs are prevalent among eukaryotes. The existence of such transcription units raises the question of what happens when RNA polymerase II (RNAPII) molecules collide head-to-head. Here we use a combination of biochemical and genetic approaches in yeast to show that polymerases transcribing opposite DNA strands cannot bypass each other. RNAPII stops but does not dissociate upon head-to-head collision in vitro, suggesting that opposing polymerases represent insurmountable obstacles for each other. Head-to-head collision in vivo also results in RNAPII stopping, and removal of collided RNAPII from the DNA template can be achieved via ubiquitylation-directed proteolysis. Indeed, in cells lacking efficient RNAPII polyubiquitylation, the half-life of collided polymerases increases, so that they can be detected between convergent genes. These results provide insight into fundamental mechanisms of gene traffic control and point to an unexplored effect of antisense transcription on gene regulation via polymerase collision.
Collapse
MESH Headings
- Blotting, Northern
- Chromatin Immunoprecipitation
- DNA, Antisense/chemistry
- DNA, Antisense/genetics
- DNA, Antisense/metabolism
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- Gene Expression Regulation, Fungal
- Models, Genetic
- Models, Molecular
- Nucleic Acid Conformation
- Protein Binding
- Protein Structure, Tertiary
- RNA Polymerase II/chemistry
- RNA Polymerase II/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
- Time Factors
- Transcription, Genetic
- Ubiquitination
Collapse
Affiliation(s)
- David J. Hobson
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, London EN6 3LD, UK
| | - Wu Wei
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany
- Stanford Genome Technology Center, 855 South California Avenue, Palo Alto, CA 94304, USA
| | - Lars M. Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany
- Stanford Genome Technology Center, 855 South California Avenue, Palo Alto, CA 94304, USA
| | - Jesper Q. Svejstrup
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, London EN6 3LD, UK
| |
Collapse
|
5
|
Reductive divergence of enterobacterial repetitive intergenic consensus sequences among Gammaproteobacteria genomes. J Microbiol 2011; 49:35-45. [PMID: 21369977 DOI: 10.1007/s12275-011-1024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 01/27/2011] [Indexed: 10/18/2022]
Abstract
Enterobacterial repetitive intergenic consensus (ERIC) sequence is a transcription-modulating, nonautonomous, miniature inverted-repeat transposable element. Its origin and the mechanism of highly varying incidences, limited to Enterobacteriaceae and Vibrionaceae, have not been identified. In this study, distribution and divergence of ERICs along bacterial taxonomie units were analyzed. ERICs were found among five families of gammaproteobacteria, with the copy numbers varying with exponential increments. The variability was explained by genus (45%) and species (36%) affiliations, indicating that copy numbers are specific to sub-family taxa. ERICs were interspersed in genomes with considerable divergences. Locations of ERICs in a genome appeared to be strongly conserved in a strain, moderately in a species or a genus, and weakly in a family. ERICs in different species of a genus were from the identical population of sequences while ERICs in different genera of a family were nearly identical. However, ERICs in different families formed distinct monophylectic groups, implying vertical transmission of diverging population of sequences. In spite of large difference in copy numbers, overall intra-genome evolutionary distances among ERICs were similar among different species, except for a few genomes. The exceptions substantiated hypotheses of genetic drifts and horizontal gene transfers of mobility capacity. Therefore, the confined, variable distribution of ERIC could be explained as a two-step evolution: introduction and proliferation of ERIC in one of the progenitors of gammaproteobacteria, followed by vertical transmission under negative selection. Deterioration of sequences and reduction in copy number were concluded to be the predominant patterns in the evolution of ERIC loci.
Collapse
|
6
|
Mortada H, Vieira C, Lerat E. Genes devoid of full-length transposable element insertions are involved in development and in the regulation of transcription in human and closely related species. J Mol Evol 2010; 71:180-91. [PMID: 20798934 DOI: 10.1007/s00239-010-9376-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 07/26/2010] [Indexed: 02/04/2023]
Abstract
Transposable elements (TEs) are major components of mammalian genomes, and their impact on genome evolution is now well established. In recent years several findings have shown that they are associated with the expression level and function of genes. In this study, we analyze the relationships between human genes and full-length TE copies in terms of three factors (gene function, expression level, and selective pressure). We classified human genes according to their TE density, and found that TE-free genes are involved in important functions such as development, transcription, and the regulation of transcription, whereas TE-rich genes are involved in functions such as transport and metabolism. This trend is conserved through evolution. We show that this could be explained by a stronger selection pressure acting on both the coding and non-coding regions of TE-free genes than on those of TE-rich genes. The higher level of expression found for TE-rich genes in tumor and immune system tissues suggests that TEs play an important role in gene regulation.
Collapse
|
7
|
Mourier T, Willerslev E. Large-scale transcriptome data reveals transcriptional activity of fission yeast LTR retrotransposons. BMC Genomics 2010; 11:167. [PMID: 20226011 PMCID: PMC2848245 DOI: 10.1186/1471-2164-11-167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 03/12/2010] [Indexed: 12/02/2022] Open
Abstract
Background Retrotransposons are transposable elements that proliferate within eukaryotic genomes through a process involving reverse transcription. The numbers of retrotransposons within genomes and differences between closely related species may yield insight into the evolutionary history of the elements. Less is known about the ongoing dynamics of retrotransposons, as analysis of genome sequences will only reveal insertions of retrotransposons that are fixed - or near fixation - in the population or strain from which genetic material has been extracted for sequencing. One pre-requisite for retrotransposition is transcription of the elements. Given their intrinsic sequence redundancy, transcriptome-level analyses of transposable elements are scarce. We have used recently published transcriptome data from the fission yeast Schizosaccharomyces pombe to assess the ability to detect and describe transcriptional activity from Long Terminal Repeat (LTR) retrotransposons. LTR retrotransposons are normally flanked by two LTR sequences. However, the majority of LTR sequences in S. pombe exist as solitary LTRs, i.e. as single terminal repeat sequences not flanking a retrotransposon. Transcriptional activity was analysed for both full-length LTR retrotransposons and solitary LTRs. Results Two independent sets of transcriptome data reveal the presence of full-length, polyadenylated transcripts from LTR retrotransposons in S. pombe during growth phase in rich medium. The redundancy of retrotransposon sequences makes it difficult to assess which elements are transcriptionally active, but data strongly indicates that only a subset of the LTR retrotransposons contribute significantly to the detected transcription. A considerable level of reverse strand transcription is also detected. Equal levels of transcriptional activity are observed from both strands of solitary LTR sequences. Transcriptome data collected during meiosis suggests that transcription of solitary LTRs is correlated with the transcription of nearby protein-coding genes. Conclusions Presumably, the host organism negatively regulates proliferation of LTR retrotransposons. The finding of considerable transcriptional activity of retrotransposons suggests that part of this regulation is likely to take place at a post-transcriptional level. Alternatively, the transcriptional activity may signify a hitherto unrecognized activity level of retrotransposon proliferation. Our findings underline the usefulness of transcriptome data in elucidating dynamics in retrotransposon transcription.
Collapse
Affiliation(s)
- Tobias Mourier
- Ancient DNA and Evolution Group, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen, Denmark.
| | | |
Collapse
|
8
|
Rangwala SH, Zhang L, Kazazian HH. Many LINE1 elements contribute to the transcriptome of human somatic cells. Genome Biol 2009; 10:R100. [PMID: 19772661 PMCID: PMC2768975 DOI: 10.1186/gb-2009-10-9-r100] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 08/21/2009] [Accepted: 09/22/2009] [Indexed: 11/29/2022] Open
Abstract
Over 600 LINE 1 elements are shown to be transcribed in humans; 400 of these are full-length elements in the reference genome. Background While LINE1 (L1) retroelements comprise nearly 20% of the human genome, the majority are thought to have been rendered transcriptionally inactive, due to either mutation or epigenetic suppression. How many L1 elements 'escape' these forms of repression and contribute to the transcriptome of human somatic cells? We have cloned out expressed sequence tags corresponding to the 5' and 3' flanks of L1 elements in order to characterize the population of elements that are being actively transcribed. We also examined expression of a select number of elements in different individuals. Results We isolated expressed sequence tags from human lymphoblastoid cell lines corresponding to 692 distinct L1 element sites, including 410 full-length elements. Four of the expression tagged sites corresponding to full-length elements from the human specific L1Hs subfamily were examined in European-American individuals and found to be differentially expressed in different family members. Conclusions A large number of different L1 element sites are expressed in human somatic tissues, and this expression varies among different individuals. Paradoxically, few elements were tagged at high frequency, indicating that the majority of expressed L1s are transcribed at low levels. Based on our preliminary expression studies of a limited number of elements in a single family, we predict a significant degree of inter-individual transcript-level polymorphism in this class of sequence.
Collapse
Affiliation(s)
- Sanjida H Rangwala
- Department of Genetics, University of Pennsylvania School of Medicine, Hamilton Walk, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
9
|
Mourier T, Willerslev E. Retrotransposons and non-protein coding RNAs. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:493-501. [PMID: 19729447 DOI: 10.1093/bfgp/elp036] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Retrotransposons constitute a significant fraction of mammalian genomes. Considering the finding of widespread transcriptional activity across entire genomes, it is not surprising that retrotransposons contribute to the collective RNA pool. However, the transcriptional output from retrotransposons does not merely represent spurious transcription. We review examples of functional RNAs transcribed from retrotransposons, and address the collection of non-protein coding RNAs derived from transposable element sequences, including numerous human microRNAs and the neuronal BC RNAs. Finally, we review the emerging understanding of how retrotransposons themselves are regulated by small RNAs.
Collapse
Affiliation(s)
- Tobias Mourier
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|