1
|
Molfetta R, Lecce M, Milito ND, Putro E, Pietropaolo G, Marangio C, Scarno G, Moretti M, De Smaele E, Santini T, Bernardini G, Sciumè G, Santoni A, Paolini R. SCF and IL-33 regulate mouse mast cell phenotypic and functional plasticity supporting a pro-inflammatory microenvironment. Cell Death Dis 2023; 14:616. [PMID: 37730723 PMCID: PMC10511458 DOI: 10.1038/s41419-023-06139-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Mast cells (MCs) are multifaceted innate immune cells often present in the tumor microenvironment (TME). Several recent findings support their contribution to the transition from chronic inflammation to cancer. However, MC-derived mediators can either favor tumor progression, inducing the spread of the tumor, or exert anti-tumorigenic functions, limiting tumor growth. This apparent controversial role likely depends on the plastic nature of MCs that under different microenvironmental stimuli can rapidly change their phenotype and functions. Thus, the exact effect of unique MC subset(s) during tumor progression is far from being understood. Using a murine model of colitis-associated colorectal cancer, we initially characterized the MC population within the TME and in non-lesional colonic areas, by multicolor flow cytometry and confocal microscopy. Our results demonstrated that tumor-associated MCs harbor a main connective tissue phenotype and release high amounts of Interleukin (IL)-6 and Tumor Necrosis Factor (TNF)-α. This MC phenotype correlates with the presence of high levels of Stem Cell Factor (SCF) and IL-33 inside the tumor. Thus, we investigated the effect of SCF and IL-33 on primary MC cultures and underscored their ability to shape MC phenotype eliciting the production of pro-inflammatory cytokines. Our findings support the conclusion that during colonic transformation a sustained stimulation by SCF and IL-33 promotes the accumulation of a prevalent connective tissue-like MC subset that through the secretion of IL-6 and TNF-α maintains a pro-inflammatory microenvironment.
Collapse
Affiliation(s)
- Rosa Molfetta
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy.
| | - Mario Lecce
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
- Leibniz Institute for Immunotherapy-Division of functional immune cell modulation, Franz-Josef-Strausse, D-93053, Regensburg, Germany
| | - Nadia D Milito
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Erisa Putro
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Giuseppe Pietropaolo
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Caterina Marangio
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Gianluca Scarno
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marta Moretti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Tiziana Santini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
- IRCCS Neuromed, Pozzilli, 86077, Isernia, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
2
|
Paukner K, Králová Lesná I, Poledne R. Cholesterol in the Cell Membrane-An Emerging Player in Atherogenesis. Int J Mol Sci 2022; 23:533. [PMID: 35008955 PMCID: PMC8745363 DOI: 10.3390/ijms23010533] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Membrane cholesterol is essential for cell membrane properties, just as serum cholesterol is important for the transport of molecules between organs. This review focuses on cholesterol transport between lipoproteins and lipid rafts on the surface of macrophages. Recent studies exploring this mechanism and recognition of the central dogma-the key role of macrophages in cardiovascular disease-have led to the notion that this transport mechanism plays a major role in the pathogenesis of atherosclerosis. The exact molecular mechanism of this transport remains unclear. Future research will improve our understanding of the molecular and cellular bases of lipid raft-associated cholesterol transport.
Collapse
Affiliation(s)
- Karel Paukner
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.K.L.); (R.P.)
- Department of Physiology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
- Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Small Animal Clinic, 612 00 Brno, Czech Republic
| | - Ivana Králová Lesná
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.K.L.); (R.P.)
- Department of Anesthesia and Intensive Medicine, First Faculty of Medicine, Charles University and University Military Hospital, 128 08 Prague, Czech Republic
| | - Rudolf Poledne
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.K.L.); (R.P.)
| |
Collapse
|
3
|
FcεRI Signaling in the Modulation of Allergic Response: Role of Mast Cell-Derived Exosomes. Int J Mol Sci 2020; 21:ijms21155464. [PMID: 32751734 PMCID: PMC7432241 DOI: 10.3390/ijms21155464] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Mast cells (MCs) are immune cells that act as environment resident sentinels playing a crucial role in Th2-mediated immune responses, including allergic reactions. Distinguishing features of MCs are the presence of numerous cytoplasmic granules that encapsulate a wide array of preformed bio-active molecules and the constitutive expression of the high affinity receptor of IgE (FcεRI). Upon FcεRI engagement by means of IgE and multivalent antigens, aggregated receptors trigger biochemical pathways that ultimately lead to the release of granule-stored and newly synthesized pro-inflammatory mediators. Additionally, MCs are also able to release exosomes either constitutively or upon stimulation. Exosomes are nanosized vesicles of endocytic origin endowed with important immunoregulatory properties, and represent an additional way of intercellular communication. Interestingly, exosomes generated upon FcεRI engagement contain co-stimulatory and adhesion molecules, lipid mediators, and MC-specific proteases, as well as receptor subunits together with IgE and antigens. These findings support the notion that FcεRI signaling plays an important role in influencing the composition and functions of exosomes derived by MCs depending on their activation status.
Collapse
|
4
|
Direct Inhibition of the Allergic Effector Response by Raw Cow's Milk-An Extensive In Vitro Assessment. Cells 2020; 9:cells9051258. [PMID: 32438725 PMCID: PMC7290799 DOI: 10.3390/cells9051258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
The mechanisms underlying the allergy-protective effects of raw cow’s milk are poorly understood. The current focus is mainly on the modulation of T cell responses. In the present study, we investigated whether raw cow’s milk can also directly inhibit mast cells, the key effector cells in IgE-mediated allergic responses. Primary murine bone marrow-derived mast cells (BMMC) and peritoneal mast cells (PMC), were incubated with raw milk, heated raw milk, or shop milk, prior to IgE-mediated activation. The effects on mast cell activation and underlying signaling events were assessed. Raw milk was furthermore fractionated based on molecular size and obtained fractions were tested for their capacity to reduce IgE-mediated mast cell activation. Coincubation of BMMC and PMC with raw milk prior to activation reduced β-hexosaminidase release and IL-6 and IL-13 production, while heated raw milk or shop milk had no effect. The reduced mast cell activation coincided with a reduced intracellular calcium influx. In addition, SYK and ERK phosphorylation levels, both downstream signaling events of the FcεRI, were lower in raw milk-treated BMMC compared to control BMMC, although differences did not reach full significance. Raw milk-treated BMMC furthermore retained membrane-bound IgE expression after allergen stimulation. Raw milk fractionation showed that the heat-sensitive raw milk components responsible for the reduced mast cell activation are likely to have a molecular weight of > 37 kDa. The present study demonstrates that raw cow’s milk can also directly affect mast cell activation. These results extend the current knowledge on mechanisms via which raw cow’s milk prevents allergic diseases, which is crucial for the development of new, microbiologically safe, nutritional strategies to reduce allergic diseases.
Collapse
|
5
|
Molfetta R, Lecce M, Quatrini L, Caracciolo G, Digiacomo L, Masuelli L, Milito ND, Vulpis E, Zingoni A, Galandrini R, Santoni A, Paolini R. Immune complexes exposed on mast cell-derived nanovesicles amplify allergic inflammation. Allergy 2020; 75:1260-1263. [PMID: 31713871 DOI: 10.1111/all.14103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/03/2019] [Accepted: 10/22/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Rosa Molfetta
- Department of Molecular Medicine Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci Bolognetti “Sapienza” University of Rome Rome Italy
| | - Mario Lecce
- Department of Molecular Medicine Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci Bolognetti “Sapienza” University of Rome Rome Italy
| | - Linda Quatrini
- Department of Molecular Medicine Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci Bolognetti “Sapienza” University of Rome Rome Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci Bolognetti “Sapienza” University of Rome Rome Italy
| | - Luca Digiacomo
- Department of Molecular Medicine Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci Bolognetti “Sapienza” University of Rome Rome Italy
| | - Laura Masuelli
- Department of Experimental Medicine “Sapienza” University of Rome Rome Italy
| | - Nadia Domenica Milito
- Department of Molecular Medicine Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci Bolognetti “Sapienza” University of Rome Rome Italy
| | - Elisabetta Vulpis
- Department of Molecular Medicine Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci Bolognetti “Sapienza” University of Rome Rome Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci Bolognetti “Sapienza” University of Rome Rome Italy
| | | | - Angela Santoni
- Department of Molecular Medicine Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci Bolognetti “Sapienza” University of Rome Rome Italy
- IRCCS Neuromed Pozzilli Italy
| | - Rossella Paolini
- Department of Molecular Medicine Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci Bolognetti “Sapienza” University of Rome Rome Italy
| |
Collapse
|
6
|
Sharma N, Ponce M, Kaul S, Pan Z, Berry DM, Eiwegger T, McGlade CJ. SLAP Is a Negative Regulator of FcεRI Receptor-Mediated Signaling and Allergic Response. Front Immunol 2019; 10:1020. [PMID: 31156621 PMCID: PMC6529641 DOI: 10.3389/fimmu.2019.01020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/23/2019] [Indexed: 01/09/2023] Open
Abstract
Binding of antigen to IgE-high affinity FcεRI complexes on mast cells and basophils results in the release of preformed mediators such as histamine and de novo synthesis of cytokines causing allergic reactions. Src-like adapter protein (SLAP) functions co-operatively with c-Cbl to negatively regulate signaling downstream of the T cell receptor, B cell receptor, and receptor tyrosine kinases (RTK). Here, we investigated the role of SLAP in FcεRI-mediated mast cell signaling, using bone marrow derived mast cells (BMMCs) from SLAP knock out (SLAP KO) mice. Mature SLAP-KO BMMCs displayed significantly enhanced antigen induced degranulation and synthesis of IL-6, TNFα, and MCP-1 compared to wild type (WT) BMMCs. In addition, SLAP KO mice displayed an enhanced passive cutaneous anaphylaxis response. In agreement with a negative regulatory role, SLAP KO BMMCs showed enhanced FcεRI-mediated signaling to downstream effector kinases, Syk, Erk, and Akt. Recombinant GST-SLAP protein binds to the FcεRIβ chain and to the Cbl-b in mast cell lysates, suggesting a role in FcεRI down regulation. In addition, the ubiquitination of FcεRIγ chain and antigen mediated down regulation of FcεRI is impaired in SLAP KO BMMCs compared to the wild type. In line with these findings, stimulation of peripheral blood human basophils with FcεRIα antibody, or a clinically relevant allergen, resulted in increased SLAP expression. Together, these results indicate that SLAP is a dynamic regulator of IgE-FcεRI signaling, limiting allergic responses.
Collapse
Affiliation(s)
- Namit Sharma
- Program in Cell Biology and the Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marta Ponce
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Savar Kaul
- Program in Cell Biology and the Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Zhongda Pan
- Program in Cell Biology and the Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Donna M Berry
- Program in Cell Biology and the Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Thomas Eiwegger
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Food allergy and Anaphylaxis Program, Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Catherine J McGlade
- Program in Cell Biology and the Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Varshney P, Yadav V, Saini N. Lipid rafts in immune signalling: current progress and future perspective. Immunology 2016; 149:13-24. [PMID: 27153983 DOI: 10.1111/imm.12617] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 04/22/2016] [Accepted: 04/28/2016] [Indexed: 12/15/2022] Open
Abstract
Lipid rafts are dynamic assemblies of proteins and lipids that harbour many receptors and regulatory molecules and so act as a platform for signal transduction. They float freely within the liquid-disordered bilayer of cellular membranes and can cluster to form larger ordered domains. Alterations in lipid rafts are commonly found to be associated with the pathogenesis of several human diseases and recent reports have shown that the raft domains can also be perturbed by targeting raft proteins through microRNAs. Over the last few years, the importance of lipid rafts in modulating both innate and acquired immune responses has been elucidated. Various receptors present on immune cells like B cells, T cells, basophils and mast cells associate with lipid rafts on ligand binding and initiate signalling cascades leading to inflammation. Furthermore, disrupting lipid raft integrity alters lipopolysaccharide-induced cytokine secretion, IgE signalling, and B-cell and T-cell activation. The objective of this review is to summarize the recent progress in understanding the role of lipid rafts in the modulation of immune signalling and its related therapeutic potential for autoimmune diseases and inflammatory disorders.
Collapse
Affiliation(s)
- Pallavi Varshney
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific & Innovative Research, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Vikas Yadav
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Neeru Saini
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific & Innovative Research, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| |
Collapse
|
8
|
New Regulatory Roles of Galectin-3 in High-Affinity IgE Receptor Signaling. Mol Cell Biol 2016; 36:1366-82. [PMID: 26929198 DOI: 10.1128/mcb.00064-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/16/2016] [Indexed: 01/18/2023] Open
Abstract
Aggregation of the high-affinity receptor for IgE (FcεRI) in mast cells initiates activation events that lead to degranulation and release of inflammatory mediators. To better understand the signaling pathways and genes involved in mast cell activation, we developed a high-throughput mast cell degranulation assay suitable for RNA interference experiments using lentivirus-based short hairpin RNA (shRNA) delivery. We tested 432 shRNAs specific for 144 selected genes for effects on FcεRI-mediated mast cell degranulation and identified 15 potential regulators. In further studies, we focused on galectin-3 (Gal3), identified in this study as a negative regulator of mast cell degranulation. FcεRI-activated cells with Gal3 knockdown exhibited upregulated tyrosine phosphorylation of spleen tyrosine kinase and several other signal transduction molecules and enhanced calcium response. We show that Gal3 promotes internalization of IgE-FcεRI complexes; this may be related to our finding that Gal3 is a positive regulator of FcεRI ubiquitination. Furthermore, we found that Gal3 facilitates mast cell adhesion and motility on fibronectin but negatively regulates antigen-induced chemotaxis. The combined data indicate that Gal3 is involved in both positive and negative regulation of FcεRI-mediated signaling events in mast cells.
Collapse
|
9
|
Shi L, Zou L, Gao J, Xu H, Shi X, Chen H. Imidacloprid inhibits IgE-mediated RBL-2H3 cell degranulation and passive cutaneous anaphylaxis. Asia Pac Allergy 2016; 6:236-244. [PMID: 27803884 PMCID: PMC5088260 DOI: 10.5415/apallergy.2016.6.4.236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/21/2016] [Indexed: 11/18/2022] Open
Abstract
Background Imidacloprid has been commonly used as a pesticide for crop protection and acts as nicotinic acetylcholine receptor agonists. Little information about the relationship between imidacloprid and allergy is available. Objective This study aims to examine the effects of imidacoprid on IgE-mediated mast cell activation. Methods The rat basophilic leukemia cell line RBL-2H3 (RBL-2H3 cells) were treated with 10-3 – 10-12 mol/L imidacloprid, followed by measuring the mediator production, influx of Ca2+ in IgE-activated RBL-2H3 cells, and the possible effects of imidacoprid on anti-dinitrophenyl IgE-induced passive cutaneous anaphylaxis (PCA). Results It was shown that imidacoprid suppressed the production of histamine, β-hexosaminidase, leukotriene C4, interleukin-6, tumor necrosis factor-α, and Ca2+ mobilization in IgE-activated RBL-2H3 cells and decreased vascular extravasation in IgE-induced PCA. Conclusion It is the first time to show that imidacloprid suppressed the activation of RBL-2H3 cells.
Collapse
Affiliation(s)
- Linbo Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Li Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- School of Food Science, Nanchang University, Nanchang 330047, China
| | - Huaing Xu
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiaoyun Shi
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
10
|
Quatrini L, Molfetta R, Zitti B, Peruzzi G, Fionda C, Capuano C, Galandrini R, Cippitelli M, Santoni A, Paolini R. Ubiquitin-dependent endocytosis of NKG2D-DAP10 receptor complexes activates signaling and functions in human NK cells. Sci Signal 2015; 8:ra108. [PMID: 26508790 DOI: 10.1126/scisignal.aab2724] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cytotoxic lymphocytes share the presence of the activating receptor NK receptor group 2, member D (NKG2D) and the signaling-competent adaptor DNAX-activating protein 10 (DAP10), which together play an important role in antitumor immune surveillance. Ligand stimulation induces the internalization of NKG2D-DAP10 complexes and their delivery to lysosomes for degradation. In experiments with human NK cells and cell lines, we found that the ligand-induced endocytosis of NKG2D-DAP10 depended on the ubiquitylation of DAP10, which was also required for degradation of the internalized complexes. Moreover, through combined biochemical and microscopic analyses, we showed that ubiquitin-dependent receptor endocytosis was required for the activation of extracellular signal-regulated kinase (ERK) and NK cell functions, such as the secretion of cytotoxic granules and the inflammatory cytokine interferon-γ. These results suggest that NKG2D-DAP10 endocytosis represents a means to decrease cell surface receptor abundance, as well as to control signaling outcome in cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Linda Quatrini
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Beatrice Zitti
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Giovanna Peruzzi
- Istituto Italiano di Tecnologia, CLNS@Sapienza, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Cristina Capuano
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Ricciarda Galandrini
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy. Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00161 Rome, Italy.
| | - Rossella Paolini
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy. Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00161 Rome, Italy.
| |
Collapse
|
11
|
McShane MP, Friedrichson T, Giner A, Meyenhofer F, Barsacchi R, Bickle M, Zerial M. A Combination of Screening and Computational Approaches for the Identification of Novel Compounds That Decrease Mast Cell Degranulation. ACTA ACUST UNITED AC 2015; 20:720-8. [PMID: 25838434 PMCID: PMC4512528 DOI: 10.1177/1087057115579613] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/03/2015] [Indexed: 12/19/2022]
Abstract
High-content screening of compound libraries poses various challenges in the early steps in drug discovery such as gaining insights into the mode of action of the selected compounds. Here, we addressed these challenges by integrating two biological screens through bioinformatics and computational analysis. We screened a small-molecule library enriched in amphiphilic compounds in a degranulation assay in rat basophilic leukemia 2H3 (RBL-2H3) cells. The same library was rescreened in a high-content image-based endocytosis assay in HeLa cells. This assay was previously applied to a genome-wide RNAi screen that produced quantitative multiparametric phenotypic profiles for genes that directly or indirectly affect endocytosis. By correlating the endocytic profiles of the compounds with the genome-wide siRNA profiles, we identified candidate pathways that may be inhibited by the compounds. Among these, we focused on the Akt pathway and validated its inhibition in HeLa and RBL-2H3 cells. We further showed that the compounds inhibited the translocation of the Akt-PH domain to the plasma membrane. The approach performed here can be used to integrate chemical and functional genomics screens for investigating the mechanism of action of compounds.
Collapse
Affiliation(s)
- Marisa P McShane
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Angelika Giner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Felix Meyenhofer
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany University of Fribourg, Department of Medicine-Anatomy, Fribourg, Switzerland
| | - Rico Barsacchi
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marc Bickle
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
12
|
Abstract
Mast cells are key effector and immunoregulatory cells in IgE-associated immune responses, including allergic disorders. IgE antibodies bind to the high-affinity IgE receptor, FcεRI, expressed on the surface of mast cells; antigen-induced cross-linking of FcεRI-bound IgE molecules activates the mast cell to release an array of proinflammatory and immunomodulatory mediators. Because mast cells often respond to very low levels of antigen in vivo, the level of FcεRI expressed on the surface of these cells is an important factor in determining the responsiveness of these cells to antigen. FcεRI surface expression is regulated by a number of processes, including FcεRI stabilization, FcεRI recycling, and antigen-induced internalization. Although members of the Rab family of small GTPases and the ubiquitin ligase, Cbl, have recently emerged as major regulators of many of the membrane trafficking events that govern FcεRI expression levels, the mechanisms and intracellular pathways that regulate FcεRI trafficking remain poorly defined. This chapter outlines a number of flow cytometry-based assays that can be used to investigate cell surface FcεRI expression and dynamics (stabilization, recycling, and internalization) on bone marrow-derived mast cells (BMCMCs), the most commonly used model system for studying mast cells in vitro. Given the importance of FcεRI levels to mast cell responsiveness and function, the characterization of FcεRI expression and dynamics on different mast cell populations is critical when trying to compare IgE-dependent processes between different mast cell populations.
Collapse
Affiliation(s)
- Eon J Rios
- Department of Epithelial Biology, Stanford University, Palo Alto, CA, USA
| | | |
Collapse
|
13
|
Molfetta R, Quatrini L, Gasparrini F, Zitti B, Santoni A, Paolini R. Regulation of fc receptor endocytic trafficking by ubiquitination. Front Immunol 2014; 5:449. [PMID: 25278942 PMCID: PMC4166898 DOI: 10.3389/fimmu.2014.00449] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/03/2014] [Indexed: 12/29/2022] Open
Abstract
Most immune cells, particularly phagocytes, express various receptors for the Fc portion of the different immunoglobulin isotypes (Fc receptors, FcRs). By binding to the antibody, they provide a link between the adaptive immune system and the powerful effector functions triggered by innate immune cells such as mast cells, neutrophils, macrophages, and NK cells. Upon ligation of the immune complexes, the downstream signaling pathways initiated by the different receptors are quite similar for different FcR classes leading to the secretion of preformed and de novo synthesized pro-inflammatory mediators. FcR engagement also promotes negative signals through the combined action of several molecules that limit the extent and duration of positive signaling. To this regard, ligand-induced ubiquitination of FcRs for IgE (FcεR) and IgG (FcγR) has become recognized as a key modification that generates signals for the internalization and/or delivery of engaged receptor complexes to lysosomes or cytoplasmic proteasomes for degradation, providing negative-feedback regulation of Fc receptor activity. In this review, we discuss recent advances in our understanding of the molecular mechanisms that ensure the clearance of engaged Fcε and Fcγ receptor complexes from the cell surface with an emphasis given to the cooperation between the ubiquitin pathway and endosomal adaptors including the endosomal sorting complex required for transport (ESCRT) in controlling receptor internalization and sorting along the endocytic compartments.
Collapse
Affiliation(s)
- Rosa Molfetta
- Department of Molecular Medicine, "Sapienza" University of Rome , Rome , Italy
| | - Linda Quatrini
- Department of Molecular Medicine, "Sapienza" University of Rome , Rome , Italy
| | - Francesca Gasparrini
- Lymphocyte Interaction Laboratory, London Research Institute, Cancer Research UK , London , UK
| | - Beatrice Zitti
- Department of Molecular Medicine, "Sapienza" University of Rome , Rome , Italy
| | - Angela Santoni
- Department of Molecular Medicine, "Sapienza" University of Rome , Rome , Italy ; Institute Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome , Rome , Italy
| | - Rossella Paolini
- Department of Molecular Medicine, "Sapienza" University of Rome , Rome , Italy ; Institute Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome , Rome , Italy
| |
Collapse
|
14
|
Molfetta R, Quatrini L, Capuano C, Gasparrini F, Zitti B, Zingoni A, Galandrini R, Santoni A, Paolini R. c-Cbl regulates MICA- but not ULBP2-induced NKG2D down-modulation in human NK cells. Eur J Immunol 2014; 44:2761-70. [PMID: 24846123 DOI: 10.1002/eji.201444512] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/14/2014] [Accepted: 05/12/2014] [Indexed: 12/24/2022]
Abstract
The NKG2D activating receptor on human NK cells mediates "altered self" recognition, as its ligands (NKG2DLs) are upregulated on target cells in a variety of stress conditions. Evidence collected in the past years shows that, even though expression of NKG2DLs acts as a danger signal that renders tumor cells susceptible to cytotoxicity, chronic exposure to soluble or membrane-bound NKG2DLs can lead to down-modulation of receptor expression and impairment of NKG2D-mediated cell functions. Here, we evaluated whether different cell-bound NKG2DLs, namely MICA and ULBP2, are equivalently able to induce NKG2D down-modulation on human NK cells. We found that although both ligands reduce NKG2D surface expression, MICA promotes a stronger receptor down-modulation than ULBP2, leading to a severe impairment of NKG2D-dependent NK-cell cytotoxicity. We also provide evidence that the ubiquitin pathway and c-Cbl direct MICA-induced but not ULBP2-induced NKG2D internalization and degradation, thus identifying a molecular mechanism to explain the differential effects of MICA and ULBP2 on NKG2D expression. A better understanding of the molecular mechanisms employed by the different NKG2DLs to control NKG2D surface expression could be useful for the development of anti-tumor strategies to restore a normal level of NKG2D receptors on human NK cells.
Collapse
Affiliation(s)
- Rosa Molfetta
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cleyrat C, Darehshouri A, Anderson KL, Page C, Lidke DS, Volkmann N, Hanein D, Wilson BS. The architectural relationship of components controlling mast cell endocytosis. J Cell Sci 2013; 126:4913-25. [PMID: 23986485 DOI: 10.1242/jcs.128876] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic cells use multiple routes for receptor internalization. Here, we examine the topographical relationships of clathrin-dependent and clathrin-independent endocytic structures on the plasma membranes of leukemia-derived mast cells. The high affinity IgE receptor (FcεRI) utilizes both pathways, whereas transferrin receptor serves as a marker for the classical clathrin-mediated endocytosis pathway. Both receptors were tracked by live-cell imaging in the presence or absence of inhibitors that established their differential dependence on specific endocytic adaptor proteins. The topology of antigen-bound FcεRI, clathrin, dynamin, Arf6 and Eps15-positive structures were analyzed by 2D and 3D immunoelectron microscopy techniques, revealing their remarkable spatial relationships and unique geometry. We conclude that the mast cell plasma membrane has multiple specialized domains for endocytosis. Their close proximity might reflect shared components, such as lipids and adaptor proteins, that facilitate inward membrane curvature. Intersections between these specialized domains might represent sorting stations that direct cargo to specific endocytic pathways.
Collapse
Affiliation(s)
- Cédric Cleyrat
- Department of Pathology University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Gasparrini F, Molfetta R, Quatrini L, Frati L, Santoni A, Paolini R. Syk-dependent regulation of Hrs phosphorylation and ubiquitination upon FcεRI engagement: Impact on Hrs membrane/cytosol localization. Eur J Immunol 2012; 42:2744-53. [DOI: 10.1002/eji.201142278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 05/09/2012] [Accepted: 06/06/2012] [Indexed: 01/24/2023]
Affiliation(s)
| | | | - Linda Quatrini
- Department of Molecular Medicine; “Sapienza” University of Rome; Rome; Italy
| | | | | | | |
Collapse
|
17
|
Joo HM, Nam SY, Yang KH, Kim CS, Jin YW, Kim JY. The effects of low-dose ionizing radiation in the activated rat basophilic leukemia (RBL-2H3) mast cells. J Biol Chem 2012; 287:27789-95. [PMID: 22700973 DOI: 10.1074/jbc.m112.378497] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mast cells play important roles in many biological responses, such as those during allergic diseases and inflammatory disorders. Although laser and UV irradiation have immunosuppressive effects on inflammatory diseases by suppressing mast cells, little is known about the effects of γ-ionizing radiation on mast cells. In this study, we investigated the effects of γ-ionizing radiation on RBL-2H3 cells, a convenient model system for studying regulated secretion by mast cells. Low-dose radiation (<0.1 gray (Gy)) did not induce cell death, but high-dose radiation (>0.5 Gy) induced apoptosis. Low-dose ionizing radiation significantly suppressed the release of mediators (histamine, β-hexosaminidase, IL-4, and tumor necrosis factor-α) from immunoglobulin E (IgE)-sensitized RBL-2H3 cells. To determine the mechanism of mediator release inhibition by ionizing radiation, we examined the activation of intracellular signaling molecules such as Lyn, Syk, phospholipase Cγ, PKCs, and MAPK, and intracellular free calcium concentrations ([Ca(2+)](i)). The phosphorylation of signaling molecules following stimulation of high-affinity IgE receptor I (FcεRI) was specifically inhibited by low-dose ionizing radiation (0.01 Gy). These results were due to the suppression of FcεRI expression by the low-dose ionizing radiation. Therefore, low-dose ionizing radiation (0.01 Gy) may function as a novel inhibitor of mast cell activation.
Collapse
Affiliation(s)
- Hae Mi Joo
- Radiation Effect Research Team, Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., Seoul 132-703, Korea
| | | | | | | | | | | |
Collapse
|
18
|
PIP2-dependent regulation of Munc13-4 endocytic recycling: impact on the cytolytic secretory pathway. Blood 2012; 119:2252-62. [PMID: 22271450 DOI: 10.1182/blood-2010-12-324160] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cytotoxic lymphocytes clear infected and transformed cells by releasing the content of lytic granules at cytolytic synapses, and the ability of cytolytic effectors to kill in an iterative manner has been documented previously. Although bidirectional trafficking of cytolytic machinery components along the endosomal pathway has begun to be elucidated, the molecular mechanisms coordinating granule retrieval remain completely unexplored. In the present study, we focus on the lytic granule priming factor Munc13-4, the mutation of which in familial hemophagocytic lymphohistiocytosis type 3 results in a profound defect of cytotoxic function. We addressed the role of phosphatidylinositol (4,5)-bisphosphate (PIP2) in the regulation of Munc13-4 compartmentalization. We observed that in human natural killer cells, PIP2 is highly enriched in membrane rafts. Granule secretion triggering induces a transient Munc13-4 raft recruitment, followed by AP-2/clathrin-dependent internalization. Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) γ gene silencing leads to the impairment of granule secretion associated with increased levels of raft-associated Munc13-4, which is attributable to a defect in AP-2 membrane recruitment. In such conditions, the ability to subsequently kill multiple targets was significantly impaired. These observations indicate that Munc13-4 reinternalization is required for the maintenance of an intracellular pool that is functional to guarantee the serial killing potential.
Collapse
|
19
|
β-catenin is a molecular switch that regulates transition of cell-cell adhesion to fusion. Sci Rep 2011; 1:68. [PMID: 22355587 PMCID: PMC3216555 DOI: 10.1038/srep00068] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 08/04/2011] [Indexed: 01/20/2023] Open
Abstract
When a sperm and an oocyte unite upon fertilization, their cell membranes adhere and fuse, but little is known about the factors regulating sperm-oocyte adhesion. Here we explored the role of β-catenin in sperm-oocyte adhesion. Biochemical analysis revealed that E-cadherin and β-catenin formed a complex in oocytes and also in sperm. Sperm-oocyte adhesion was impaired when β-catenin-deficient oocytes were inseminated with sperm. Furthermore, expression of β-catenin decreased from the sperm head and the site of an oocyte to which a sperm adheres after completion of sperm-oocyte adhesion. UBE1-41, an inhibitor of ubiquitin-activating enzyme 1, inhibited the degradation of β-catenin, and reduced the fusing ability of wild-type (but not β-catenin-deficient) oocytes. These results indicate that β-catenin is not only involved in membrane adhesion, but also in the transition to membrane fusion upon fertilization.
Collapse
|
20
|
How ubiquitination and autophagy participate in the regulation of the cell response to bacterial infection. Biol Cell 2011; 102:621-34. [PMID: 21077843 PMCID: PMC2975374 DOI: 10.1042/bc20100101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacterial infection relies on the micro-organism's ability to orchestrate the host's cell signalling such that the immune response is not activated. Conversely, the host cell has dedicated signalling pathways for coping with intrusions by pathogens. The autophagy of foreign micro-organisms (known as xenophagy) has emerged as one of the most powerful of these pathways, although the triggering mode remains largely unknown. In the present paper, we discuss the role that certain post-translational modifications (primarily ubiquitination) may play in the activation of xenophagy and how some bacteria have evolved mechanisms to subvert or hijack this process. In particular, we address the role played by P62/SQSTM1 (sequestosome 1). Finally, we discuss how autophagy can be subverted to eliminate bacteria-induced danger signals.
Collapse
|
21
|
Abstract
Mast cells have long been recognized to have a direct and critical role in allergic and inflammatory reactions. In allergic diseases, these cells exert both local and systemic responses, including allergic rhinitis and anaphylaxis. Mast cell mediators are also related to many chronic inflammatory conditions. Besides the roles in pathological conditions, the biological functions of mast cells include roles in innate immunity, involvement in host defense mechanisms against parasites, immunomodulation of the immune system, tissue repair, and angiogenesis. Despite their growing significance in physiological and pathological conditions, much still remains to be learned about mast cell biology. This paper presents evidence that lipid rafts or raft components modulate many of the biological processes in mast cells, such as degranulation and endocytosis, play a role in mast cell development and recruitment, and contribute to the overall preservation of mast cell structure and organization.
Collapse
|
22
|
Gasparrini F, Molfetta R, Santoni A, Paolini R. Cbl Family Proteins: Balancing FcεRI-Mediated Mast Cell and Basophil Activation. Int Arch Allergy Immunol 2011; 156:16-26. [DOI: 10.1159/000322236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
23
|
Ubiquitination and endocytosis of the high affinity receptor for IgE. Mol Immunol 2010; 47:2427-34. [PMID: 20638130 DOI: 10.1016/j.molimm.2010.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 05/31/2010] [Accepted: 06/09/2010] [Indexed: 01/17/2023]
Abstract
The high affinity receptor for IgE (FcvarepsilonRI) is constitutivelly expressed on the surface of mast cells and basophils as a multimeric complex. Upon antigen ligation to FcvarepsilonRI-bound IgE molecules, the receptor complex transduces intracellular signals leading to the release of preformed and newly synthesised pro-inflammatory mediators. FcvarepsilonRI engagement also generates negative intracellular signals involving the coordinated action of adapters, phosphatases and ubiquitin ligases that limits the intensity and duration of positive signals. Relevant to this, antigen-induced FcvarepsilonRI ubiquitination has become recognized as an important signal for the internalization and delivery of engaged receptor complexes to lysosomes for degradation. In this article, we review recent advances in our understanding of molecular mechanisms that guarantee the clearance of antigen-stimulated FcvarepsilonRI complexes from the cell surface. A particular emphasis will be given on how lipid rafts and the ubiquitin pathway cooperate to ensure receptor internalization and sorting along the endocytic compartments. A brief discussion regarding how ubiquitination regulates the endocytosis of Fc receptors other than FcvarepsilonRI will be included.
Collapse
|
24
|
Porzia A, Lanzardo S, Citti A, Cavallo F, Forni G, Santoni A, Galandrini R, Paolini R. Attenuation of PI3K/Akt-Mediated Tumorigenic Signals through PTEN Activation by DNA Vaccine-Induced Anti-ErbB2 Antibodies. THE JOURNAL OF IMMUNOLOGY 2010; 184:4170-7. [DOI: 10.4049/jimmunol.0903375] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Masilamani M, Peruzzi G, Borrego F, Coligan JE. Endocytosis and intracellular trafficking of human natural killer cell receptors. Traffic 2009; 10:1735-44. [PMID: 19719476 PMCID: PMC2783697 DOI: 10.1111/j.1600-0854.2009.00973.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Natural killer (NK) cells play a vital role in the defense against viral infections and tumor development. NK cell function is primarily regulated by the sum of signals from a broad array of activation and inhibitory receptors. Key to generating the input level of either activating or inhibitory signals is the maintenance of receptor expression levels on the cell surface. Although the mechanisms of endocytosis and trafficking for some cell surface receptors, such as transferrin receptor and certain immune receptors, are very well known, that is not the situation for receptors expressed by NK cells. Recent studies have uncovered that endocytosis and trafficking routes characteristic for specific activation and inhibitory receptors can regulate the functional responses of NK cells. In this review, we summarize the current knowledge of receptor endocytosis and trafficking, and integrate this with our current understanding of NK cell receptor trafficking.
Collapse
Affiliation(s)
- Madhan Masilamani
- The Jaffe Food Allergy Institute, Department of Pediatrics, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA.
| | | | | | | |
Collapse
|