1
|
Protein kinase CK2 phosphorylation of SAPS3 subunit increases PP6 phosphatase activity with Aurora A kinase. Biochem J 2020; 477:431-444. [PMID: 31904830 DOI: 10.1042/bcj20190740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/04/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
Protein Ser/Thr phosphatase-6 (PP6) regulates pathways for activation of NF-kB, YAP1 and Aurora A kinase (AURKA). PP6 is a heterotrimer comprised of a catalytic subunit, one of three different SAPS subunits and one of three different ankyrin-repeat ANKRD subunits. Here, we show FLAG-PP6C expressed in cells preferentially binds endogenous SAPS3, and the complex is active with the chemical substrate DiFMUP. SAPS3 has multiple acidic sequence motifs recognized by protein kinase CK2 (CK2) and SAPS3 is phosphorylated by purified CK2, without affecting its associated PP6 phosphatase activity. However, HA3-SAPS3-PP6 phosphatase activity using pT288 AURKA as substrate is significantly increased by phosphorylation with CK2. The substitution of Ala in nine putative phosphorylation sites in SAPS3 was required to prevent CK2 activation of the phosphatase. Different CK2 chemical inhibitors equally increased phosphorylation of endogenous AURKA in living cells, consistent with reduction in PP6 activity. CRISPR/Cas9 deletion or siRNA knockdown of SAPS3 resulted in highly activated endogenous AURKA, and a high proportion of cells with abnormal nuclei. Activation of PP6 by CK2 can form a feedback loop with bistable changes in substrates.
Collapse
|
2
|
Brautigan DL, Shenolikar S. Protein Serine/Threonine Phosphatases: Keys to Unlocking Regulators and Substrates. Annu Rev Biochem 2019; 87:921-964. [PMID: 29925267 DOI: 10.1146/annurev-biochem-062917-012332] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein serine/threonine phosphatases (PPPs) are ancient enzymes, with distinct types conserved across eukaryotic evolution. PPPs are segregated into types primarily on the basis of the unique interactions of PPP catalytic subunits with regulatory proteins. The resulting holoenzymes dock substrates distal to the active site to enhance specificity. This review focuses on the subunit and substrate interactions for PPP that depend on short linear motifs. Insights about these motifs from structures of holoenzymes open new opportunities for computational biology approaches to elucidate PPP networks. There is an expanding knowledge base of posttranslational modifications of PPP catalytic and regulatory subunits, as well as of their substrates, including phosphorylation, acetylation, and ubiquitination. Cross talk between these posttranslational modifications creates PPP-based signaling. Knowledge of PPP complexes, signaling clusters, as well as how PPPs communicate with each other in response to cellular signals should unlock the doors to PPP networks and signaling "clouds" that orchestrate and coordinate different aspects of cell physiology.
Collapse
Affiliation(s)
- David L Brautigan
- Center for Cell Signaling and Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA;
| | - Shirish Shenolikar
- Signature Research Programs in Cardiovascular and Metabolic Disorders and Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|
3
|
Ariño J, Velázquez D, Casamayor A. Ser/Thr protein phosphatases in fungi: structure, regulation and function. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:217-256. [PMID: 31114794 PMCID: PMC6506691 DOI: 10.15698/mic2019.05.677] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
Abstract
Reversible phospho-dephosphorylation of proteins is a major mechanism for the control of cellular functions. By large, Ser and Thr are the most frequently residues phosphorylated in eukar-yotes. Removal of phosphate from these amino acids is catalyzed by a large family of well-conserved enzymes, collectively called Ser/Thr protein phosphatases. The activity of these enzymes has an enormous impact on cellular functioning. In this work we pre-sent the members of this family in S. cerevisiae and other fungal species, and review the most recent findings concerning their regu-lation and the roles they play in the most diverse aspects of cell biology.
Collapse
Affiliation(s)
- Joaquín Ariño
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Diego Velázquez
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Antonio Casamayor
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
4
|
Ohama T. The multiple functions of protein phosphatase 6. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:74-82. [DOI: 10.1016/j.bbamcr.2018.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/21/2018] [Accepted: 07/18/2018] [Indexed: 12/26/2022]
|
5
|
Functions of protein phosphatase-6 in NF-κB signaling and in lymphocytes. Biochem Soc Trans 2017; 45:693-701. [PMID: 28620030 PMCID: PMC5473023 DOI: 10.1042/bst20160169] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/01/2017] [Accepted: 03/08/2017] [Indexed: 12/17/2022]
Abstract
Protein phosphatase-6 (PP6) is a member of the PPP family of Ser/Thr phosphatases involved in intracellular signaling. PP6 is conserved among all eukaryotes, and genetics in model organisms indicates it has non-redundant functions relative to other PPP phosphatases. PP6 functions in association with conserved SAPS subunits and, in vertebrate species, forms heterotrimers with Ankrd subunits. Multiple studies have demonstrated how PP6 exerts negative control at different steps of nuclear factor kappaB signaling. Expression of PP6 catalytic subunit and the PPP6R1 subunit is especially high in hematopoietic cells and lymphoid tissues. Recent efforts at conditionally knocking out genes for PP6c or PP6R1 (SAPS1) have revealed distinctive effects on development of and signaling in lymphocytes.
Collapse
|
6
|
Eleftheriadou O, Boguslavskyi A, Longman MR, Cowan J, Francois A, Heads RJ, Wadzinski BE, Ryan A, Shattock MJ, Snabaitis AK. Expression and regulation of type 2A protein phosphatases and alpha4 signalling in cardiac health and hypertrophy. Basic Res Cardiol 2017; 112:37. [PMID: 28526910 PMCID: PMC5438423 DOI: 10.1007/s00395-017-0625-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/02/2017] [Indexed: 01/25/2023]
Abstract
Cardiac physiology and hypertrophy are regulated by the phosphorylation status of many proteins, which is partly controlled by a poorly defined type 2A protein phosphatase-alpha4 intracellular signalling axis. Quantitative PCR analysis revealed that mRNA levels of the type 2A catalytic subunits were differentially expressed in H9c2 cardiomyocytes (PP2ACβ > PP2ACα > PP4C > PP6C), NRVM (PP2ACβ > PP2ACα = PP4C = PP6C), and adult rat ventricular myocytes (PP2ACα > PP2ACβ > PP6C > PP4C). Western analysis confirmed that all type 2A catalytic subunits were expressed in H9c2 cardiomyocytes; however, PP4C protein was absent in adult myocytes and only detectable following 26S proteasome inhibition. Short-term knockdown of alpha4 protein expression attenuated expression of all type 2A catalytic subunits. Pressure overload-induced left ventricular (LV) hypertrophy was associated with an increase in both PP2AC and alpha4 protein expression. Although PP6C expression was unchanged, expression of PP6C regulatory subunits (1) Sit4-associated protein 1 (SAP1) and (2) ankyrin repeat domain (ANKRD) 28 and 44 proteins was elevated, whereas SAP2 expression was reduced in hypertrophied LV tissue. Co-immunoprecipitation studies demonstrated that the interaction between alpha4 and PP2AC or PP6C subunits was either unchanged or reduced in hypertrophied LV tissue, respectively. Phosphorylation status of phospholemman (Ser63 and Ser68) was significantly increased by knockdown of PP2ACα, PP2ACβ, or PP4C protein expression. DNA damage assessed by histone H2A.X phosphorylation (γH2A.X) in hypertrophied tissue remained unchanged. However, exposure of cardiomyocytes to H2O2 increased levels of γH2A.X which was unaffected by knockdown of PP6C expression, but was abolished by the short-term knockdown of alpha4 expression. This study illustrates the significance and altered activity of the type 2A protein phosphatase-alpha4 complex in healthy and hypertrophied myocardium.
Collapse
Affiliation(s)
- Olga Eleftheriadou
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science Engineering and Computing, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey, KT1 2EE, UK
| | - Andrii Boguslavskyi
- Cardiovascular Division, King's College London British Heart Foundation Centre, The Rayne Institute, St Thomas' Hospital, London, SE1 7EH, UK
| | - Michael R Longman
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science Engineering and Computing, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey, KT1 2EE, UK
| | - Jonathan Cowan
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science Engineering and Computing, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey, KT1 2EE, UK
| | - Asvi Francois
- Cardiovascular Division, King's College London British Heart Foundation Centre, The Rayne Institute, St Thomas' Hospital, London, SE1 7EH, UK
| | - Richard J Heads
- Cardiovascular Division, King's College London British Heart Foundation Centre, The Rayne Institute, St Thomas' Hospital, London, SE1 7EH, UK
| | - Brian E Wadzinski
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Ali Ryan
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science Engineering and Computing, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey, KT1 2EE, UK
| | - Michael J Shattock
- Cardiovascular Division, King's College London British Heart Foundation Centre, The Rayne Institute, St Thomas' Hospital, London, SE1 7EH, UK
| | - Andrew K Snabaitis
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science Engineering and Computing, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey, KT1 2EE, UK.
| |
Collapse
|
7
|
Hu MW, Meng TG, Jiang ZZ, Dong MZ, Schatten H, Xu X, Wang ZB, Sun QY. Protein Phosphatase 6 Protects Prophase I-Arrested Oocytes by Safeguarding Genomic Integrity. PLoS Genet 2016; 12:e1006513. [PMID: 27930667 PMCID: PMC5179128 DOI: 10.1371/journal.pgen.1006513] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 12/22/2016] [Accepted: 11/29/2016] [Indexed: 12/21/2022] Open
Abstract
Mammalian oocytes are arrested at prophase of the first meiotic division in the primordial follicle pool for months, even years, after birth depending on species, and only a limited number of oocytes resume meiosis, complete maturation, and ovulate with each reproductive cycle. We recently reported that protein phosphatase 6 (PP6), a member of the PP2A-like subfamily, which accounts for cellular serine/threonine phosphatase activity, functions in completing the second meiosis. Here, we generated mutant mice with a specific deletion of Ppp6c in oocytes from the primordial follicle stage by crossing Ppp6cF/F mice with Gdf9-Cre mice and found that Ppp6cF/F; GCre+ mice are infertile. Depletion of PP6c caused folliculogenesis defects and germ cell loss independent of the traditional AKT/mTOR pathway, but due to persistent phosphorylation of H2AX (a marker of double strand breaks), increased susceptibility to DNA damage and defective DNA repair, which led to massive oocyte elimination and eventually premature ovarian failure (POF). Our findings uncover an important role for PP6 as an indispensable guardian of genomic integrity of the lengthy prophase I oocyte arrest, maintenance of primordial follicle pool, and thus female fertility. Formation of haploid gametes from diploid germ cells requires a specialized reductive cell division known as meiosis. In contrast to male meiosis that takes place continuously, a unique feature of female meiosis in mammals is the long arrest in meiosis I, which lasts up to 50 years in humans. Because the size of the germ cell pool determines the reproductive lifespan of females, it is important to discover mechanisms preserving the germ cell pool during the lengthy meiotic arrest. In this study, we examined the physiological role of a member of the PP2A-like serine/threonine phosphatase subfamily, protein phosphatase 6, in mouse oocytes during ovarian follicular development. This is the first study linking PP6 to the maintenance of the female germ cell pool and fertility. We find PP6 is an indispensable protector of arrested oocytes by safeguarding genomic integrity during their dormancy in the mouse ovary.
Collapse
Affiliation(s)
- Meng-Wen Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zong-Zhe Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States of America
| | - Xingzhi Xu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Hoxhaj G, Caddye E, Najafov A, Houde VP, Johnson C, Dissanayake K, Toth R, Campbell DG, Prescott AR, MacKintosh C. The E3 ubiquitin ligase ZNRF2 is a substrate of mTORC1 and regulates its activation by amino acids. eLife 2016; 5. [PMID: 27244671 PMCID: PMC4889327 DOI: 10.7554/elife.12278] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/28/2016] [Indexed: 12/22/2022] Open
Abstract
The mechanistic Target of Rapamycin complex 1 (mTORC1) senses intracellular amino acid levels through an intricate machinery, which includes the Rag GTPases, Ragulator and vacuolar ATPase (V-ATPase). The membrane-associated E3 ubiquitin ligase ZNRF2 is released into the cytosol upon its phosphorylation by Akt. In this study, we show that ZNRF2 interacts with mTOR on membranes, promoting the amino acid-stimulated translocation of mTORC1 to lysosomes and its activation in human cells. ZNRF2 also interacts with the V-ATPase and preserves lysosomal acidity. Moreover, knockdown of ZNRF2 decreases cell size and cell proliferation. Upon growth factor and amino acid stimulation, mTORC1 phosphorylates ZNRF2 on Ser145, and this phosphosite is dephosphorylated by protein phosphatase 6. Ser145 phosphorylation stimulates vesicle-to-cytosol translocation of ZNRF2 and forms a novel negative feedback on mTORC1. Our findings uncover ZNRF2 as a component of the amino acid sensing machinery that acts upstream of Rag-GTPases and the V-ATPase to activate mTORC1. DOI:http://dx.doi.org/10.7554/eLife.12278.001 During digestion, proteins are broken down into their constituent parts called amino acids. Amino acids are transported in the bloodstream and are used to build up new cells and repair old ones. Optimal regulation of the cellular rates of amino acid uptake and protein synthesis is critical to the overall health of our bodies. Inside each of our cells is a molecule called mammalian target of rapamycin (mTOR for short), which acts as a controller that receives information about amino acid availability. mTOR also senses how much of each amino acid the cell needs and calibrates the cell’s amino acid uptake and protein synthesis machineries accordingly. When investigating an enzyme named ZNRF2, Hoxhaj et al. discovered that it interacts with mTOR on membranes inside cells. This raised questions about how ZNRF2 might work with mTOR to sense amino acid supplies and regulate cell growth. Hoxhaj et al. found that when cells are provided with amino acids and growth-stimulating hormones, mTOR is activated and attaches a phosphate group to ZNRF2. This chemical modification promotes the release of ZNRF2 from membranes so that ZNRF2 separates from mTOR. In contrast, when cells are starved of amino acids, this phosphate group is removed from ZNRF2, which then returns to the membranes. On membranes, ZNRF2 also influences the activity of a pump called V-ATPase, which controls the internal acidity of the membrane-enclosed vesicles named lysosomes that help to recycle amino acids inside cells. The action of ZNRF2 on the pump may help to prime mTOR so that it is ready to sense amino acids. These findings by Hoxhaj et al. suggest that ZNRF2 and mTOR may ‘tune’ each other, making constant to-and-fro adjustments to help ensure that levels of amino acid uptake and cell growth are set just right. However, many questions about ZNRF2 still remain to be addressed. For example, are genetic mutations in ZNRF2 involved in cancers, developmental disorders or growth syndromes? Is ZNRF2 most important in the brain, where it is particularly abundant? And how does ZNRF2 affect acidity within the lysosomes? DOI:http://dx.doi.org/10.7554/eLife.12278.002
Collapse
Affiliation(s)
- Gerta Hoxhaj
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.,Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Edward Caddye
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ayaz Najafov
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Vanessa P Houde
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Catherine Johnson
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Kumara Dissanayake
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.,Cell and Developmental Biology Division, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Rachel Toth
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - David G Campbell
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alan R Prescott
- Cell Signalling and Immunology Division, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Carol MacKintosh
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.,Cell and Developmental Biology Division, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
9
|
Ogoh H, Tanuma N, Matsui Y, Hayakawa N, Inagaki A, Sumiyoshi M, Momoi Y, Kishimoto A, Suzuki M, Sasaki N, Ohuchi T, Nomura M, Teruya Y, Yasuda K, Watanabe T, Shima H. The protein phosphatase 6 catalytic subunit (Ppp6c) is indispensable for proper post-implantation embryogenesis. Mech Dev 2016; 139:1-9. [DOI: 10.1016/j.mod.2016.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 01/28/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
|
10
|
Rusin SF, Schlosser KA, Adamo ME, Kettenbach AN. Quantitative phosphoproteomics reveals new roles for the protein phosphatase PP6 in mitotic cells. Sci Signal 2015; 8:rs12. [PMID: 26462736 DOI: 10.1126/scisignal.aab3138] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein phosphorylation is an important regulatory mechanism controlling mitotic progression. Protein phosphatase 6 (PP6) is an essential enzyme with conserved roles in chromosome segregation and spindle assembly from yeast to humans. We applied a baculovirus-mediated gene silencing approach to deplete HeLa cells of the catalytic subunit of PP6 (PP6c) and analyzed changes in the phosphoproteome and proteome in mitotic cells by quantitative mass spectrometry-based proteomics. We identified 408 phosphopeptides on 272 proteins that increased and 298 phosphopeptides on 220 proteins that decreased in phosphorylation upon PP6c depletion in mitotic cells. Motif analysis of the phosphorylated sites combined with bioinformatics pathway analysis revealed previously unknown PP6c-dependent regulatory pathways. Biochemical assays demonstrated that PP6c opposed casein kinase 2-dependent phosphorylation of the condensin I subunit NCAP-G, and cellular analysis showed that depletion of PP6c resulted in defects in chromosome condensation and segregation in anaphase, consistent with dysregulation of condensin I function in the absence of PP6 activity.
Collapse
Affiliation(s)
- Scott F Rusin
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Kate A Schlosser
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Mark E Adamo
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Arminja N Kettenbach
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA.
| |
Collapse
|
11
|
Boylan JM, Salomon AR, Tantravahi U, Gruppuso PA. Adaptation of HepG2 cells to a steady-state reduction in the content of protein phosphatase 6 (PP6) catalytic subunit. Exp Cell Res 2015; 335:224-37. [PMID: 25999147 DOI: 10.1016/j.yexcr.2015.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 11/27/2022]
Abstract
Protein phosphatase 6 (PP6) is a ubiquitous Ser/Thr phosphatase involved in an array of cellular processes. To assess the potential of PP6 as a therapeutic target in liver disorders, we attenuated expression of the PP6 catalytic subunit in HepG2 cells using lentiviral-transduced shRNA. Two PP6 knock-down (PP6KD) cell lines (90% reduction of PP6-C protein content) were studied in depth. Both proliferated at a rate similar to control cells. However, flow cytometry indicated G2/M cell cycle arrest that was accounted for by a shift of the cells from a diploid to tetraploid state. PP6KD cells did not show an increase in apoptosis, nor did they exhibit reduced viability in the presence of bleomycin or taxol. Gene expression analysis by microarray showed attenuated anti-inflammatory signaling. Genes associated with DNA replication were downregulated. Mass spectrometry-based phosphoproteomic analysis yielded 80 phosphopeptides representing 56 proteins that were significantly affected by a stable reduction in PP6-C. Proteins involved in DNA replication, DNA damage repair and pre-mRNA splicing were overrepresented among these. PP6KD cells showed intact mTOR signaling. Our studies demonstrated involvement of PP6 in a diverse set of biological pathways and an adaptive response that may limit the effectiveness of targeting PP6 in liver disorders.
Collapse
Affiliation(s)
- Joan M Boylan
- Department of Pediatrics, Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Arthur R Salomon
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA; Department of Chemistry, Brown University, Providence, RI, USA
| | - Umadevi Tantravahi
- Division of Genetics, Department of Pathology, Brown University and Women and Infants Hospital, Providence, RI, USA
| | - Philip A Gruppuso
- Department of Pediatrics, Brown University and Rhode Island Hospital, Providence, RI, USA; Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
12
|
Wengrod J, Wang D, Weiss S, Zhong H, Osman I, Gardner LB. Phosphorylation of eIF2α triggered by mTORC1 inhibition and PP6C activation is required for autophagy and is aberrant in PP6C-mutated melanoma. Sci Signal 2015; 8:ra27. [PMID: 25759478 DOI: 10.1126/scisignal.aaa0899] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amino acid deprivation promotes the inhibition of the kinase complex mTORC1 (mammalian target of rapamycin complex 1) and activation of the kinase GCN2 (general control nonrepressed 2). Signaling pathways downstream of both kinases have been thought to independently induce autophagy. We showed that these two amino acid-sensing systems are linked. We showed that pharmacological inhibition of mTORC1 led to activation of GCN2 and phosphorylation of the eukaryotic initiation factor 2α (eIF2α) in a mechanism dependent on the catalytic subunit of protein phosphatase 6 (PP6C). Autophagy induced by pharmacological inhibition of mTORC1 required PP6C, GCN2, and eIF2α phosphorylation. Although some of the PP6C mutants found in melanoma did not form a strong complex with PP6 regulatory subunits and were rapidly degraded, these mutants paradoxically stabilized PP6C encoded by the wild-type allele and increased eIF2α phosphorylation. Furthermore, these PP6C mutations were associated with increased autophagy in vitro and in human melanoma samples. Thus, these data showed that GCN2 activation and phosphorylation of eIF2α in response to mTORC1 inhibition are necessary for autophagy. Additionally, we described a role for PP6C in this process and provided a mechanism for PP6C mutations associated with melanoma.
Collapse
Affiliation(s)
- Jordan Wengrod
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Ding Wang
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Sarah Weiss
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Hua Zhong
- Department of Population Health, New York University School of Medicine, New York, NY 10016, USA
| | - Iman Osman
- Department of Dermatology, New York University School of Medicine, New York, NY 10016, USA. NYU Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Lawrence B Gardner
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA. NYU Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA. Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
13
|
Yin D, Huang P, Wu J, Song H. Drosophila protein phosphatase V regulates lipid homeostasis via the AMPK pathway. J Mol Cell Biol 2013; 6:100-2. [PMID: 24334257 DOI: 10.1093/jmcb/mjt050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Dingzi Yin
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | |
Collapse
|
14
|
Abstract
This review traces the historical origins and conceptual developments leading to the current state of knowledge of the three superfamilies of protein Ser/Thr phosphatases. 'PR enzyme' was identified as an enzyme that inactivates glycogen phosphorylase, although it took 10 years before this ugly duckling was recognized for its true identity as a protein Ser/Thr phosphatase. Ethanol denaturation for purification in the 1970s yielded a phosphatase that exhibited broad specificity, which was resolved into type-1 and type-2 phosphatases in the 1980s. More recent developments show that regulation and specificity are achieved through assembly of multisubunit holoenzymes, transient phosphorylation and the action of inhibitor proteins. Still not widely appreciated, there are hundreds of discrete protein Ser/Thr phosphatases available to counteract protein kinases, offering potential therapeutic targets. Signalling networks and modelling schemes need to incorporate the full gamut of protein Ser/Thr phosphatases and their interconnections.
Collapse
Affiliation(s)
- David L Brautigan
- Department of Microbiology, Immunology and Cancer Biology, Center for Cell Signaling, University of Virginia, School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
15
|
Hosing AS, Valerie NCK, Dziegielewski J, Brautigan DL, Larner JM. PP6 regulatory subunit R1 is bidentate anchor for targeting protein phosphatase-6 to DNA-dependent protein kinase. J Biol Chem 2012; 287:9230-9. [PMID: 22298787 DOI: 10.1074/jbc.m111.333708] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA-dependent protein kinase (DNA-PK) becomes activated in response to DNA double strand breaks, initiating repair by the non-homologous end joining pathway. DNA·PK complexes with the regulatory subunit SAPSR1 (R1) of protein phosphatase-6 (PP6). Knockdown of either R1 or PP6c prevents DNA-PK activation in response to ionizing radiation-induced DNA damage and radiosensitizes glioblastoma cells. Here, we demonstrate that R1 is necessary for and bridges the interaction between DNA-PK and PP6c. Using R1 deletion mutants, DNA-PK binding was mapped to two distinct regions of R1 spanning residues 1-326 and 522-700. Either region expressed alone was sufficient to bind DNA-PK, but only deletion of residues 1-326, not 522-700, eliminated interaction of R1 with DNA-PK. We assign 1-326 as the dominant domain and 522-700 as the supporting region. These results demonstrate that R1 acts as a bidentate anchor to DNA-PK and recruits PP6c. Targeting the dominant interface with small molecule or peptidomimetic inhibitors could specifically prevent activation of DNA-PK and thereby sensitize cells to ionizing radiation and other genotoxic agents.
Collapse
Affiliation(s)
- Amol S Hosing
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
16
|
Protein phosphatase 6 interacts with the DNA-dependent protein kinase catalytic subunit and dephosphorylates gamma-H2AX. Mol Cell Biol 2010; 30:1368-81. [PMID: 20065038 DOI: 10.1128/mcb.00741-09] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) plays a major role in the repair of DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ). We have previously shown that DNA-PKcs is autophosphorylated in response to ionizing radiation (IR) and that dephosphorylation by a protein phosphatase 2A (PP2A)-like protein phosphatase (PP2A, PP4, or PP6) regulates the protein kinase activity of DNA-PKcs. Here we report that DNA-PKcs interacts with the catalytic subunits of PP6 (PP6c) and PP2A (PP2Ac), as well as with the PP6 regulatory subunits PP6R1, PP6R2, and PP6R3. Consistent with a role in the DNA damage response, silencing of PP6c by small interfering RNA (siRNA) induced sensitivity to IR and delayed release from the G(2)/M checkpoint. Furthermore, siRNA silencing of either PP6c or PP6R1 led to sustained phosphorylation of histone H2AX on serine 139 (gamma-H2AX) after IR. In contrast, silencing of PP6c did not affect the autophosphorylation of DNA-PKcs on serine 2056 or that of the ataxia-telangiectasia mutated (ATM) protein on serine 1981. We propose that a novel function of DNA-PKcs is to recruit PP6 to sites of DNA damage and that PP6 contributes to the dephosphorylation of gamma-H2AX, the dissolution of IR-induced foci, and release from the G(2)/M checkpoint in vivo.
Collapse
|
17
|
Guergnon J, Derewenda U, Edelson JR, Brautigan DL. Mapping of protein phosphatase-6 association with its SAPS domain regulatory subunit using a model of helical repeats. BMC BIOCHEMISTRY 2009; 10:24. [PMID: 19835610 PMCID: PMC2765987 DOI: 10.1186/1471-2091-10-24] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 10/16/2009] [Indexed: 01/05/2023]
Abstract
Background Helical repeat motifs are common among regulatory subunits for type-1 and type-2A protein Ser/Thr phosphatases. Yeast Sit4 is a distinctive type-2A phosphatase that has dedicated regulatory subunits named Sit4-Associated Proteins (SAPS). These subunits are conserved, and three human SAPS-related proteins are known to associate with PP6 phosphatase, the Sit4 human homologue. Results Here we show that endogenous SAPS subunit PP6R3 co-precipitates half of PP6 in cell extracts, and the SAPS region of PP6R3 is sufficient for binding PP6. The SAPS domain of recombinant GST-PP6R3 is relatively resistant to trypsin despite having many K and R residues, and the purified SAPS domain (residues 1-513) has a circular dichroic spectrum indicative of mostly alpha helical structure. We used sequence alignments and 3D-jury methods to develop alternative models for the SAPS domain, based on available structures of other helical repeat proteins. The models were used to select sites for charge-reversal substitutions in the SAPS domain of PP6R3 that were tested by co-precipitation of endogenous PP6c with FLAG-tagged PP6R3 from mammalian cells. Mutations that reduced binding with PP6 suggest that SAPS adopts a helical repeat similar to the structure of p115 golgin, but distinct from the PP2A-A subunit. These mutations did not cause perturbations in overall PP6R3 conformation, evidenced by no change in kinetics or preferential cleavage by chymotrypsin. Conclusion The conserved SAPS domain in PP6R3 forms helical repeats similar to those in golgin p115 and negatively charged residues in interhelical loops are used to associate specifically with PP6. The results advance understanding of how distinctive helical repeat subunits uniquely distribute and differentially regulate closely related Ser/Thr phosphatases.
Collapse
Affiliation(s)
- Julien Guergnon
- Center for Cell Signalling, University of Virginia School of Medicine, Charlottesville, VA 22908 USA
| | | | | | | |
Collapse
|