1
|
Yousefi M, Peymani M, Ghaedi K, Irani S, Etemadifar M. Significant modulations of linc001128 and linc0938 with miR-24-3p and miR-30c-5p in Parkinson disease. Sci Rep 2022; 12:2569. [PMID: 35173238 PMCID: PMC8850599 DOI: 10.1038/s41598-022-06539-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disease; the evidence suggests that lncRNAs and miRNAs play an important role in regulating the PD-related genes. The purpose of this research was to introduce two novel lncRNAs as the biomarker of PD diagnosis and treatment. We evaluated the expression profiles of six nodes of two regulatory networks in the PBMCs which had been got from 38 PD patients and 20 healthy individuals by qRT-PCR. Then, we compared the expression of these RNAs in both early and late stages of PD with the controls to determine if their expression could be related to the severity of disease. Further, this study investigated the direct interaction between one of the lncRNAs and target miRNA by using the dual luciferase assay. The results of the expression profiles of six nodes of the two ceRNA networks shown that linc01128, hsa-miR-24-3p and hsa-miR-30c-5p expression were significantly downregulated. While, the Linc00938, LRRK2 and ATP13A2 expression were up-regulated in the PBMC of the PD patients, in comparison to the controls. In addition, this study demonstrated that linc00938 directly sponged hsa-miR-30c-5p. The present study, therefore, for the first time, revealed two candidate lncRNAs as the biomarkers in the PD patients.
Collapse
Affiliation(s)
- Maryam Yousefi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Peymani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. .,Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Etemadifar
- Department of Neurology and Isfahan Neurosurgery Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Gómez-López VM, Viramontes-Pintos A, Ontiveros-Torres MÁ, Garcés-Ramírez L, de la Cruz F, Villanueva-Fierro I, Bravo-Muñoz M, Harrington CR, Martínez-Robles S, Yescas P, Guadarrama-Ortíz P, Hernandes-Alejandro M, Montiel-Sosa F, Pacheco-Herrero M, Luna-Muñoz J. Tau Protein Phosphorylated at Threonine-231 is Expressed Abundantly in the Cerebellum in Prion Encephalopathies. J Alzheimers Dis 2021; 81:769-785. [PMID: 33814431 PMCID: PMC8203236 DOI: 10.3233/jad-201308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Transmissible spongiform encephalopathies (TSEs) are rare neurodegenerative disorders that affect animals and humans. Bovine spongiform encephalopathy (BSE) in cattle, and Creutzfeld-Jakob Disease (CJD) in humans belong to this group. The causative agent of TSEs is called “prion”, which corresponds to a pathological form (PrPSc) of a normal cellular protein (PrPC) expressed in nerve cells. PrPSc is resistant to degradation and can induce abnormal folding of PrPC, and TSEs are characterized by extensive spongiosis and gliosis and the presence of PrPSc amyloid plaques. CJD presents initially with clinical symptoms similar to Alzheimer’s disease (AD). In AD, tau aggregates and amyloid-β protein plaques are associated with memory loss and cognitive impairment in patients. Objective: In this work, we study the role of tau and its relationship with PrPSc plaques in CJD. Methods: Multiple immunostainings with specific antibodies were carried out and analyzed by confocal microscopy. Results: We found increased expression of the glial fibrillary acidic protein (GFAP) and matrix metalloproteinase (MMP-9), and an exacerbated apoptosis in the granular layer in cases with prion disease. In these cases, tau protein phosphorylated at Thr-231 was overexpressed in the axons and dendrites of Purkinje cells and the extensions of parallel fibers in the cerebellum. Conclusion: We conclude that phosphorylation of tau may be a response to a toxic and inflammatory environment generated by the pathological form of prion.
Collapse
Affiliation(s)
- Vıctor Manuel Gómez-López
- National Dementia BioBank. Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, UNAM, Estado de México, México.,Physiology, Biophysics and Neuroscience, CINVESTAV, CDMX, México
| | - Amparo Viramontes-Pintos
- National Dementia BioBank. Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, UNAM, Estado de México, México
| | | | - Linda Garcés-Ramírez
- Escuela Nacional de Ciencias Biológicas, Departamento Fisiología, Instituto Politécnico Nacional, CDMX, México
| | - Fidel de la Cruz
- Escuela Nacional de Ciencias Biológicas, Departamento Fisiología, Instituto Politécnico Nacional, CDMX, México
| | | | - Marely Bravo-Muñoz
- National Dementia BioBank. Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, UNAM, Estado de México, México
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Sandra Martínez-Robles
- National Dementia BioBank. Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, UNAM, Estado de México, México
| | - Petra Yescas
- Genética, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velazco Suerez" CDMX, México
| | - Parménides Guadarrama-Ortíz
- Departamento de Neurocirugía, Centro Especializado en Neurocirugía y Neurociencias, México, (CENNM), CDMX, México
| | - Mario Hernandes-Alejandro
- Departamento de Bioingeniería, Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional, Gustavo A. Madero, México
| | - Francisco Montiel-Sosa
- National Dementia BioBank. Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, UNAM, Estado de México, México
| | - Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Catolica Madre y Maestra, Santiago de los Caballeros, Dominican Republic
| | - José Luna-Muñoz
- National Dementia BioBank. Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, UNAM, Estado de México, México.,National Brain Bank. Universidad Nacional Pedro Henríquez Ureña, Santo Domingo, Dominican Republic
| |
Collapse
|
3
|
Santos JC, Boucher D, Schneider LK, Demarco B, Dilucca M, Shkarina K, Heilig R, Chen KW, Lim RYH, Broz P. Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria. Nat Commun 2020; 11:3276. [PMID: 32581219 PMCID: PMC7314798 DOI: 10.1038/s41467-020-16889-z] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/01/2020] [Indexed: 01/16/2023] Open
Abstract
The human non-canonical inflammasome controls caspase-4 activation and gasdermin-D-dependent pyroptosis in response to cytosolic bacterial lipopolysaccharide (LPS). Since LPS binds and oligomerizes caspase-4, the pathway is thought to proceed without dedicated LPS sensors or an activation platform. Here we report that interferon-induced guanylate-binding proteins (GBPs) are required for non-canonical inflammasome activation by cytosolic Salmonella or upon cytosolic delivery of LPS. GBP1 associates with the surface of cytosolic Salmonella seconds after bacterial escape from their vacuole, initiating the recruitment of GBP2-4 to assemble a GBP coat. The GBP coat then promotes the recruitment of caspase-4 to the bacterial surface and caspase activation, in absence of bacteriolysis. Mechanistically, GBP1 binds LPS with high affinity through electrostatic interactions. Our findings indicate that in human epithelial cells GBP1 acts as a cytosolic LPS sensor and assembles a platform for caspase-4 recruitment and activation at LPS-containing membranes as the first step of non-canonical inflammasome signaling. Detection of LPS derived from Gram-negative bacteria by innate immune receptors is a critical step in the host response. Here Santos and colleagues show human GBP1 binds to LPS resulting in non-canonical inflammasome activation.
Collapse
Affiliation(s)
- José Carlos Santos
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Dave Boucher
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | | | - Benjamin Demarco
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Marisa Dilucca
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Kateryna Shkarina
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Rosalie Heilig
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Kaiwen W Chen
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Roderick Y H Lim
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Petr Broz
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland.
| |
Collapse
|
4
|
Luman contributes to brefeldin A-induced prion protein gene expression by interacting with the ERSE26 element. Sci Rep 2017; 7:42285. [PMID: 28205568 PMCID: PMC5304227 DOI: 10.1038/srep42285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/06/2017] [Indexed: 01/17/2023] Open
Abstract
The cellular prion protein (PrP) is essential for transmissible prion diseases, but its exact physiological function remains unclear. Better understanding the regulation of the human prion protein gene (PRNP) expression can provide insight into this elusive function. Spliced XBP1 (sXBP1) was recently shown to mediate endoplasmic reticulum (ER) stress-induced PRNP expression. In this manuscript, we identify Luman, a ubiquitous, non-canonical unfolded protein response (UPR), as a novel regulator of ER stress-induced PRNP expression. Luman activity was transcriptionally and proteolytically activated by the ER stressing drug brefeldin A (BFA) in human neurons, astrocytes, and breast cancer MCF-7 cells. Over-expression of active cleaved Luman (ΔLuman) increased PrP levels, while siRNA-mediated Luman silencing decreased BFA-induced PRNP expression. Site-directed mutagenesis and chromatin immunoprecipitation demonstrated that ΔLuman regulates PRNP expression by interacting with the ER stress response element 26 (ERSE26). Co-over-expression and siRNA-mediated silencing experiments showed that sXBP1 and ΔLuman both up-regulate ER stress-induced PRNP expression. Attempts to understand the function of PRNP up-regulation by Luman excluded a role in atorvastatin-induced neuritogenesis, ER-associated degradation, or proteasomal inhibition-induced cell death. Overall, these results refine our understanding of ER stress-induced PRNP expression and function.
Collapse
|
5
|
Kumar A, Sivanandam TM, Thakur MK. Presenilin 2 overexpression is associated with apoptosis in Neuro2a cells. Transl Neurosci 2016; 7:71-75. [PMID: 28123824 PMCID: PMC5234515 DOI: 10.1515/tnsci-2016-0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/09/2016] [Indexed: 01/21/2023] Open
Abstract
Presenilin 1 (PS1) and PS2 are evolutionarily conserved transmembrane proteins of the aspartyl protease family. Initially, they were reported to be associated with the early onset of familial, early-onset Alzheimer’s disease. PS1 has been implicated in several crucial brain functions including developmental processes, synaptic plasticity, and processing of various molecules, while PS2 has been poorly studied and is considered to be a compensatory partner of PS1. Certain controversial reports have suggested that PS2 has a role in apoptosis, though the underlying mechanism is not clear. To ascertain the role of PS2 in apoptosis, mouse neuroblastoma cells (Neuro2a) were transfected with a cDNA construct encoding full length mouse PS2 and analyzed for viability, expression of PS1, PS2, Bax and p53, Bax protein, and status of chromatin condensation. Our results showed reduced viability, condensed chromatin and higher expression of Bax at mRNA and protein levels, but no change in the expression of p53 and PS1 in PS2-overexpressing Neuro2a cells. Thus, it is evident that PS2, independent of PS1, is associated with apoptosis via a Bax-mediated pathway. These findings might help in the understanding of the involvement of PS2 in apoptosis and its associated brain disorders.
Collapse
Affiliation(s)
- Ashish Kumar
- Laboratory of Biochemistry and Molecular Biology, Brain Research Centre, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India; Centre for Genomics, Jiwaji University, Gwalior 474 011, India
| | - T M Sivanandam
- Laboratory of Biochemistry and Molecular Biology, Brain Research Centre, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India
| | - M K Thakur
- Laboratory of Biochemistry and Molecular Biology, Brain Research Centre, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
6
|
Peters SL, Déry MA, LeBlanc AC. Familial prion protein mutants inhibit Hrd1-mediated retrotranslocation of misfolded proteins by depleting misfolded protein sensor BiP. Hum Mol Genet 2016; 25:976-88. [PMID: 26740554 DOI: 10.1093/hmg/ddv630] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/29/2015] [Indexed: 01/09/2023] Open
Abstract
Similar to many proteins trafficking through the secretory pathway, cellular prion protein (PrP) partly retrotranslocates from the endoplasmic reticulum to the cytosol through the endoplasmic reticulum-associated degradation (ERAD) pathway in an attempt to alleviate accumulation of cellular misfolded PrP. Surprisingly, familial PrP mutants fail to retrotranslocate and simultaneously block normal cellular PrP retrotranslocation. That impairments in retrotranslocation of misfolded proteins could lead to global disruptions in cellular homeostasis prompted further investigations into PrP mutant retrotranslocation defects. A gain- and loss-of-function approach identified human E3 ubiquitin ligase, Hrd1, as a critical regulator of PrP retrotranslocation in mammalian cells. Expression of familial human PrP mutants, V210I(129V) and M232R(129V), not only abolished PrP retrotranslocation, but also that of Hrd1-dependent ERAD substrates, transthyretin TTR(D18G) and α1-anti-trypsin A1AT(NHK). Mutant PrP expression decreased binding immunoglobulin protein (BiP) levels by 50% and attenuated ER stress-induced BiP by increasing BiP turnover 6-fold. Overexpression of BiP with PrP mutants rescued retrotranslocation of PrP, TTR(D18G) and A1AT(NHK). PrP mutants-induced cell death was also rescued by co-expression of BiP. These results show that PrP mutants highjack the Hrd1-dependent ERAD pathway, an action that would result in misfolded protein accumulation especially in terminally differentiated neurons. This could explain the age-dependent neuronal degeneration in familial prion diseases.
Collapse
Affiliation(s)
- Sarah L Peters
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Ch. Cote Ste-Catherine, Montreal, QC H3T 1E2, Canada and Department of Neurology and Neurosurgery, McGill University, 3775 University Street, Montreal, QC H2A 2B4, Canada
| | - Marc-André Déry
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Ch. Cote Ste-Catherine, Montreal, QC H3T 1E2, Canada and Department of Neurology and Neurosurgery, McGill University, 3775 University Street, Montreal, QC H2A 2B4, Canada
| | - Andrea C LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Ch. Cote Ste-Catherine, Montreal, QC H3T 1E2, Canada and Department of Neurology and Neurosurgery, McGill University, 3775 University Street, Montreal, QC H2A 2B4, Canada
| |
Collapse
|
7
|
Abstract
Permeabilization of the outer mitochondrial membrane that leads to the release of cytochrome c and several other apoptogenic proteins from mitochondria into cytosol represents a commitment point of apoptotic pathway in mammalian cells. This crucial event is governed by proteins of the Bcl-2 family. Molecular mechanisms, by which Bcl-2 family proteins permeabilize mitochondrial membrane, remain under dispute. Although yeast does not have apparent homologues of these proteins, when mammalian members of Bcl-2 family are expressed in yeast, they retain their activity, making yeast an attractive model system, in which to study their action. This review focuses on using yeast expressing mammalian proteins of the Bcl-2 family as a tool to investigate mechanisms, by which these proteins permeabilize mitochondrial membranes, mechanisms, by which pro- and antiapoptotic members of this family interact, and involvement of other cellular components in the regulation of programmed cell death by Bcl-2 family proteins.
Collapse
Affiliation(s)
- Peter Polčic
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| | - Petra Jaká
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
8
|
Machado CF, Beraldo FH, Santos TG, Bourgeon D, Landemberger MC, Roffé M, Martins VR. Disease-associated mutations in the prion protein impair laminin-induced process outgrowth and survival. J Biol Chem 2012; 287:43777-88. [PMID: 23132868 DOI: 10.1074/jbc.m112.428235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Prions, the agents of transmissible spongiform encephalopathies, require the expression of prion protein (PrP(C)) to propagate disease. PrP(C) is converted into an abnormal insoluble form, PrP(Sc), that gains neurotoxic activity. Conversely, clinical manifestations of prion disease may occur either before or in the absence of PrP(Sc) deposits, but the loss of normal PrP(C) function contribution for the etiology of these diseases is still debatable. Prion disease-associated mutations in PrP(C) represent one of the best models to understand the impact of PrP(C) loss-of-function. PrP(C) associates with various molecules and, in particular, the interaction of PrP(C) with laminin (Ln) modulates neuronal plasticity and memory formation. To assess the functional alterations associated with PrP(C) mutations, wild-type and mutated PrP(C) proteins were expressed in a neural cell line derived from a PrP(C)-null mouse. Treatment with the laminin γ1 chain peptide (Ln γ1), which mimics the Ln binding site for PrP(C), increased intracellular calcium in cells expressing wild-type PrP(C), whereas a significantly lower response was observed in cells expressing mutated PrP(C) molecules. The Ln γ1 did not promote process outgrowth or protect against staurosporine-induced cell death in cells expressing mutated PrP(C) molecules in contrast to cells expressing wild-type PrP(C). The co-expression of wild-type PrP(C) with mutated PrP(C) molecules was able to rescue the Ln protective effects, indicating the lack of negative dominance of PrP(C) mutated molecules. These results indicate that PrP(C) mutations impair process outgrowth and survival mediated by Ln γ1 peptide in neural cells, which may contribute to the pathogenesis of genetic prion diseases.
Collapse
Affiliation(s)
- Cleiton F Machado
- International Research Center, A. C. Camargo Hospital, and National Institute for Translational Neuroscience (CNPq/MCT/FAPESP), São Paulo 01508-010, Brazil
| | | | | | | | | | | | | |
Collapse
|
9
|
Choi JK, Jeon YC, Lee DW, Oh JM, Lee HP, Jeong BH, Carp RI, Koh YH, Kim YS. A Drosophila model of GSS syndrome suggests defects in active zones are responsible for pathogenesis of GSS syndrome. Hum Mol Genet 2010; 19:4474-89. [PMID: 20829230 DOI: 10.1093/hmg/ddq379] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We have established a Drosophila model of Gerstmann-Sträussler-Scheinker (GSS) syndrome by expressing mouse prion protein (PrP) having leucine substitution at residue 101 (MoPrP(P101L)). Flies expressing MoPrP(P101L), but not wild-type MoPrP (MoPrP(3F4)), showed severe defects in climbing ability and early death. Expressed MoPrP(P101L) in Drosophila was differentially glycosylated, localized at the synaptic terminals and mainly present as deposits in adult brains. We found that behavioral defects and early death of MoPrP(P101L) flies were not due to Caspase 3-dependent programmed cell death signaling. In addition, we found that Type 1 glutamatergic synaptic boutons in larval neuromuscular junctions of MoPrP(P101L) flies showed significantly increased numbers of satellite synaptic boutons. Furthermore, the amount of Bruchpilot and Discs large in MoPrP(P101L) flies was significantly reduced. Brains from scrapie-infected mice showed significantly decreased ELKS, an active zone matrix marker compared with those of age-matched control mice. Thus, altered active zone structures at the molecular level may be involved in the pathogenesis of GSS syndrome in Drosophila and scrapie-infected mice.
Collapse
Affiliation(s)
- Jin-Kyu Choi
- Ilsong Institute of Life Science, Hallym University, 1605-4 Gwanyangdong Dongangu, Anyang, Gyeonggi-Do, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|