1
|
Liu X, Wang S, Wu X, Zhao Z, Jian C, Li M, Qin X. Astragaloside IV Alleviates Depression in Rats by Modulating Intestinal Microbiota, T-Immune Balance, and Metabolome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:259-273. [PMID: 38064688 DOI: 10.1021/acs.jafc.3c04063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
This study aims to explore the effects of Astragaloside IV (AS-IV) on abnormal behaviors, intestinal microbiota, intestinal T-immune balance, and fecal metabolism of a model of depression in rats. Herein, we integrally applied 16S rRNA sequencing, molecular biological techniques, and 1H NMR-based fecal metabolomics to demonstrate the antidepression activity of AS-IV. The results suggested that AS-IV regulated the depression-like behaviors of rats, which are presented by an increase of body weight, upregulation of sucrose preference rates, and a decrease of immobility time. Additionally, AS-IV increased the abundances of beneficial bacteria (Lactobacillus and Oscillospira) in a model of depression in rats. Moreover, AS-IV regulated significantly the imbalance of Th17/Treg cells, and the abnormal contents of both anti-inflammatory factors and pro-inflammatory factors. Besides, fecal metabolomics showed that AS-IV improved the abnormal levels of short-chain fatty acids and amino acids. Collectively, our research supplemented new data, supporting the potential of AS-IV as an effective diet or diet composition to improve depression-like behaviors, dysfunctions of microbiota, imbalance of T immune, and the abnormality of fecal metabolome. However, the causality of the other actions was not proven because of the experimental design and the methodology used. The current findings suggest that AS-IV could function as a promising diet or diet composition to alleviate depressed symptoms.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| | - Senyan Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| | - Xiaoling Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| | - Ziyu Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| | - Chen Jian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| | - Mengyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| |
Collapse
|
2
|
Umemiya-Shirafuji R, Zhou J, Liao M, Battsetseg B, Boldbaatar D, Hatta T, Kuboki T, Sakaguchi T, Chee HS, Miyoshi T, Huang X, Tsuji N, Xuan X, Fujisaki K. Data from expressed sequence tags from the organs and embryos of parthenogenetic Haemaphysalis longicornis. BMC Res Notes 2021; 14:326. [PMID: 34433501 PMCID: PMC8390289 DOI: 10.1186/s13104-021-05740-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022] Open
Abstract
Objectives Haemaphysalis longicornis is the most important tick species in Japan and has a wide range of vector capacity. Due to its veterinary and medical importance, this tick species has been used as a model for tick/vector biological studies. To identify the key molecules associated with physiological processes during blood feeding and embryogenesis, full-length cDNA libraries were constructed using the fat body, hemocytes-containing hemolymph, midgut, ovary and salivary glands of fed females and embryos of the laboratory colony of parthenogenetic H. longicornis. The sequences of cDNA from the salivary glands had been already released. However, the related information is still poor, and the other expressed sequence tags have not yet been deposited. Data description A total of 39,113 expressed sequence tags were obtained and deposited at the DNA DataBank of Japan. There were 7745 sequences from embryos, 7385 from the fat body, 8303 from the hemolymph including hemocytes, 7385 from the midgut, and 8295 from the ovary. The data, including expressed sequence tags from the salivary glands was summarized into Microsoft Excel files. Sharing this data resource with the tick research community will be valuable for the identification of novel genes and advance the progress of tick research.
Collapse
Affiliation(s)
- Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan.
| | - Jinlin Zhou
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518, Ziyue Road, Minhang District, Shanghai, 200241, China
| | - Min Liao
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Badgar Battsetseg
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan.,Laboratory of Molecular Genetics, Institute of Veterinary Medicine, Mongolian University of Life Science, Zaisan, 17024, Ulaanbaatar, Mongolia
| | - Damdinsuren Boldbaatar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan.,Institute of Veterinary Medicine, Mongolian University of Life Science, Zaisan, 17024, Ulaanbaatar, Mongolia
| | - Takeshi Hatta
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan.,Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agricultural and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.,Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Thasaneeya Kuboki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan.,Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takeshi Sakaguchi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Huey Shy Chee
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Takeharu Miyoshi
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agricultural and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Xiaohong Huang
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agricultural and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Naotoshi Tsuji
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agricultural and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.,Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Kozo Fujisaki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan
| |
Collapse
|
3
|
Costa EP, Façanha AR, Cruz CS, Silva JN, Machado JA, Carvalho GM, Fernandes MR, Martins R, Campos E, Romeiro NC, Githaka NW, Konnai S, Ohashi K, Vaz IS, Logullo C. A novel mechanism of functional cooperativity regulation by thiol redox status in a dimeric inorganic pyrophosphatase. Biochim Biophys Acta Gen Subj 2016; 1861:2922-2933. [PMID: 27664315 DOI: 10.1016/j.bbagen.2016.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/30/2016] [Accepted: 09/18/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Inorganic PPases are essential metal-dependent enzymes that convert pyrophosphate into orthophosphate. This reaction is quite exergonic and provides a thermodynamic advantage for many ATP-driven biosynthetic reactions. We have previously demonstrated that cytosolic PPase from R. microplus embryos is an atypical Family I PPase. Here, we explored the functional role of the cysteine residues located at the homodimer interface, its redox sensitivity, as well as structural and kinetic parameters related to thiol redox status. METHODS In this work, we used prokaryotic expression system for recombinant protein overexpression, biochemical approaches to assess kinetic parameters, ticks embryos and computational approaches to analyze and predict critical amino acids as well as physicochemical properties at the homodimer interface. RESULTS Cysteine 339, located at the homodimer interface, was found to play an important role in stabilizing a functional cooperativity between the two catalytic sites, as indicated by kinetics and Hill coefficient analyses of the WT-rBmPPase. WT-rBmPPase activity was up-regulated by physiological antioxidant molecules such as reduced glutathione and ascorbic acid. On the other hand, hydrogen peroxide at physiological concentrations decreased the affinity of WT-rBmPPase for its substrate (PPi), probably by inducing disulfide bridge formation. CONCLUSIONS Our results provide a new angle in understanding redox control by disulfide bonds formation in enzymes from hematophagous arthropods. The reversibility of the down-regulation is dependent on hydrophobic interactions at the dimer interface. GENERAL SIGNIFICANCE This study is the first report on a soluble PPase where dimeric cooperativity is regulated by a redox mechanism, according to cysteine redox status.
Collapse
Affiliation(s)
- Evenilton P Costa
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Arnoldo R Façanha
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Criscila S Cruz
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil; Laboratório Integrado de Bioquímica Hatisaburo Masuda, Laboratório Integrado de Computação Científica, Núcleo de Pesquisas em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Jhenifer N Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Josias A Machado
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Gabriel M Carvalho
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Mariana R Fernandes
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Renato Martins
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Eldo Campos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Laboratório Integrado de Computação Científica, Núcleo de Pesquisas em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Nelilma C Romeiro
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Laboratório Integrado de Computação Científica, Núcleo de Pesquisas em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Naftaly W Githaka
- Tick Unit, International Livestock Research Institute, P.O. Box 30709, Nairobi, Kenya
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| | - Kazuhiko Ohashi
- Laboratory of Infectious Diseases, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| | - Itabajara S Vaz
- Faculdade de Veterinária e Centro de Biotecnologia do Estado do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Brazil
| | - Carlos Logullo
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil.
| |
Collapse
|
4
|
Kiyota E, Pena IA, Arruda P. The saccharopine pathway in seed development and stress response of maize. PLANT, CELL & ENVIRONMENT 2015; 38:2450-61. [PMID: 25929294 DOI: 10.1111/pce.12563] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 05/10/2023]
Abstract
Lysine is catabolized in developing plant tissues through the saccharopine pathway. In this pathway, lysine is converted into α-aminoadipic semialdehyde (AASA) by the bifunctional enzyme lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH). AASA is then converted into aminoadipic acid (AAA) by aminoadipic semialdehyde dehydrogenase (AASADH). Here, we show that LKR/SDH and AASADH are co-expressed in the sub-aleurone cell layers of the developing endosperm; however, although AASADH protein is produced in reproductive and vegetative tissues, the LKR/SDH protein is detectable only in the developing endosperm. AASADH showed an optimum pH of 7.4 and Kms for AASA and NAD(+) in the micromolar range. In the developing endosperm, the saccharopine pathway is induced by exogenous lysine and repressed by salt stress, whereas proline and pipecolic acid synthesis are significantly repressed by lysine. In young coleoptiles, the LKR/SDH and AASADH transcriptions are induced by abiotic stress, but while the AASADH protein accumulates in the stressed tissues, the LKR/SDH protein is not produced. In the developing seeds, the saccharopine pathway is used for pipecolic acid synthesis although proline may play a major role in abiotic stress response. The results indicate that the saccharopine pathway in maize seed development and stress responses significantly differ from that observed for dicot plants.
Collapse
Affiliation(s)
- Eduardo Kiyota
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, 13083-875, Campinas, Sao Paulo, Brazil
| | - Izabella Agostinho Pena
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, 13083-875, Campinas, Sao Paulo, Brazil
| | - Paulo Arruda
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, 13083-875, Campinas, Sao Paulo, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, 13083-875, Campinas, Sao Paulo, Brazil
| |
Collapse
|
5
|
Wan PJ, Yuan SY, Tang YH, Li KL, Yang L, Fu Q, Li GQ. Pathways of Amino Acid Degradation in Nilaparvata lugens (Stål) with Special Reference to Lysine-Ketoglutarate Reductase/Saccharopine Dehydrogenase (LKR/SDH). PLoS One 2015; 10:e0127789. [PMID: 26000452 PMCID: PMC4441501 DOI: 10.1371/journal.pone.0127789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 04/19/2015] [Indexed: 12/14/2022] Open
Abstract
Nilaparvata lugens harbors yeast-like symbionts (YLSs). In present paper, a genome-wide analysis found 115 genes from Ni. lugens and 90 genes from YLSs that were involved in the metabolic degradation of 20 proteinogenic amino acids. These 205 genes encoded for 77 enzymes. Accordingly, the degradation pathways for the 20 amino acids were manually constructed. It is postulated that Ni. lugens can independently degrade fourteen amino acids (threonine, alanine, glycine, serine, aspartate, asparagine, phenylalanine, tyrosine, glutamate, glutamine, proline, histidine, leucine and lysine). Ni. lugens and YLSs enzymes may work collaboratively to break down tryptophan, cysteine, arginine, isoleucine, methionine and valine. We cloned a lysine-ketoglutarate reductase/saccharopine dehydrogenase gene (Nllkr/sdh) that encoded a bifunctional enzyme catalyzing the first two steps of lysine catabolism. Nllkr/sdh is widely expressed in the first through fifth instar nymphs and adults, and is highly expressed in the fat body, ovary and gut in adults. Ingestion of dsNllkr/sdh by nymphs successfully knocked down the target gene, and caused nymphal/adult mortality, shortened nymphal development stage and reduced adult fresh weight. Moreover, Nllkr/sdh knockdown resulted in three defects: wings were shortened and thickened; cuticles were stretched and thinned; and old nymphal cuticles remained on the tips of legs and abdomen and were not completely shed. These data indicate that impaired lysine degradation negatively affects the survival and development of Ni. lugens.
Collapse
Affiliation(s)
- Pin-Jun Wan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - San-Yue Yuan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yao-Hua Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Kai-Long Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Lu Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiang Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Arruda P, Neshich IP. Nutritional‐rich and stress‐tolerant crops by saccharopine pathway manipulation. Food Energy Secur 2012. [DOI: 10.1002/fes3.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Paulo Arruda
- Centro de Biologia Molecular e Engenharia Genética Universidade Estadual de Campinas Campinas Sao Paulo Brazil
- Departamento de Genética e Evolução, IB Universidade Estadual de Campinas Campinas Sao Paulo Brazil
| | - Izabella Pena Neshich
- Centro de Biologia Molecular e Engenharia Genética Universidade Estadual de Campinas Campinas Sao Paulo Brazil
| |
Collapse
|
7
|
Umair S, Bland R, Simpson H. Lysine catabolism in Haemonchus contortus and Teladorsagia circumcincta. Exp Parasitol 2012; 131:101-6. [DOI: 10.1016/j.exppara.2012.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/13/2012] [Accepted: 03/13/2012] [Indexed: 11/27/2022]
|
8
|
Boldbaatar D, Umemiya-Shirafuji R, Liao M, Tanaka T, Xuan X, Fujisaki K. Multiple vitellogenins from the Haemaphysalis longicornis tick are crucial for ovarian development. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1587-1598. [PMID: 20576517 DOI: 10.1016/j.jinsphys.2010.05.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/21/2010] [Accepted: 05/21/2010] [Indexed: 05/29/2023]
Abstract
Ovarian development and egg maturation are crucial processes for the success of reproduction in ticks. Three full-length cDNAs encoding the precursor of major yolk protein, vitellogenin, were obtained from cDNA libraries of the Haemaphysalis longicornis tick and designated as HlVg-1, HlVg-2 and HlVg-3. The HlVg mRNAs were found in fed females with major expression sites in the midgut, fat body and ovary. Native PAGE and Western blot demonstrated that HlVgs in the hemolymph, fat body and ovary of fed females consisted of four major polypeptides. RNAi results showed that HlVg dsRNA-injected ticks obtained lower body weight, egg weight and showed higher mortality of engorged females after blood sucking than control groups. Our results indicate that all HlVgs are essential for egg development and oviposition.
Collapse
Affiliation(s)
- Damdinsuren Boldbaatar
- Department of Frontier Veterinary Science, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | |
Collapse
|