1
|
Grinspan GA, Fernandes de Oliveira L, Brandao MC, Pomi A, Benech N. Load sharing between synergistic muscles characterized by a ligand-binding approach and elastography. Sci Rep 2023; 13:18267. [PMID: 37880279 PMCID: PMC10600237 DOI: 10.1038/s41598-023-45037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023] Open
Abstract
The skeletal muscle contraction is determined by cross-bridge formation between the myosin heads and the actin active sites. When the muscle contracts, it shortens, increasing its longitudinal shear elastic modulus ([Formula: see text]). Structurally, skeletal muscle can be considered analogous to the molecular receptors that form receptor-ligand complexes and exhibit specific ligand-binding dynamics. In this context, this work aims to apply elastography and the ligand-binding framework to approach the possible intrinsic mechanisms behind muscle synergism. Based on the short-range stiffness principle and the acoustic-elasticity theory, we define the coefficient [Formula: see text], which is directly related to the fraction saturation of molecular receptors and links the relative longitudinal deformation of the muscle to its [Formula: see text]. We show that such a coefficient can be obtained directly from [Formula: see text] estimates, thus calculating it for the biceps brachii, brachioradialis, and brachialis muscles during isometric elbow flexion torque (τ) ramps. The resulting [Formula: see text] curves were analyzed by conventional characterization methods of receptor-ligand systems to study the dynamical behavior of each muscle. The results showed that, depending on muscle, [Formula: see text] exhibits typical ligand-binding dynamics during joint torque production. Therefore, the above indicates that these different behaviors describe the longitudinal shortening pattern of each muscle during load sharing. As a plausible interpretation, we suggested that this could be related to the binding kinetics of the cross-bridges during their synergistic action as torque increases. Likewise, it shows that elastography could be useful to assess contractile processes at different scales related to the change in the mechanical properties of skeletal muscle.
Collapse
Affiliation(s)
- Gustavo A Grinspan
- Sección Biofísica y Biología de Sistemas, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
- Laboratorio de Acústica Ultrasonora, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
| | - Liliam Fernandes de Oliveira
- Laboratório de Análise do Movimento e Fisiologia do Exercício, Programa de Engenharia Biomédica, Universidade Federal do Rio de Janeiro, Av. Horácio Macedo 2030, Rio de Janeiro, 21941-590, Brazil
| | - Maria Clara Brandao
- Laboratório de Análise do Movimento e Fisiologia do Exercício, Programa de Engenharia Biomédica, Universidade Federal do Rio de Janeiro, Av. Horácio Macedo 2030, Rio de Janeiro, 21941-590, Brazil
| | - Andrés Pomi
- Sección Biofísica y Biología de Sistemas, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Nicolás Benech
- Laboratorio de Acústica Ultrasonora, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| |
Collapse
|
2
|
Zot HG, Chase PB, Hasbun JE, Pinto JR. Mechanical contribution to muscle thin filament activation. J Biol Chem 2020; 295:15913-15922. [PMID: 32900850 DOI: 10.1074/jbc.ra120.014438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/04/2020] [Indexed: 11/06/2022] Open
Abstract
Vertebrate striated muscle thin filaments are thought to be thermodynamically activated in response to an increase in Ca2+ concentration. We tested this hypothesis by measuring time intervals for gliding runs and pauses of individual skeletal muscle thin filaments in cycling myosin motility assays. A classic thermodynamic mechanism predicts that if chemical potential is constant, transitions between runs and pauses of gliding thin filaments will occur at constant rate as given by a Poisson distribution. In this scenario, rate is given by the odds of a pause, and hence, run times between pauses fit an exponential distribution that slopes negatively for all observable run times. However, we determined that relative density of observed run times fits an exponential only at low Ca2+ levels that activate filament gliding. Further titration with Ca2+, or adding excess regulatory proteins tropomyosin and troponin, shifted the relative density of short run times to fit the positive slope of a gamma distribution, which derives from waiting times between Poisson events. Events that arise during a run and prevent the chance of ending a run for a random interval of time account for the observed run time distributions, suggesting that the events originate with cycling myosin. We propose that regulatory proteins of the thin filament require the mechanical force of cycling myosin to achieve the transition state for activation. During activation, combinations of cycling myosin that contribute insufficient activation energy delay deactivation.
Collapse
Affiliation(s)
- Henry G Zot
- Department of Biology, University of West Georgia, Carrollton, Georgia, USA; Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA.
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Javier E Hasbun
- Department of Physics, University of West Georgia, Carrollton, Georgia, USA
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
3
|
Zot HG, Hasbun JE. Modeling Ca 2+-Bound Troponin in Excitation Contraction Coupling. Front Physiol 2016; 7:406. [PMID: 27708586 PMCID: PMC5030304 DOI: 10.3389/fphys.2016.00406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/30/2016] [Indexed: 11/25/2022] Open
Abstract
To explain disparate decay rates of cytosolic Ca2+ and structural changes in the thin filaments during a twitch, we model the time course of Ca2+-bound troponin (Tn) resulting from the free Ca2+ transient of fast skeletal muscle. In fibers stretched beyond overlap, the decay of Ca2+ as measured by a change in fluo-3 fluorescence is significantly slower than the intensity decay of the meridional 1/38.5 nm−1 reflection of Tn; this is not simply explained by considering only the Ca2+ binding properties of Tn alone (Matsuo et al., 2010). We apply a comprehensive model that includes the known Ca2+ binding properties of Tn in the context of the thin filament with and without cycling crossbridges. Calculations based on the model predict that the transient of Ca2+-bound Tn correlates with either the fluo-3 time course in muscle with overlapping thin and thick filaments or the intensity of the meridional 1/38.5 nm−1 reflection in overstretched muscle. Hence, cycling crossbridges delay the dissociation of Ca2+ from Tn. Correlation with the fluo-3 fluorescence change is not causal given that the transient of Ca2+-bound Tn depends on sarcomere length, whereas the fluo-3 fluorescence change does not. Transient positions of tropomyosin calculated from the time course of Ca2+-bound Tn are in reasonable agreement with the transient of measured perturbations of the Tn repeat in overlap and non-overlap muscle preparations.
Collapse
Affiliation(s)
- Henry G Zot
- Department of Biology, University of West Georgia Carrollton, GA, USA
| | - Javier E Hasbun
- Department of Physics, University of West Georgia Carrollton, GA, USA
| |
Collapse
|
4
|
Zot HG, Hasbun JE, Michell CA, Landim-Vieira M, Pinto JR. Enhanced troponin I binding explains the functional changes produced by the hypertrophic cardiomyopathy mutation A8V of cardiac troponin C. Arch Biochem Biophys 2016; 601:97-104. [PMID: 26976709 DOI: 10.1016/j.abb.2016.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/09/2016] [Accepted: 03/08/2016] [Indexed: 01/17/2023]
Abstract
Higher affinity for TnI explains how troponin C (TnC) carrying a causative hypertrophic cardiomyopathy mutation, TnC(A8V), sensitizes muscle cells to Ca(2+). Muscle fibers reconstituted with TnC(A8V) require ∼2.3-fold less [Ca(2+)] to achieve 50% maximum-tension compared to fibers reconstituted with wild-type TnC (TnC(WT)). Binding measurements rule out a significant change in N-terminus Ca(2+)-affinity of isolated TnC(A8V), and TnC(A8V) binds the switch-peptide of troponin-I (TnI(sp)) ∼1.6-fold more strongly than TnC(WT); thus we model the TnC-TnI(sp) interaction as competing with the TnI-actin interaction. Tension data are well-fit by a model constrained to conditions in which the affinity of TnC(A8V) for TnI(sp) is 1.5-1.7-fold higher than that of TnC(WT) at all [Ca(2+)]. Mean ATPase rates of reconstituted cardiac myofibrils is greater for TnC(A8V) than TnC(WT) at all [Ca(2+)], with statistically significant differences in the means at higher [Ca(2+)]. To probe TnC-TnI interaction in low Ca(2+), displacement of bis-ANS from TnI was monitored as a function of TnC. Whereas Ca(2+)-TnC(WT) displaces significantly more bis-ANS than Mg(2+)-TnC(WT), Ca(2+)-TnC(A8V) displaces probe equivalently to Mg(2+)-TnC(A8V) and Ca(2+)-TnC(WT), consistent with stronger Ca(2+)-independent TnC(A8V)-TnI(sp). A Matlab program for computing theoretical activation is reported. Our work suggests that contractility is constantly above normal in hearts made hypertrophic by TnC(A8V).
Collapse
Affiliation(s)
- Henry G Zot
- Department of Biology, University of West Georgia, Carrollton, GA 30118, USA.
| | - Javier E Hasbun
- Department of Physics, University of West Georgia, Carrollton, GA 30118, USA
| | - Clara A Michell
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Jose R Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
5
|
Zot HG, Hasbun JE, Minh NV. Second-chance signal transduction explains cooperative flagellar switching. PLoS One 2012; 7:e41098. [PMID: 22844429 PMCID: PMC3402542 DOI: 10.1371/journal.pone.0041098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 06/21/2012] [Indexed: 01/02/2023] Open
Abstract
The reversal of flagellar motion (switching) results from the interaction between a switch complex of the flagellar rotor and a torque-generating stationary unit, or stator (motor unit). To explain the steeply cooperative ligand-induced switching, present models propose allosteric interactions between subunits of the rotor, but do not address the possibility of a reaction that stimulates a bidirectional motor unit to reverse direction of torque. During flagellar motion, the binding of a ligand-bound switch complex at the dwell site could excite a motor unit. The probability that another switch complex of the rotor, moving according to steady-state rotation, will reach the same dwell site before that motor unit returns to ground state will be determined by the independent decay rate of the excited-state motor unit. Here, we derive an analytical expression for the energy coupling between a switch complex and a motor unit of the stator complex of a flagellum, and demonstrate that this model accounts for the cooperative switching response without the need for allosteric interactions. The analytical result can be reproduced by simulation when (1) the motion of the rotor delivers a subsequent ligand-bound switch to the excited motor unit, thereby providing the excited motor unit with a second chance to remain excited, and (2) the outputs from multiple independent motor units are constrained to a single all-or-none event. In this proposed model, a motor unit and switch complex represent the components of a mathematically defined signal transduction mechanism in which energy coupling is driven by steady-state and is regulated by stochastic ligand binding. Mathematical derivation of the model shows the analytical function to be a general form of the Hill equation (Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40: iv-vii).
Collapse
Affiliation(s)
- Henry G Zot
- Department of Biology, University of West Georgia, Carrollton, Georgia, United States of America.
| | | | | |
Collapse
|
6
|
Lee RS, Tikunova SB, Kline KP, Zot HG, Hasbun JE, Minh NV, Swartz DR, Rall JA, Davis JP. Effect of Ca2+ binding properties of troponin C on rate of skeletal muscle force redevelopment. Am J Physiol Cell Physiol 2010; 299:C1091-9. [PMID: 20702687 DOI: 10.1152/ajpcell.00491.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate effects of altering troponin (Tn)C Ca(2+) binding properties on rate of skeletal muscle contraction, we generated three mutant TnCs with increased or decreased Ca(2+) sensitivities. Ca(2+) binding properties of the regulatory domain of TnC within the Tn complex were characterized by following the fluorescence of an IAANS probe attached onto the endogenous Cys(99) residue of TnC. Compared with IAANS-labeled wild-type Tn complex, V43QTnC, T70DTnC, and I60QTnC exhibited ∼1.9-fold higher, ∼5.0-fold lower, and ∼52-fold lower Ca(2+) sensitivity, respectively, and ∼3.6-fold slower, ∼5.7-fold faster, and ∼21-fold faster Ca(2+) dissociation rate (k(off)), respectively. On the basis of K(d) and k(off), these results suggest that the Ca(2+) association rate to the Tn complex decreased ∼2-fold for I60QTnC and V43QTnC. Constructs were reconstituted into single-skinned rabbit psoas fibers to assess Ca(2+) dependence of force development and rate of force redevelopment (k(tr)) at 15°C, resulting in sensitization of both force and k(tr) to Ca(2+) for V43QTnC, whereas T70DTnC and I60QTnC desensitized force and k(tr) to Ca(2+), I60QTnC causing a greater desensitization. In addition, T70DTnC and I60QTnC depressed both maximal force (F(max)) and maximal k(tr). Although V43QTnC and I60QTnC had drastically different effects on Ca(2+) binding properties of TnC, they both exhibited decreases in cooperativity of force production and elevated k(tr) at force levels <30%F(max) vs. wild-type TnC. However, at matched force levels >30%F(max) k(tr) was similar for all TnC constructs. These results suggest that the TnC mutants primarily affected k(tr) through modulating the level of thin filament activation and not by altering intrinsic cross-bridge cycling properties. To corroborate this, NEM-S1, a non-force-generating cross-bridge analog that activates the thin filament, fully recovered maximal k(tr) for I60QTnC at low Ca(2+) concentration. Thus TnC mutants with altered Ca(2+) binding properties can control the rate of contraction by modulating thin filament activation without directly affecting intrinsic cross-bridge cycling rates.
Collapse
Affiliation(s)
- Ryan S Lee
- Department of Physiology and Cell Biology, Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | |
Collapse
|