1
|
Egger T, Aze A, Maiorano D. Detection of endogenous translesion DNA synthesis in single mammalian cells. CELL REPORTS METHODS 2023; 3:100501. [PMID: 37426760 PMCID: PMC10326377 DOI: 10.1016/j.crmeth.2023.100501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/07/2023] [Accepted: 05/18/2023] [Indexed: 07/11/2023]
Abstract
Translesion DNA synthesis (TLS) is an evolutionarily conserved process that cells activate to tolerate DNA damage. TLS facilitates proliferation under DNA damage conditions and is exploited by cancer cells to gain therapy resistance. It has been so far challenging to analyze endogenous TLS factors such as PCNAmUb and TLS DNA polymerases in single mammalian cells due to a lack of suitable detection tools. We have adapted a flow cytometry-based quantitative method allowing detection of endogenous, chromatin-bound TLS factors in single mammalian cells, either untreated or exposed to DNA-damaging agents. This high-throughput procedure is quantitative, accurate, and allows unbiased analysis of TLS factors' recruitment to chromatin, as well as occurrence of DNA lesions with respect to the cell cycle. We also demonstrate detection of endogenous TLS factors by immunofluorescence microscopy and provide insights into TLS dynamics upon DNA replication forks stalled by UV-C-induced DNA damage.
Collapse
Affiliation(s)
- Tom Egger
- Institut de Génétique Humaine (IGH) CNRS UMR9002, Université de Montpellier, Molecular Bases of Human Pathologies Department, “Genome Surveillance and Stability” Laboratory, 34396 Cedex 5 Montpellier, France
| | - Antoine Aze
- Institut de Génétique Humaine (IGH) CNRS UMR9002, Université de Montpellier, Molecular Bases of Human Pathologies Department, “Genome Surveillance and Stability” Laboratory, 34396 Cedex 5 Montpellier, France
| | - Domenico Maiorano
- Institut de Génétique Humaine (IGH) CNRS UMR9002, Université de Montpellier, Molecular Bases of Human Pathologies Department, “Genome Surveillance and Stability” Laboratory, 34396 Cedex 5 Montpellier, France
| |
Collapse
|
2
|
Qin W, Steinek C, Kolobynina K, Forné I, Imhof A, Cardoso M, Leonhardt H. Probing protein ubiquitination in live cells. Nucleic Acids Res 2022; 50:e125. [PMID: 36189882 PMCID: PMC9757074 DOI: 10.1093/nar/gkac805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 12/24/2022] Open
Abstract
The reversible attachment of ubiquitin governs the interaction, activity and degradation of proteins whereby the type and target of this conjugation determine the biological response. The investigation of this complex and multi-faceted protein ubiquitination mostly relies on painstaking biochemical analyses. Here, we employ recombinant binding domains to probe the ubiquitination of proteins in living cells. We immobilize GFP-fused proteins of interest at a distinct cellular structure and detect their ubiquitination state with red fluorescent ubiquitin binders. With this ubiquitin fluorescent three-hybrid (ubiF3H) assay we identified HP1β as a novel ubiquitination target of UHRF1. The use of linkage specific ubiquitin binding domains enabled the discrimination of K48 and K63 linked protein ubiquitination. To enhance signal-to-noise ratio, we implemented fluorescence complementation (ubiF3Hc) with split YFP. Using in addition a cell cycle marker we could show that HP1β is mostly ubiquitinated by UHRF1 during S phase and deubiquitinated by the protease USP7. With this complementation assay we could also directly detect the ubiquitination of the tumor suppressor p53 and monitor its inhibition by the anti-cancer drug Nutlin-3. Altogether, we demonstrate the utility of the ubiF3H assay to probe the ubiquitination of specific proteins and to screen for ligases, proteases and small molecules controlling this posttranslational modification.
Collapse
Affiliation(s)
- Weihua Qin
- Correspondence may also be addressed to Weihua Qin. Tel: +49 89 2180 71132; Fax: +49 89 2180 74236;
| | - Clemens Steinek
- Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Ksenia Kolobynina
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Ignasi Forné
- Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Axel Imhof
- Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Heinrich Leonhardt
- To whom correspondence should be addressed. Tel: +49 89 2180 74232; Fax: +49 89 2180 74236;
| |
Collapse
|
3
|
Suraritdechachai S, Lakkanasirorat B, Uttamapinant C. Molecular probes for cellular imaging of post-translational proteoforms. RSC Chem Biol 2022; 3:201-219. [PMID: 35360891 PMCID: PMC8826509 DOI: 10.1039/d1cb00190f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022] Open
Abstract
Specific post-translational modification (PTM) states of a protein affect its property and function; understanding their dynamics in cells would provide deep insight into diverse signaling pathways and biological processes. However, it is not trivial to visualize post-translational modifications in a protein- and site-specific manner, especially in a living-cell context. Herein, we review recent advances in the development of molecular imaging tools to detect diverse classes of post-translational proteoforms in individual cells, and their applications in studying precise roles of PTMs in regulating the function of cellular proteins.
Collapse
Affiliation(s)
- Surased Suraritdechachai
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| | - Benya Lakkanasirorat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| | - Chayasith Uttamapinant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| |
Collapse
|
4
|
Yano S, Tazawa H, Kagawa S, Fujiwara T, Hoffman RM. FUCCI Real-Time Cell-Cycle Imaging as a Guide for Designing Improved Cancer Therapy: A Review of Innovative Strategies to Target Quiescent Chemo-Resistant Cancer Cells. Cancers (Basel) 2020; 12:cancers12092655. [PMID: 32957652 PMCID: PMC7563319 DOI: 10.3390/cancers12092655] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Chemotherapy of solid tumors has made very slow progress over many decades. A major problem has been that solid tumors very often contain non-dividing cells due to lack of oxygen deep in the tumor and these non-dividing cells resist most currently-used chemotherapy which usually only targets dividing cells. The present review demonstrates how a unique imaging system, FUCCI, which color codes cells depending on whether they are in a dividing or non-dividing phase, is being used to design very novel therapy that targets non-dividing cancer cells which can greatly improve the efficacy of cancer chemotherapy. Abstract Progress in chemotherapy of solid cancer has been tragically slow due, in large part, to the chemoresistance of quiescent cancer cells in tumors. The fluorescence ubiquitination cell-cycle indicator (FUCCI) was developed in 2008 by Miyawaki et al., which color-codes the phases of the cell cycle in real-time. FUCCI utilizes genes linked to different color fluorescent reporters that are only expressed in specific phases of the cell cycle and can, thereby, image the phases of the cell cycle in real-time. Intravital real-time FUCCI imaging within tumors has demonstrated that an established tumor comprises a majority of quiescent cancer cells and a minor population of cycling cancer cells located at the tumor surface or in proximity to tumor blood vessels. In contrast to most cycling cancer cells, quiescent cancer cells are resistant to cytotoxic chemotherapy, most of which target cells in S/G2/M phases. The quiescent cancer cells can re-enter the cell cycle after surviving treatment, which suggests the reason why most cytotoxic chemotherapy is often ineffective for solid cancers. Thus, quiescent cancer cells are a major impediment to effective cancer therapy. FUCCI imaging can be used to effectively target quiescent cancer cells within tumors. For example, we review how FUCCI imaging can help to identify cell-cycle-specific therapeutics that comprise decoy of quiescent cancer cells from G1 phase to cycling phases, trapping the cancer cells in S/G2 phase where cancer cells are mostly sensitive to cytotoxic chemotherapy and eradicating the cancer cells with cytotoxic chemotherapy most active against S/G2 phase cells. FUCCI can readily image cell-cycle dynamics at the single cell level in real-time in vitro and in vivo. Therefore, visualizing cell cycle dynamics within tumors with FUCCI can provide a guide for many strategies to improve cell-cycle targeting therapy for solid cancers.
Collapse
Affiliation(s)
- Shuya Yano
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (S.K.); (T.F.)
- Center for Graduate Medical Education, Okayama University Hospital, Okayama 700-8558, Japan
- Correspondence: ; Tel.: +81-86-235-7257; Fax: +81-86-221-8775
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (S.K.); (T.F.)
- Center of Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (S.K.); (T.F.)
- Minimally Invasive Therapy Center, Okayama University Hospital, Okayama 700-8558, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (S.K.); (T.F.)
| | - Robert M. Hoffman
- AntiCancer, Inc., San Diego, CA 92111, USA;
- Department of Surgery, University of California, San Diego, CA 92093, USA
| |
Collapse
|
5
|
Le Boulch M, Brossard A, Le Dez G, Léon S, Rabut G. Correction: Sensitive detection of protein ubiquitylation using a protein fragment complementation assay. J Cell Sci 2020; 133:133/15/jcs251389. [PMID: 32788228 DOI: 10.1242/jcs.251389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
6
|
Calmodulin regulates dimerization, motility, and lipid binding of Leishmania myosin XXI. Proc Natl Acad Sci U S A 2013; 111:E227-36. [PMID: 24379364 DOI: 10.1073/pnas.1319285110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Myosin XXI is the only myosin expressed in Leishmania parasites. Although it is assumed that it performs a variety of motile functions, the motor's oligomerization states, cargo-binding, and motility are unknown. Here we show that binding of a single calmodulin causes the motor to adopt a monomeric state and to move actin filaments. In the absence of calmodulin, nonmotile dimers that cross-linked actin filaments were formed. Unexpectedly, structural analysis revealed that the dimerization domains include the calmodulin-binding neck region, essential for the generation of force and movement in myosins. Furthermore, monomeric myosin XXI bound to mixed liposomes, whereas the dimers did not. Lipid-binding sections overlapped with the dimerization domains, but also included a phox-homology domain in the converter region. We propose a mechanism of myosin regulation where dimerization, motility, and lipid binding are regulated by calmodulin. Although myosin-XXI dimers might act as nonmotile actin cross-linkers, the calmodulin-binding monomers might transport lipid cargo in the parasite.
Collapse
|
7
|
Zhang Z, Zhang S, Lin SHS, Wang X, Wu L, Lee EYC, Lee MYWT. Structure of monoubiquitinated PCNA: implications for DNA polymerase switching and Okazaki fragment maturation. Cell Cycle 2012; 11:2128-36. [PMID: 22592530 DOI: 10.4161/cc.20595] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ubiquitination of proliferating cell nuclear antigen (PCNA) to ub-PCNA is essential for DNA replication across bulky template lesions caused by UV radiation and alkylating agents, as ub-PCNA orchestrates the recruitment and switching of translesion synthesis (TLS) polymerases with replication polymerases. This allows replication to proceed, leaving the DNA to be repaired subsequently. Defects in a TLS polymerase, Pol η, lead to a form of Xeroderma pigmentosum, a disease characterized by severe skin sensitivity to sunlight damage and an increased incidence of skin cancer. Structurally, however, information on how ub-PCNA orchestrates the switching of these two classes of polymerases is lacking. We have solved the structure of ub-PCNA and demonstrate that the ubiquitin molecules in ub-PCNA are radially extended away from the PCNA without structural contact aside from the isopeptide bond linkage. This unique orientation provides an open platform for the recruitment of TLS polymerases through ubiquitin-interacting domains. However, the ubiquitin moieties, to the side of the equatorial PCNA plane, can place spatial constraints on the conformational flexibility of proteins bound to ub-PCNA. We show that ub-PCNA is impaired in its ability to support the coordinated actions of Fen1 and Pol δ in assays mimicking Okazaki fragment processing. This provides evidence for the novel concept that ub-PCNA may modulate additional DNA transactions other than TLS polymerase recruitment and switching.
Collapse
Affiliation(s)
- Zhongtao Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Nethe M, Hordijk PL. The role of ubiquitylation and degradation in RhoGTPase signalling. J Cell Sci 2011; 123:4011-8. [PMID: 21084561 DOI: 10.1242/jcs.078360] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rho-like guanosine triphosphatases (RhoGTPases) control many aspects of cellular physiology through their effects on the actin cytoskeleton and on gene transcription. Signalling by RhoGTPases is tightly coordinated and requires a series of regulatory proteins, including guanine-nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs) and guanine-nucleotide dissociation inhibitors (GDIs). GEFs and GAPs regulate GTPase cycling between the active (GTP-bound) and inactive (GDP-bound) states, whereas GDI is a cytosolic chaperone that binds inactive RhoGTPases. Like many other proteins, RhoGTPases are subject to degradation following the covalent conjugation of ubiquitin. There have been increasing indications that ubiquitylation of small GTPases occurs in a regulated fashion, primarily upon activation, and is an important means to control signalling output. Recent work has identified cellular proteins that control RasGTPase and RhoGTPase ubiquitylation and degradation, allowing us to amend the canonical model for GTPase (in)activation. Moreover, accumulating evidence for indirect regulation of GTPase function through the ubiquitylation of GTPase regulators makes this post-translational modification a key feature of GTPase-dependent signalling pathways. Here, we will discuss these recent insights into the regulation of RhoGTPase ubiquitylation and their relevance for cell signalling.
Collapse
Affiliation(s)
- Micha Nethe
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands.
| | | |
Collapse
|